Mastercam X4 User Manual

Page 1
Page 2
Page 3
mastercam x getting started tutorials
Basic 3D Machining
Be sure you have the latest information!
Information might have been changed or added since this document was published. Contact your local Reseller for the latest information.
Page 4
II • BASIC 3D MACHINING
Mastercam® X4 Basic 3D Machining
Date: October 2009 Copyright © 2009 CNC Software, Inc.— All rights reserved. First Printing: October 2009
Software: Mastercam X4
TERMS OF USE Use of this document is subject to the Mastercam End User License Agreement. A
copy of the Mastercam End User License Agreement is included with the Mastercam product package of which this document is part. The Mastercam End User License Agreement can also be found at:
www.mastercam.com/legal/licenseagreement/
Page 5

Contents

Introduction ......................................................................................... 1
Machining the Connector ......................................................... 5
1. Toolpath Setup........................................................... 7
III
Tutorial Goals................................................................................... 1
Before You Begin............................................................................. 1
If You Need More Help.................................................................... 3
Additional Documentation..............................................................4
Lesson Goals.................................................................................... 7
Exercise 1: Assigning a Machine Definition.............................. 7
Exercise 2: Setting Stock for Machining................................... 8
Exercise 3: Creating Toolpath Groups ..................................... 10
2. Roughing the Interior ................................................ 13
Lesson Goals..................................................................................13
Exercise 1: Drilling the Holes .................................................. 13
Exercise 2: Roughing the Pocket ............................................ 19
Exercise 3: Roughing the Slot................................................. 23
Exercise 4: Rest Roughing the Interior.................................... 28
3. Finishing the Interior................................................. 33
Lesson Goals..................................................................................33
Exercise 1: Finishing the Pocket Floor ....................................33
Exercise 2: Finishing the Slot.................................................. 36
4. Machining the Exterior ............................................. 41
Lesson Goals..................................................................................41
Exercise 1: Roughing the Exterior ........................................... 41
Exercise 2: Finishing the Exterior............................................ 46
Exercise 3: Drilling a hole from the Front Plane....................... 49
Page 6
IV • BASIC 3D MACHINING
Machining the Tool Holder..................................................... 71
5. Adding Details .......................................................... 53
Lesson Goals..................................................................................53
Exercise 1: Lettering with a Project Toolpath..........................53
Exercise 2: Lettering with a Contour Toolpath.........................57
6. Backplot/Verify Your Toolpaths ............................... 63
Lesson Goals..................................................................................63
Exercise 1: Backplotting All Toolpaths ....................................63
Exercise 2: Verifying All Toolpaths.......................................... 64
7. Posting Toolpaths..................................................... 67
Lesson Goals..................................................................................67
Exercise 1: Posting All Toolpath Operations............................67
Sending NC Files to the Machine ................................................69
1. Toolpath Setup.......................................................... 73
Lesson Goals..................................................................................73
Exercise 1: Assigning a Machine Definition ............................73
Exercise 2: Setting Stock for Machining .................................74
2. Roughing the Part..................................................... 77
Lesson Goals..................................................................................77
Exercise 1: Roughing the Part .................................................77
Exercise 2: Creating a Leftover Toolpath................................. 82
3. Semi-Finishing the Part ............................................ 85
Lesson Goals..................................................................................85
Exercise 1: Creating a Surface Finish Blend ............................85
Exercise 2: Creating a Surface Finish Parallel Steep ...............89
Exercise 3: Copy and Modify an Operation .............................91
4. Finishing the Part...................................................... 95
Lesson Goals..................................................................................95
Exercise 1: Creating a Swept 3D............................................. 95
Exercise 2: Creating a second Swept 3D ................................98
Exercise 3: Creating a Flowline ............................................. 101
Page 7
5. Backplot/Verify Your Toolpaths.............................. 105
Lesson Goals................................................................................ 105
Exercise 1: Backplotting all Toolpaths .................................. 105
Exercise 2: Verifying All Toolpaths........................................ 106
6. Posting Toolpaths ................................................... 109
Lesson Goals................................................................................ 109
Exercise 1: Posting All Toolpath Operations ......................... 109
Sending NC Files to the Machine.............................................. 111
Conclusion .........................................................................................112
V
Page 8
VI • BASIC 3D MACHINING
Page 9

INTRODUCTION

This tutorial focuses on applying several milling toolpaths to parts previously designed in Mastercam. The objective is to provide a general overview of a handful of the toolpath options available to you. The options and parameters selected are intended to get you started on the path toward learning and exploring all of the features Mastercam has to offer.
The toolpaths created illustrate possible solutions for machining parts using 3D toolpaths - mainly surfacing operations. There are many solutions for machining these and similar parts. The goal of this tutorial is to provide the basic concepts for you to explore and expand upon. Alter and adjust the outline to fit your learning and programming environment after completing the lessons.
Toolpath creation is a repetitive, step-by-step process as demonstrated by this tutorial. Comprehensive and conceptual information can be found in the Help and other documentation installed with Mastercam.

Tutorial Goals

Open multiple part files, assign default machine definitions, and create stock boundaries
for the geometry
Create and rename toolpath groups
Create roughing operations to efficiently remove material from the part
Create semi-finishing operations to safely transition between roughing and finishing the
part
Create finishing operations to create a complete part with final dimensions
Copy operations, change parameters, and regenerate the operation
Assign toolpath parameters to meet the roughing, semi-finishing, and finishing
requirements
Backplot toolpath operations to review tool motion
Verify the machining of the part from a stock model display
Post all toolpath operations to an NC file, review/edit the code as necessary, and save the
NC file

Before You Begin

This is a module of the Mastercam Getting Started Tutorial Series. The series introduces general Mastercam functions and teaches basic skills for getting started with Mastercam. Other tutorial series include:
Focus Series: Focuses on a specific Mastercam feature—for example, Setup Sheets or FBM
Drill, and teaches basic and advanced skills.
Exploring Series: Explores a single Mastercam product—for example, Mill, Solids, or Wire,
and teaches in-depth skills for working with the product.
The Mastercam tutorial series is in continual development, and we will add modules as we complete them. For information and availability, please contact your local Mastercam Reseller.
Page 10
2 • BASIC 3D MACHINING
Note: Screen colors in the tutorial pictures enhance image quality; they may not match your Mastercam settings.
General Tutorial Requirements
All Mastercam tutorials have the following general requirements:
You must be comfortable using the Windows
The tutorials cannot be used with Mastercam Demo/Home Learning Edition (HLE). The
Demo/HLE file format (EMCX) is different from Mastercam (MCX), and basic Mastercam functions, such as file conversions and posting, are unavailable.
Each lesson in the tutorial builds on the mastery of preceding lesson’s skills. We
recommend that you complete them in order.
Focus Series and Exploring Series tutorials require, at minimum, a mastery of the basic
Mastercam skills taught in the Getting Started Series modules. A general knowledge of machining principals and practices is also required.
You must have a seat of Mastercam X4 Design or higher to complete most of the tutorials in
the Getting Started Series.
The Basic 2D Machining module in the Getting Started Series requires, at minimum, a seat
of Mill Entry or Router Entry.
The Basic 3D Machining module in the Getting Started Series requires Mill Level 3 or Router
Pro.
Additional files may accompany a tutorial. Unless the tutorial provides specific
instructions on where to place these files, store them in a folder that can be accessed from the Mastercam workstation, either with the tutorial or in any location that you prefer.
The Getting Started Series tutorials are available in an Adobe
format. Additional tutorial videos may also be available. Contact your local Mastercam Reseller for more information.
You must install Adobe Flash Player to display tutorial videos. You can download Adobe
Flash Player from www.adobe.com.
You must configure Mastercam to work in metric units. Complete the instructions in the
following section Preparing for a Tutorial to set Mastercam to metric.
®
operating system.
®
Flash® compatible video
Preparing for a Tutorial
Before you start a tutorial, be sure you have completed the following tasks:
Page 11
1 Start Mastercam using your preferred
method:
Double-click Mastercam’s desktop
icon.
Or
Launch Mastercam from the
Windows Start menu.
2 Select the metric configuration file:
a Select Settings, Configuration from
Mastercam’s menu.
b Choose ..\config\mcamxm.config
<Metric> from the Current drop-down
list.
c Click OK.

If You Need More Help

There are many ways to get help with Mastercam, including the following:
INTRODUCTION • 3
Mastercam Help—Access Mastercam Help by selecting Help, Contents from Mastercam’s
menu bar or by pressing [Alt+H] on your keyboard. Also, most dialog boxes and ribbon
bars feature a Help button that opens Mastercam Help directly to related information.
Online help—You can search for information or ask questions on the Mastercam Web
forum, located at www.emastercam.com. You can also find a wealth of information, including many videos, at www.mastercam.com and www.mastercamedu.com.
Mastercam Reseller—Your local Mastercam Reseller can help with most questions about
Mastercam.
Technical Support—CNC Software’s Technical Support department (860-875-5006 or
support@mastercam.com) is open Monday through Friday from 8:00 a.m. to 5:30 p.m. USA Eastern Standard Time.
Documentation feedback—For questions about this or other Mastercam documentation,
contact the Technical Documentation department by email at techdocs@mastercam.com.
Mastercam University—CNC Software sponsors Mastercam University, an affordable
online learning platform that gives you 24/7 access to Mastercam training materials. Take advantage of more than 180 videos to master your skills at your own pace and help prepare yourself for Mastercam Certification. For more information on Mastercam University, please contact your Authorized Mastercam Reseller, visit www.mastercamu.com, or email training@mastercam.com.
Page 12
4 • BASIC 3D MACHINING

Additional Documentation

You can find more information on using Mastercam in the following materials, located in the
\Documentation folder of your Mastercam installation:
Mastercam X4 Installation Guide
Mastercam X4 Administrator Guide
Mastercam X4 Quick Start
Mastercam X4 Reference Guide
Mastercam X4 Transition Guide
Mastercam X4 Quick Reference Card
Mastercam X4 Wire Getting Started Guide
Version 9 to X Function Map
Page 13
Section 1

Machining the Connector

Page 14
6 • BASIC 3D MACHINING
Page 15
LESSON 1

1Toolpath Setup

Before generating toolpaths for a part, you must select a machine definition. Defining stock creates a visual representation of the stock placed in your machine. Creating and naming toolpath groups will organize operations and maintain a logical structure for the part. This lesson covers these topics.

Lesson Goals

Open a part file and assign a machine definition.
Define stock to be used in machining the part.
Rename toolpath groups.

Exercise 1: Assigning a Machine Definition

Toolpaths are organized in machine groups and toolpath groups. A machine group is created when a machine definition is assigned. This exercise guides you through selecting a machine definition.
1 Open the tutorial part file Basic_3D_Machining_Part1_Start.MCX, which was provided
with the tutorial.
Page 16
8 • BASIC 3D MACHINING
2 Click OK if prompted to switch to a metric
configuration.
3 Choose Machine Type, Mill, Default to
open the default Mill machine definition.
In Mastercam, you select a machine definition before creating any toolpaths. The machine definition is a model of your machine tool’s capabilities and features. It acts like a template for setting up machining jobs.
Note: Parts that have previously been saved with a machine definition automatically load the associated machine definition.
4 Choose File, Save As, and save the part under a different file name. This protects the
original tutorial file from being overwritten.

Exercise 2: Setting Stock for Machining

Define stock to help you more clearly visualize toolpaths. The stock can help to generate toolpaths, or be used when backplotting or verifying toolpaths. This exercise guides you through creating a stock boundary for your part.
1 In the Toolpath Manager, select Stock
setup. If necessary, click the [+] next to
Properties to expand the list.
The Machine Group Properties dialog box opens to the Stock Setup tab.
Page 17
2 Click Bounding box.
The Bounding Box dialog box opens.
Bounding box is a quick and convenient method for creating stock around the outer boundary of your geometry.
3 Set the options and parameters as shown,
then click OK.
SECTION 1: TOOLPATH SETUP • 9
4 Click OK in the Machine Group Properties
dialog box.
Page 18
10 • BASIC 3D MACHINING
5 Press [Alt+F1], or right-click and select Fit, to fit the geometry to the screen.
6 Choose File, Save or click the Save button
to save the part with the machine definition and defined stock.

Exercise 3: Creating Toolpath Groups

Toolpath groups aid in organizing toolpaths logically. A well organized part file makes it easy for any user to understand the process involved in making the part. This exercise guides you through creating and renaming toolpath groups.
1 In the Toolpath Manager, right-click
Toolpath Group-1, select Groups, Rename.
Page 19
SECTION 1: TOOLPATH SETUP • 11
2 Ty pe Interior and press [Enter].
3 In the Toolpath Manager, right-click on
Machine Group-1, select Groups, New Toolpath Group.
The new toolpath group is named Toolpath Group-1. If you create the second toolpath group before renaming the first, the new group is named Toolpath Group-2.
TIP: Right-clicking the machine group name creates the new toolpath group at the same level in the tree as the Interior toolpath group. You can right-click Interior to create a new toolpath group one level below Interior.
4 Ty pe Exterior and press [Enter].
The Toolpath Manager should look as shown.
5 Choose File, Save or click the Save button
to save the part.
Page 20
12 • BASIC 3D MACHINING
Page 21
LESSON 2

2Roughing the Interior

The first toolpaths for a part typically involve removing large amounts of material. This is referred to as roughing the part. This lesson guides you through several roughing toolpaths. These include drilling the holes, roughing the inner pocket, roughing the inner slot, and rest roughing the interior portion of the part.

Lesson Goals

Create a drill toolpath (including drill point selection, choosing tooling, and setting
machine values).
Create High Speed and surface roughing operations.
Create a High Speed rest roughing operation (including toolpath refinement).

Exercise 1: Drilling the Holes

1 In the Toolpath Manager, click the Move
insert arrow up one item button.
The Toolpath Manager should look as shown after performing this step.
The insert arrow controls the location where new toolpaths will be added to the Too l pa th M an a ge r.
Page 22
14 • BASIC 3D MACHINING
2 Right-click in the graphics window and
choose Isometric (WCS) from the menu to view the part and toolpath in the isometric view.
You may need to center the part in the graphics window to see it. The easiest way to do this is to use the graphics window right-click menu and select Fit to fit the part to the screen size [Alt+F1]. Then unzoom using [Alt+F2]. You can also use the fit/zoom/unzoom buttons in the View Manipulation toolbar.
3 Choose Toolpaths, Drill.
4 Click OK when prompted to enter new NC
name.
The name displayed will be the name you chose to save the file under. You may change the NC file name now if necessary.
5 Use the default option for Select drill
point position in the graphics screen in
the Drill Point Selection dialog box.
Page 23
SECTION 1: ROUGHING THE INTERIOR • 15
6 Select the arc centers of the four holes as
indicated.
The autocursor changes to indicate the arc center as you approach.
7 Click OK in the Drill Point Selection dialog box.
The 2D Toolpaths dialog box opens to the Toolpath Type page. Drill is selected as the toolpath type. (Do not click OK on the 2D Toolpaths dialog box until all pages are complete.)
Page 24
16 • BASIC 3D MACHINING
8 Select To o l from the Tree View pane on the
left.
9 Click the Select library tool button.
The default metric tool library opens.
10 Select the 10mm drill and click OK.
TIP: Use the default tool settings for the purposes of the tutorial. Tool speeds, feeds,
number, and other parameters should be changed to fit your machine and tooling before cutting the part.
Page 25
SECTION 1: ROUGHING THE INTERIOR • 17
11 Select Linking Parameters from the Tree View pane and enter values as shown.
These values will control the depth the tool will move to, where the top of stock is located, as well as the height to retract the tool to.
12 Select Tip Comp from the Tree View pane.
Click the Tip Comp checkbox to activate this feature. Use default values for the tip comp parameters.
Page 26
18 • BASIC 3D MACHINING
13 Click OK in the 2D Toolpath dialog box to generate the drill toolpath.
14 Click the Toggle toolpath display on
selected operations button. If necessary, select the Drill/Counterbore operation.
The toolpath display for the Drill toolpath is turned off. Perform this step after the creation of each operation for clarity in selecting geometry for subsequent steps.
15 Save your part file.
Page 27
SECTION 1: ROUGHING THE INTERIOR • 19

Exercise 2: Roughing the Pocket

1 Choose Toolpaths, Surface High Speed.
2 If the New 3D Advanced Toolpath Refinement Feature! dialog box opens, select the
option to eliminate this dialog box and make refinement available for use. Click OK to close the dialog box.
Note: This dialog box introduces the 3D Advanced Toolpath Refinement feature. Use this feature to fine-tune your toolpath motion.
Page 28
20 • BASIC 3D MACHINING
3 Follow the prompt to select drive surfaces as shown.
4 Press [Enter] or click the End Selection
button to accept the selection.
5 Click the Select button in the
Containment area of the Toolpath/Surface selection dialog box.
The Chaining dialog box opens.
6 Click the C-plane radio button.
C-plane selection limits chaining to entities that are parallel to the current construction plane.
Page 29
SECTION 1: ROUGHING THE INTERIOR • 21
7 Select the chain on the top of the part. The
selection can be in either direction for a closed containment boundary.
8 Click OK on the Chaining dialog box to return to the Toolpath/Surface selection dialog box.
9 Click OK on the Toolpath/surface selection dialog box.
The Surface High Speed toolpaths dialog box opens on the Toolpath Type page.
10 Select Roughing and Area Clearance on
the Toolpath Type page.
11 Select To o l from the Tree View pane.
12 Click the Select library tool button. The
default metric tool library opens.
13 Select the 10mm bull endmill with 2mm
corner radius and click OK.
TIP: Adjust the Filter options on the right of the dialog box to limit the types of tools displayed.
Page 30
22 • BASIC 3D MACHINING
14 Select Cut Parameters from the Tree View pane. Set the parameters as indicated.
Page 31
15 Click OK to generate the area clearance toolpath.
SECTION 1: ROUGHING THE INTERIOR • 23
16 Turn off the toolpath display for the operation.
17 Save your part file.

Exercise 3: Roughing the Slot

1 Choose Toolpaths, Surface Rough,
Pocket.
Page 32
24 • BASIC 3D MACHINING
2 Follow the prompt to select drive surfaces
as shown.
3 Press [Enter] or click the End Selection button.
4 Click the Select button in the Containment area of the Toolpath/Surface selection dialog
box.
The Chaining dialog box opens.
5 Click the C-plane radio button in the Chaining dialog box.
6 Select the chain at the top of the slot as
shown.
7 Click OK on the Chaining dialog box.
8 Click OK on the Toolpaths/surface selection dialog box.
The Surface Rough Pocket dialog box opens to the Toolpath parameters tab.
9 Select the 10mm bull endmill with the
2mm corner radius showing in the tool list.
10 Click the Surface parameters tab.
Page 33
11 Set Stock to leave on drive to a value of
1mm.
Remaining parameters on this tab will be left at defaults.
12 Click the Rough parameters tab.
13 Click the Cut Depths button.
14 Set the parameters as shown and click OK.
SECTION 1: ROUGHING THE INTERIOR • 25
15 Click the Pocket parameters tab.
Page 34
26 • BASIC 3D MACHINING
16 Click Constant Overlap Spiral, set the parameters as shown, and click OK.
17 The following warning message displays because the finish passes are turned off. Click OK
to continue.
Page 35
SECTION 1: ROUGHING THE INTERIOR • 27
18 The surface rough pocket toolpath is generated on the selected geometry.
19 Turn off the toolpath display for the operation.
20 Save your part file.
Page 36
28 • BASIC 3D MACHINING

Exercise 4: Rest Roughing the Interior

1 Choose Toolpaths, Surface High Speed.
2 Follow the prompt to select drive surfaces as shown.
3 Press [Enter] or click End Selection to accept the selection.
4 Click the Select button in the Containment area of the Toolpath/Surface selection dialog
box.
The Chaining dialog box opens.
5 Click the C-plane radio button.
Page 37
SECTION 1: ROUGHING THE INTERIOR • 29
6 Follow the prompt to chain a containment boundary as shown.
7 Click OK in the Chaining and the Toolpath/surface selection dialog boxes.
The Surface High Speed toolpaths dialog box opens.
8 Select Toolpath Type from the Tree View
pane, and then select Roughing and Rest Roughing on the Toolpath Type page.
9 Select To o l from the Tree View pane.
10 Click the Select library tool button. The
default metric tool library opens.
Page 38
30 • BASIC 3D MACHINING
11 Select the 6mm bull endmill with the 2mm
corner radius and click OK.
12 Select Cut Parameters from the Tree View
pane.
Set the stock to leave values as indicated.
13 Select Rest Material from the Tree View
pane.
Click the plus sign in front of Cut Parameters to expand the tree if necessary.
14 Select Roughing Tool and set the values as
shown.
15 Select Arc Filter/Tolerance from the Tree
View pane.
16 Click the Refine toolpath button.
The Refine Toolpath dialog box opens.
Page 39
SECTION 1: ROUGHING THE INTERIOR • 31
17 Move the slider for Surface quality to the Better setting.
Note: Move the slider(s) to quickly adjust parameters in the dialog box. Consult Help for more detailed information.
18 Click OK to accept the settings on the Refine Toolpath dialog.
19 Click OK in the Surface High Speed Toolpath dialog box.
20 If the following dialog box displays, select Create a new tool, then click OK.
Page 40
32 • BASIC 3D MACHINING
21 The rest roughing toolpath is generated on the selected geometry.
22 Turn off the toolpath display for the operation.
23 Save your part file.
Page 41
LESSON 3

3Finishing the Interior

After roughing a part, or section of a part, finishing operations will generally need to be performed. Finishing operations remove remaining stock while improving surface finish quality. Tighter tolerances, smaller stepover values, smaller tools, as well as toolpath refinement will be used in this lesson to achieve the desired finish quality.

Lesson Goals

Create a finishing operation for the pocket floor.
Create a finishing operation for the slot.

Exercise 1: Finishing the Pocket Floor

1 Choose Toolpaths, Surface High Speed.
The prompt to select Drive Surfaces appears.
2 Follow the prompt to select drive surfaces as shown.
3 Press [Enter] or click the End Selection button to accept the selection.
4 Click the Select button in the Containment area of the Toolpath/Surface selection dialog
box.
Page 42
34 • BASIC 3D MACHINING
The Chaining dialog box opens.
5 Click the C-plane radio button.
6 Follow the prompt to chain a containment boundary as shown.
7 Click OK in the Chaining and the Toolpath/surface selection dialog boxes.
The Surface High Speed toolpaths dialog box opens on the Toolpath Type page.
8 Select the Toolpath Type page, and then
Finishing and Horizontal Area.
Horizontal Area is designed to quickly and efficiently machine flat areas of a part.
9 Select To o l from the Tree View pane.
10 Select the 6mm bull endmill with the 2mm corner radius showing in the tool list.
Page 43
11 Select Cut Parameters from the Tree View
pane. Set the tool containment as shown.
12 Select Arc Filter/Tolerance from the Tree View pane.
13 Click the Refine Toolpath button.
14 Move the slider for Surface quality to the Best setting.
SECTION 1: FINISHING THE INTERIOR • 35
15 Click OK to accept the settings on the Refine Toolpath dialog.
Page 44
36 • BASIC 3D MACHINING
16 Click OK in the Surface High Speed Toolpath dialog box to generate the horizontal area
toolpath.
17 Turn off the toolpath display for the operation.
18 Save your part file.

Exercise 2: Finishing the Slot

1 Choose Toolpaths, Surface Finish,
Contour.
Page 45
SECTION 1: FINISHING THE INTERIOR • 37
2 Follow the prompt to select drive surfaces
as shown.
3 Press [Enter] or click the End Selection button to accept the selection.
4 Click the Select button in the Containment area of the Toolpath/Surface selection dialog
box.
The Chaining dialog box opens.
5 Click the C-plane radio button.
6 Follow the prompt to chain a containment
boundary as shown.
7 Click OK on the Chaining and Toolpaths/surface selection dialog box.
The Surface Finish Contour dialog box opens to the Toolpath parameters tab.
8 Select the 6mm bull endmill with the 2mm
corner radius showing in the tool list.
Page 46
38 • BASIC 3D MACHINING
9 Click the Surface parameters tab. Set the parameters as shown.
Note: Retract is set to absolute to ensure proper clearance when the tool is pulling out of the deep slot.
10 Click the Finish contour parameters tab.
11 Set the parameters as shown.
12 Click the Total tolerance button.
13 Move the slider for Surface quality to the Best setting and click OK.
Page 47
SECTION 1: FINISHING THE INTERIOR • 39
14 Click the Cut Depths button.
15 Set the parameters as shown and click OK.
16 Click OK from the Surface Finish Contour dialog box to generate the finish contour
toolpath.
17 Turn off the toolpath display for the operation.
18 Save your part file.
Page 48
40 • BASIC 3D MACHINING
Page 49
LESSON 4

4Machining the Exterior

Roughing and finishing are required on the exterior of the part provided. The simplicity of the exterior surfaces allows for a single roughing and a single finishing operation. This lesson will cover each of those as well as using a different tool plane to drill a hole.

Lesson Goals

Create a Core Roughing toolpath.
Create a Surface Finish Contour toolpath.
Create a Drill toolpath in the Front plane.

Exercise 1: Roughing the Exterior

1 Select the toolpath group Exterior.
Click the minus (-) in front of the Interior toolpath group to collapse the tree.
2 Click the Position insert arrow after
selected operation or after selected group button.
The insertion arrow is placed in the Exterior group.
Moving the insertion arrow ensures new toolpaths are created in the Exterior toolpath group. Toolpath organization is an important ability as the number of operations grows.
3 Choose Toolpaths, Surface High Speed.
4 Click the All button on the General
Selection ribbon bar when prompted to select drive surfaces.
Page 50
42 • BASIC 3D MACHINING
5 Select the Entities and Surfaces
checkboxes in the Select All dialog box as shown.
6 Click OK in the Select All dialog box.
7 Press [Enter] or click the End Selection button.
8 Click the Select button in the Containment area of the Toolpath/Surface selection dialog
box.
The Chaining dialog box opens.
9 Click the C-plane radio button.
Page 51
SECTION 1: MACHINING THE EXTERIOR • 43
10 Select two chains as shown to be used as containment boundaries. The chains lie on the
top of the part and the top of the stock boundary created in the Toolpath Setup lesson.
11 Click OK in the Chaining and the Toolpath/surface selection dialog boxes.
The Surface High Speed toolpaths dialog box opens on the Toolpath Type page.
12 Select the Toolpath Type page, and then
Roughing and Core Roughing.
13 Select To o l from the Tree View pane.
14 Select the 10mm bull endmill with the 2mm corner radius showing in the tool list.
Page 52
44 • BASIC 3D MACHINING
15 Select Cut Parameters from the Tree View pane. Set the tool containment and stock to
leave values as indicated.
16 Select Steep/Shallow from the Tree View
pane. Set the parameters as shown.
Click the plus [+] in front of Cut Parameters if necessary to expand the tree.
Page 53
SECTION 1: MACHINING THE EXTERIOR • 45
17 Click OK in the Surface High Speed Toolpath dialog box to generate the core roughing
toolpath.
18 Turn off the toolpath display for the operation.
19 Save your part file.
Page 54
46 • BASIC 3D MACHINING

Exercise 2: Finishing the Exterior

1 Choose Toolpaths, Surface Finish, Contour.
2 Follow the prompt to select drive surfaces as shown.
3 Press [Enter] or click the End Selection button to accept the selection.
4 Click the Select button in the Check
Surfaces area of the Toolpath/Surface selection dialog box.
Page 55
5 Follow the prompt to select check surfaces as shown.
SECTION 1: MACHINING THE EXTERIOR • 47
6 Press [Enter] or click the End Selection button to accept the selection.
7 Click OK on the Toolpath/Surface selection dialog box.
8 Click the Select library tool button.
9 Select the 6mm flat endmill and click OK.
10 Click the Surface parameters tab and set
the stock to leave values as shown.
11 Click the Finish contour parameters tab.
12 Click the Total tolerance button.
13 Move the slider for Surface quality to the Best setting and click OK.
Page 56
48 • BASIC 3D MACHINING
14 Click the Cut Depths button.
15 Set the parameters as shown and click OK.
16 Click OK to generate the surface finish contour toolpath.
17 Turn off the toolpath display for the operation.
18 Save your part file.
Page 57
SECTION 1: MACHINING THE EXTERIOR • 49

Exercise 3: Drilling a hole from the Front Plane

1 Click the Planes button located on the
Status bar at the bottom of the screen.
2 Select Front (WCS) from the list.
Planes selection sets your construction and tool plane.
3 Choose Toolpaths, Drill.
4 Use the default option for Select drill
point position in the graphics screen in the Drill Point Selection dialog box.
5 Select the arc center as indicated.
6 Click OK in the Drill Point Selection dialog box.
The 2D Toolpaths dialog box opens to the Toolpath Type page. Drill is selected as the toolpath type.
7 Select To o l from the Tree View pane.
8 Click the Select library tool button.
Page 58
50 • BASIC 3D MACHINING
9 Select the 6mm drill and click OK.
10 Select Linking Parameters from the Tree
View pane and enter values as shown.
11 Select Tip Comp from the Tree View pane. Click the Tip Comp checkbox to activate this
feature. Use default values for the tip comp parameters.
Page 59
12 Click OK to generate the drill toolpath.
SECTION 1: MACHINING THE EXTERIOR • 51
13 Turn off the toolpath display for the operation.
14 Save your part file.
Page 60
52 • BASIC 3D MACHINING
Page 61
LESSON 5

5Adding Details

The basic part has been machined to the desired quality. Remaining details may now be added to the part such as engraved numbers or letters, tapping of holes, or any other detail work not included in the previous operations. This lesson covers two methods for adding lettering to your part.

Lesson Goals

Create lettering using a Surface Finish Project toolpath in the front plane.
Create lettering using a Contour toolpath in a custom plane.

Exercise 1: Lettering with a Project Toolpath

1 Choose Toolpaths, Surface Finish,
Project.
The tool and construction planes should be set to Front from the previous exercise. If not, reset them to Front.
Page 62
54 • BASIC 3D MACHINING
2 Follow the prompt to select drive surfaces as shown.
3 Press [Enter] or click the End Selection button.
4 Click OK from the Toolpath/Surface selection dialog box.
The Surface Finish Project dialog box opens to the toolpath parameters tab.
5 Click the Select library tool button.
6 Select the 2mm ball endmill and click OK.
7 Click the Surface parameters tab and set
the stock to leave values as shown.
A negative stock to leave value creates the toolpath below the surface. The letters become engraved into the part.
8 Click the Finish project parameters tab.
Page 63
SECTION 1: ADDING DETAILS • 55
9 Set the Projection type to Curves.
10 Click the Total tolerance button.
11 Move the slider for Surface quality to the Best setting and click OK.
12 Click the Gap Settings button.
13 Adjust the Distance value in Gap settings
as shown.
Only the value preceded by the radio button selection will be used in the toolpath calculation.
14 Click OK in the Gap settings dialog.
15 Click OK from the Surface Finish Project dialog.
The Chaining dialog box opens.
16 Set the chaining mode to window by
clicking the Window button.
17 To select the curves to be used in the
toolpath, click and hold the mouse button above and to the left of the text.
18 Drag your mouse down and to the right to
draw a selection rectangle.
19 Click again to set the lower right corner of
the rectangle and complete the window.
Page 64
56 • BASIC 3D MACHINING
20 Click the lower left endpoint of the text
when prompted to Sketch approximate start point.
21 Click OK to generate the surface finish project toolpath.
22 Turn off the toolpath display for the operation.
23 Save your part file.
Page 65
SECTION 1: ADDING DETAILS • 57

Exercise 2: Lettering with a Contour Toolpath

1 Click the Planes button on the Status bar.
2 Select Named Views from the list.
The View Selection dialog opens.
3 Select Te x t P l a n e from the list of available
planes. Click OK to set the new plane.
Review Basic 3D Design to see a procedure for creating named planes.
4 Choose To o l p a t h s , C on t o u r .
5 Set the chaining mode to window by clicking the Window button.
6 Window-select the Mastercam letters that lie in the Text Plane.
7 Click the lower left endpoint of the text
when prompted to Sketch approximate start point.
8 Click OK from the Chaining dialog box.
The 2D Toolpath dialog box opens to the Toolpath Type page.
9 Select To o l from the Tree View pane.
10 Click the Select library tool button.
Page 66
58 • BASIC 3D MACHINING
11 Select the 1mm ball endmill and click OK.
12 Select Cut Parameters from the Tree View pane.
13 Set Compensation type to Off.
14 Select Lead In/Out from the Tree View
pane.
Expand Cut Parameters by clicking the [+], if necessary.
15 Uncheck lead in/out moves.
Page 67
SECTION 1: ADDING DETAILS • 59
16 Select Linking Parameters from the Tree View pane and set the parameters as shown.
17 Select Planes (WCS) from the Tree View
pane.
The Planes (WCS) page is displayed.
Page 68
60 • BASIC 3D MACHINING
18 Click the Copy to WCS button highlighted below.
19 The resulting working coordinate system is
as shown.
Click the Help button for details on working with WCS.
Page 69
SECTION 1: ADDING DETAILS • 61
20 Click OK from the 2D Toolpaths dialog box to generate the contour toolpath.
21 Turn off the toolpath display for the operation.
22 Save your part file.
Page 70
62 • BASIC 3D MACHINING
Page 71
LESSON 6

6Backplot/Verify Your Toolpaths

Now that all toolpaths are complete, it is time to backplot and verify your operations. This process allows you to review the tool motion before any cutting takes place on the actual machine. This lesson guides you through the backplot and verify functions.

Lesson Goals

Backplot all toolpaths.
Verify all toolpaths.

Exercise 1: Backplotting All Toolpaths

1 In the Toolpath Manager, click the Select
all operations button.
All operations should now have a green check on them.
2 Click the Backplot selected operations
button in the Toolpath Manager.
The Backplot dialog box and Backplot VCR bar open.
3 In the Backplot dialog box, select the
Display tool and Display rapid moves buttons.
These options will display a simulation of the tool as well as the rapid motion.
Page 72
64 • BASIC 3D MACHINING
TIP: To further customize your backplot display, choose other buttons on the Backplot
dialog box. For example, choose the Options button to open the Backplot Options dialog box. This dialog box lets you set various backplot options such as tool display, holder display, and tool motion colors. Setting the option to Cleanup screen on Tool change is recommended with a large number of operations.
I4 Use the buttons and sliders on the Backplot VCR bar to backplot the operations. The Play button (shown to the right) begins the backplot.
Click the Help button on the VCR bar for more information on each of the controls.
5 When finished, click OK on the backplot dialog box to exit the backplot function.
TIP: The backplot display is easily customizable. See the Mastercam Help for details on
each of the buttons, fields, and display options in the Backplot and the Backplot Options dialog boxes.

Exercise 2: Verifying All Toolpaths

1 In the Toolpath Manager, make sure all
operations are selected and click the Veri f y selected operations button.
The Verify dialog box opens.
2 In the Verify dialog box, select the Machine
button.
The part, stock, and toolpaths are simulated.
TIP: Use the buttons, fields, and controls in the Verify dialog box to customize and manage the toolpath verification process. Click the Help button in the dialog box for details.
Page 73
SECTION 1: BACKPLOT/VERIFY YOUR T OOLPATHS • 65
When the verification process is complete, the part should look similar to the image shown here.
Page 74
66 • BASIC 3D MACHINING
Page 75
LESSON 7

7Posting Toolpaths

Operations must be run through a post processor in order to be usable by your machine. This process is commonly referred to as posting. This lesson will guide you through selecting and posting all of your operations. Communicating the posted code to your machine is the last step of the toolpathing process in Mastercam.

Lesson Goals

Post all toolpaths to create an NC file.

Exercise 1: Posting All Toolpath Operations

1 In the Toolpath Manager, click the Select
all operations button.
2 Click the Post selected operations button.
The Post processing dialog box opens.
Page 76
68 • BASIC 3D MACHINING
3 Set the post processing options as shown.
4 Click OK.
The Save As dialog box opens.
5 Click Save to save the NC file in the default location with the recommended file name.
Notes:
• Posting may take several minutes. When it is complete, the NC code will display in your default editor/communicator. This tutorial uses Mastercam Editor to display the NC code.
• Producing the correct NC code for your machine and application depends on properly configuring the machine definition, control definition, and .PST file. For detailed information on machine definitions, control, definitions, and posting, please see the following documentation supplied with Mastercam:
- Mastercam Help
- Mastercam X4 Reference Guide (choose Reference Guide from the Mastercam Help menu)
- Mastercam NCI & Parameter Reference Guide (in the Documentation folder under your Mastercam installation folder)
Page 77
SECTION 1: POSTING TOOLPATHS • 69
6 Your chosen editor opens (in this case, Mastercam Editor), displaying the posted NC code
as shown below.
7 Scroll through the NC code to verify that each line of code meets your expectations. Edit
and save as necessary.

Sending NC Files to the Machine

IMPORTANT: This tutorial is based on the Mastercam Mill Default machine definition for training purposes only. It is not possible to provide a step-by-step procedure for sending the NC code to your machine control because machine setups are customizable and most likely different from the machine definition used here. Following is a general description of how the NC code is communicated to machines and their controls for machining.
After the NC file is reviewed, edited, and saved, you can set up your machine control to accept the
NC file. This is done according to your machine and control manufacturer’s procedures.
Page 78
70 • BASIC 3D MACHINING
When the machine control is ready to receive the NC file, configure your preferred editor or communications program to communicate with your machine control. Refer to your communications program documentation for details.
Send the NC code to your machine control according to your machine and control manufacturer’s documentation. Once you start the communication process, the send/receive data processing is mostly managed by your machine control.
Contact your local Mastercam Reseller for customized machine/control definitions, post (PST) files, and support.
Page 79
Section 2

Machining the Tool Holder

Page 80
72 • BASIC 3D MACHINING
Page 81
LESSON 1

1Toolpath Setup

Before generating toolpaths for a part, you must select a machine definition. Defining stock creates
a visual representation of the stock placed in your machine. This lesson covers these topics.

Lesson Goals

Open a part file and assign a machine definition.
Define stock to be used in machining the part.

Exercise 1: Assigning a Machine Definition

1 Open the tutorial part file Basic_3D_Machining_Part2_Start.MCX, which was provided
with the tutorial.
2 Click OK if prompted to switch to a metric
configuration.
Page 82
74 • BASIC 3D MACHINING
3 Choose Machine Type, Mill, Default to
open the default Mill machine definition.
In Mastercam, you select a machine definition before creating any toolpaths. The machine definition is a model of your machine tool’s capabilities and features. It acts like a template for setting up machining jobs.
Note: Parts that have previously been saved with a machine definition automatically load the associated machine definition.
4 Choose File, Save As, and save the part under a different file name. This protects the
original tutorial file from being overwritten.

Exercise 2: Setting Stock for Machining

1 In the Toolpath Manager, select Stock
setup. If necessary, click the [+] next to
Properties to expand the list.
The Machine Group Properties dialog box opens to the Stock Setup tab.
2 Click Bounding box.
The Bounding Box dialog box opens.
Bounding box is a quick and convenient method for creating stock around the outer boundary of your geometry.
Page 83
3 Set the options and parameters as shown,
and then click OK.
SECTION 2: TOOLPATH SETUP • 75
4 Click OK in the Machine Group Properties
dialog box.
5 Press [Alt+S] to shade the geometry, if necessary.
Page 84
76 • BASIC 3D MACHINING
6 Press [Alt+F1] to fit the geometry to the screen.
7 Choose File, Save or click the Save button
to save the part with the machine definition and defined stock.
Page 85
LESSON 2

2Roughing the Part

The first toolpaths for a part typically involve removing large amounts of material. This is referred to as roughing the part. This lesson guides you through several roughing toolpaths. These include using a core roughing operation and a leftover operation.

Lesson Goals

Create a core roughing toolpath to efficiently remove material.
Create a leftover toolpath.

Exercise 1: Roughing the Part

1 Choose Toolpaths, Surface High Speed.
2 If the New 3D Advanced Toolpath Refinement Feature! dialog box opens, select the
option to eliminate this dialog box and make refinement available for use. Click OK to close the dialog box.
Page 86
78 • BASIC 3D MACHINING
Note: This dialog box introduces the 3D Advanced Toolpath Refinement feature. Use this feature to fine-tune your toolpath motion.
3 Click OK when prompted to enter new NC
name.
The name displayed will be the name you chose to save the file under. You may change the NC file name now if necessary.
4 Press [Alt+S] to shade the geometry, if necessary.
5 Follow the prompt to select drive surfaces as shown.
6 Press [Enter] or click the End Selection
button to accept the selection.
Page 87
7 Click the Select button in the
Containment area of the Toolpath/Surface selection dialog box.
The Chaining dialog box opens.
8 Click the C-plane radio button.
C-plane selection limits chaining to entities that are parallel to the current construction plane.
9 Select the chain on top of the stock
boundary.
SECTION 2: ROUGHING THE PART • 79
10 Click OK on the Chaining dialog box to return to the Toolpath/Surface selection dialog box.
11 Click OK on the Toolpath/surface selection dialog box.
The Surface High Speed toolpaths dialog box opens on the Toolpath Type page.
12 Select Roughing and Core Roughing on
the Toolpath Type page.
13 Select To o l from the Tree View pane.
14 Click the Select library tool button.
The default metric tool library opens.
Page 88
80 • BASIC 3D MACHINING
15 Select the 10mm bull endmill with 2mm
corner radius and click OK.
TIP: Adjust the Filter options on the right of the dialog box to limit the types of tools displayed.
16 Select Cut Parameters from the Tree View pane. Set the parameters as indicated.
17 Select Steep / Shallow from the Tree View
pane. Set the parameters as indicated.
Page 89
SECTION 2: ROUGHING THE PART • 81
18 Click OK to generate the core roughing toolpath. It might take a few moments to generate.
19 Click the Toggle toolpath display on
selected operations button. If necessary, select the Core Roughing operation.
The toolpath display for the Core Roughing operation is turned off. Perform this step after the creation of each operation for clarity in selecting geometry for subsequent steps.
20 Save your part file.
Page 90
82 • BASIC 3D MACHINING

Exercise 2: Creating a Leftover Toolpath

1 Choose Toolpaths, Surface Finish,
Leftover.
2 Click the Select last button on the General
Selection ribbon bar when prompted for drive surfaces.
The surface(s) used in the previous operation are selected.
3 Press [Enter] or click the End Selection button to accept the selection.
4 Click OK on the Toolpath/surface selection dialog box.
The Surface Finish Leftover dialog box opens to the Toolpath parameters tab.
5 Click the Select library tool button.
The default metric tool library opens.
6 Select the 4mm bull endmill with 0.2mm
corner radius and click OK.
7 Click the Surface parameters tab. Set the
stock to leave on drive to 1.0.
8 Click the Finish leftover parameters tab.
Page 91
9 Set the parameters as shown.
10 Click the Leftover material parameters
tab. Enter the roughing tool information as shown.
SECTION 2: ROUGHING THE PART • 83
Page 92
84 • BASIC 3D MACHINING
11 Click OK to generate the surface finish leftover toolpath. It might take a few moments to
generate.
Note: Additional toolpath calculation lines may be displayed after generating the toolpath. Your screen may look slightly different from the image above.
12 Turn off the toolpath display for the operation.
13 Save your part file.
Page 93
LESSON 3

3Semi-Finishing the Part

After roughing a part, it may be necessary to perform semi-finishing operations. These operations remove material that remains from roughing while leaving material for finishing operations. They are an intermediate step in the process to a finished part. In general, the tolerance value, the stepover, and the stock to leave separate the finishing operations from the semi-finishing operations. This lesson guides you through surface finish blend, surface finish parallel steep, and copying and modifying an operation.

Lesson Goals

Create several finishing operations, including parallel steep and blend.
Set parameters to create semi-finishing operations.
Copy an operation and change parameters.

Exercise 1: Creating a Surface Finish Blend

1 Choose Toolpaths, Surface Finish, Blend.
2 Click the Select last button when
prompted for drive surfaces.
3 Press [Enter] or click the End Selection
button to accept the selection.
4 Click OK on the Toolpath/surface selection dialog box.
The Surface Finish Blend dialog box opens on the Toolpath parameters tab.
5 Select the 4mm bull endmill with the 0.2mm corner radius showing in the tool list.
6 Click the Surface parameters tab. Set the stock to leave on drive to 0.25.
Page 94
86 • BASIC 3D MACHINING
7 Click the Finish blend parameters tab.
8 Set the parameters as shown.
9 Click the Total tolerance button to open the Refine Toolpath dialog box.
Page 95
10 Set the parameters as shown and click OK.
SECTION 2: SEMI-FINISHING THE PART • 87
11 Click OK from the Surface Finish Blend dialog box.
The Chaining dialog box opens.
12 Click the C-plane radio button.
13 Click the Partial button.
Partial is used to select a section of a full chain.
Page 96
88 • BASIC 3D MACHINING
14 Select chain 1 as shown. The start of the chain is at 1 (narrow end of the part) with the end
of the chain at 2 (wide end of the part). Zoom in and out as necessary.
15 Select chain 2 on the opposite side of the part as shown. The start of the chain is at 1
(narrow end of the part) with the end of the chain at 2 (wide end of the part). It will be necessary to rotate the part to view the left side as shown by the images below. Zoom and rotate as necessary.
16 Right-click in the graphics area and select Isometric (WCS).
Page 97
SECTION 2: SEMI-FINISHING THE PART • 89
17 Click OK from the chaining dialog box to generate the surface finish blend toolpath.
18 Turn off the toolpath display for the operation.
19 Save your part file.

Exercise 2: Creating a Surface Finish Parallel Steep

1 Choose Toolpaths, Surface Finish, Parallel
Steep.
2 Click the Select last button when prompted for drive surfaces.
3 Press [Enter] or click the End Selection button to accept the selection.
4 Click OK on the Toolpath/surface selection dialog box.
The Surface Finish Parallel Steep dialog box opens to the Toolpath parameters tab.
5 Click the Select library tool button.
Page 98
90 • BASIC 3D MACHINING
The default metric tool library opens.
6 Select the 2mm ball endmill and click OK.
7 Click the Surface parameters tab. Set the
stock to leave on drive to 0.25.
8 Click the Finish parallel steep parameters
tab.
9 Set the parameters as shown.
10 Click the Total tolerance button to open the Refine Toolpath dialog box.
11 Set the surface quality to Better, and then click OK.
Page 99
12 Click OK to generate the parallel steep toolpath.
SECTION 2: SEMI-FINISHING THE PART • 91
13 Turn off the toolpath display for the operation.
14 Save your part file.

Exercise 3: Copy and Modify an Operation

1 Right-click and hold the button down on
the Surface Finish Parallel Steep operation.
2 Drag the operation below the Surface
Finish Parallel Steep operation and release the mouse button.
Page 100
92 • BASIC 3D MACHINING
3 Select Copy after from the list of choices.
4 Click Parameters in the new operation.
Click the plus [+] to expand the operation if necessary.
5 Click the Finish parallel steep parameters
tab.
6 Set the Machining angle to 0.
7 Click OK.
8 Turn on the toolpath display for the copied operation.
Note: The copied operation inherits display settings from the original operation.
9 Click the Regenerate all dirty operations
button in the Toolpath Manager.
Loading...