Magnum Venus Plastech PLV-1000 User Manual

MAINTAINENCE AND REPAIR MANUAL PLV-1000
PRESSURE LIMIT VALVE
Maintenance & Repair Manual
Model numbers: PLV-1000
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 1
MAINTAINENCE AND REPAIR MANUAL PLV-1000
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 2
MAINTAINENCE AND REPAIR MANUAL PLV-1000
CHAPTER 1-Safety and Warning Information ............................................................. 5
Operating Your Polyester System Safely ......................................................................................... 5
1. Introduction ............................................................................................................................. 5
1.2 Personal Safety Equipment ................................................................................................... 6
2.1 Hazards Associated with Laminating Operations.................................................................... 6
2.2 Catalyst (Methyl Ethyl Ketone Peroxide) ................................................................................ 7
2.3 Clean-Up Solvents and Resin Diluents .................................................................................. 8
2.4 Catalyst Diluents ................................................................................................................. 10
2.5 Cured Laminate, Overspray and Laminate Sandings Accumulation...................................... 10
2.7 Toxicity of Chemicals........................................................................................................... 10
2.8 Treatment of Chemical Injuries ............................................................................................ 11
3.0 Equipment Safety ................................................................................................................ 12
3.1 Emergency Stop Procedures ............................................................................................... 12
3.2 Grounding ........................................................................................................................... 13
CHAPTER 2-Getting Started ....................................................................................... 15
THEORY OF OPERATION ................................................................................................................ 15
ITEMS AND TOOLS NEEDED .......................................................................................................... 17
CHAPTER 3-Disassembly ........................................................................................... 18
REMOVAL OF PLV-1000 .................................................................................................................. 18
PLV-1000 DISASSEMBLY PROCEDURE ......................................................................................... 18
CHAPTER 4-Cleaning and Inspection ........................................................................ 21
PARTS CLEANING ........................................................................................................................... 21
PARTS INSPECTION ........................................................................................................................ 21
CHAPTER 5-Assembly ................................................................................................ 22
VALVE BODY ASSEMBLY ................................................................................................................ 22
CHAPTER 6-Installation .............................................................................................. 24
CHAPTER 7-System Start Up/ Troubleshooting ....................................................... 24
CHAPTER 8-Assembly Drawings ............................................................................... 25
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 3
MAINTAINENCE AND REPAIR MANUAL PLV-1000
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 4
MAINTAINENCE AND REPAIR MANUAL PLV-1000
CHAPTER 1-Safety and Warning Information
Operating Your Polyester System Safely
1. Introduction
Any tool, if used improperly, can be dangerous. Safety is ultimately the responsibility of those using the tool. In like manner, safe operation of polyester processes is the responsibility of those who use such processes and those who operate the equipment. This manual outlines procedures to be followed in conducting polyester operations safety. This system has been specifically designed for use of Polyester Resin, Gel-Coat, and Methyl Ethyl Ketone Peroxides (MEKP) applications. Other formulations or blends considered for use in this equipment is strictly prohibited without the expressed consent by Magnum Venus Plastech Inc. Magnum Venus Plastech cannot eliminate every danger nor foresee every circumstance that might cause an injury during equipment operation. Some risks, such as the high pressure liquid stream that exits the spray tip, are inherent to the nature of the machine operation and are necessary to the process in order to manufacture the end-product. For this reason, ALL personnel involved in polyester operations should read and understand the Safety Manual. It is very important for the safety of employees involved in the operation that equipment operators, maintenance and supervisory personnel understand the requirements for safe operation. Each user should examine his own operation, develop his own safety program and be assured that his equipment operators follow correct procedures. Magnum Venus Plastech hopes that this manual is helpful to the user and recommends that the precautions in this manual be included in any such program. Magnum Venus Plastech recommends this Safety Manual remain on your equipment at all times for your personnel safety. In addition to the manual, Magnum Venus Plastech recommends that the user consult the regulations established under the Occupational Safety & Health Act (OSHA), particularly the following sections:
1910.94 Pertaining to Ventilation.
1910.106 Pertaining to flammable liquids
1910.107 Pertaining to spray finishing operations, particularly Paragraph (m) Organic Peroxides and Dual Component Coatings.
Other standards and recognized authorities to consult are the National Fire Protection Association (NFPA) bulletins as follows:
NFPA No.33 Chapter 14, Organic Peroxides and Dual Component Materials NFPA No.63 Dust Explosion Prevention NFPA No.70 National Electrical Code NFPA No.77 Static Electricity NFPA No.91 Blower and Exhaust System NFPA No.654 Plastics Industry Dust Hazards Type of Fire Extinguishing equipment recommended: Fire Extinguisher – code ABC, rating
number 4a60bc. Extinguishing Media – Foam, Carbon Dioxide, Dry Chemical, Water Fog.
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 5
MAINTAINENCE AND REPAIR MANUAL PLV-1000
Copies of the above bulletins are available, at a nominal charge from: National Fire Protection Association
470 Atlantic Avenue Boston, MA 02210
Research Report No.11 of the American Insurance Association deal with “Fire, Explosion and Health Hazards of Organic Peroxides”. It is published by:
American Insurance Association 85 John Street New York, NY 10038
Local codes and authorities also have standards to be followed in the operation of your spraying equipment. Your insurance carrier will be helpful in answering questions that arise in your development of safe procedures.
1.2 Personal Safety Equipment
Magnum Venus Plastech recommends the following Personal Safety Equipment for conducting safe operations of the Polyester Systems:
Magnum Venus Plastech recommends that the user consult the state and local regulations established for all Safety equipment listed.
2.0 Material Safety
2.1 Hazards Associated with Laminating Operations
The major hazards which should be guarded against in polyester laminating operations are those associated with:
1. The flammability and explosion dangers of the catalyst normally used – Methyl Ethyl Ketone Peroxide (MEKP).
2. The flammability dangers of clean-up solvents sometimes used (Magnum Venus Plastech recommends that clean-up solvents be non-flammable), and of resin diluents used, such as styrene.
3. The flammability dangers of catalyst diluents, if used. (Magnum Venus Plastech recommends that catalyst not be diluted.
4. The flammability dangers of the uncured liquid resins used.
5. The combustibility dangers of the cured laminate, accumulations of over spray, and laminate sandings.
6. The toxicity dangers of all the chemicals used in laminating operations with respect to ingestion, inhalation and skin and eye hazards.
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 6
MAINTAINENCE AND REPAIR MANUAL PLV-1000
2.2 Catalyst (Methyl Ethyl Ketone Peroxide)
MEKP is among the more hazardous materials found in commercial channels. The safe handling of the “unstable (reactive)” chemicals presents a definite challenge to the plastics industry. The highly reactive property which makes MEKP valuable to the plastics industry in producing the curing reaction of polyester resins also produces the hazards which require great care and caution in its storage, transportation, handling, processing and disposal. MEKP is a single chemical. Various polymeric forms may exist which are more or less hazardous with respect to each other. These differences may arise not only from different molecular structures (all are, nevertheless, called “MEKP”) and from possible trace impurities left from the manufacture of the chemicals, but may also arise by contamination of MEKP with other materials in its storage or use. Even a small amount of contamination with acetone, for instance, may produce an extremely shock-sensitive and explosive compound.
Contamination with promoters or materials containing promoters, such as laminate sandings, or with any readily oxidizing material, such as brass or iron, will cause exothermic “redox” reactions which can become explosive in nature. Heat applied to MEKP, or heat build-up from contamination reactions can cause it to reach what is called its Self-Accelerating Decomposition Temperature (SADT).
Researchers have reported measuring pressure rates-of-rise well in excess of 100,000 psi per second when certain MEKP’s reach their SADT. (For comparison, the highest pressure rate-of­rise listed in NFPA Bulletin NO.68, “Explosion Venting”, is 12,000 psi per second for an explosion of 12% acetylene and air. The maximum value listed for a hydrogen explosion is 10,000 psi per second. Some forms of MEKP, if allowed to reach their SADT, will burst even an open topped container. This suggests that it is not possible to design a relief valve to vent this order of magnitude of pressure rate-of-rise. The user should be aware that any closed container, be it a pressure vessel, surge chamber, or pressure accumulator, could explode under certain conditions. There is no engineering substitute for care by the user in handling organic peroxide catalysts. If, at any time, the pressure relieve valve on top of the catalyst tank should vent, the area should be evacuated at once and the fire department called. The venting could be the first indication of a heat, and therefore, pressure build-up that could eventually lead to an explosion. Moreover, if a catalyst tank is sufficiently full when the pressure relief valve vents, some catalyst may spray out, which could cause eye injury. For this reason, and many others, anyone whose job puts them in an area where this vented spray might go, should always wear full eye protection even when laminating operations are not taking place.
Safety in handling MEKP depends to a great extent on employee education, proper safety instructions and safe use of the chemicals and equipment. Workers should be thoroughly informed of the hazards that may result form improper handling of MEKP, especially in regards to contamination, heat, friction and impact. They should be thoroughly instructed regarding the proper action to be taken in the storage, use and disposal of MEKP and other hazardous materials used in the laminating operation. In addition, users should make every effort to:
A. Store MEKP in a cool, dry place in original containers away from direct sunlight and away from other chemicals.
B. Keep MEKP away from heat, sparks and open flames. C. Prevent contamination of MEKP with other materials, including polyester over spray and
sandings, polymerization accelerators and promoters, brass, aluminum and non-stainless steels.
D. Never add MEKP to anything that is hot, since explosive decomposition may result.
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 7
MAINTAINENCE AND REPAIR MANUAL PLV-1000
E. Avoid contact with skin, eyes and clothing. Protective equipment should be worn at all times. During clean-up of spilled MEKP, personal safety equipment, gloves and eye protection must be worn. Fire fighting equipment should be at hand and ready.
F. Avoid spillage, which can heat up to the point of self-ignition. G. Repair any leaks discovered in the catalyst system immediately, and clean up the leaked
catalyst at once in accordance with the catalyst manufacturer’s instructions. H. Use only original equipment or equivalent parts from Magnum Venus Plastech in the catalyst
system (i.e.: hoses, fitting, etc.) because a dangerous chemical reaction may result between substituted parts and MEKP.
I. Catalyst accumulated from the purging of hoses or the measurement of fluid output deliveries should never be returned to the supply tank, such catalyst should be diluted with copious quantities of clean water and disposed of in accordance with the catalyst manufacturer’s instructions.
The extent to which the user is successful in accomplishing these ends and any additional recommendations by the catalyst manufacturer determines largely the safety that will be present in his operation.
2.3 Clean-Up Solvents and Resin Diluents
WARNING
A hazardous situation may be present in your pressurized fluid system! Hydrocarbon Solvents can cause an explosion when used with aluminum or galvanized components in a closed (pressurized) fluid system (pump, heaters, filters, valves, spray guns, tanks, etc.). The explosion could cause serious injury, death and/or substantial property damage. Cleaning agents, coatings, paints, etc. may contain Halogenated Hydrocarbon Solvents. Some Magnum Venus Plastech spray equipment includes aluminum or galvanized components and will be affected by Halogenated Hydrocarbon Solvents.
A. There are three key elements to the Halogenated Hydrocarbon (HHC) solvent hazard.
a. The presence of HHC solvents. 1,1,1 – Trichloroethane and Methylene Chloride are
the most common of these solvents. However, other HHC solvents are suspect if used; either as part of paint or adhesives formulation, or for clean-up flushing. b. Aluminum or Galvanized Parts. Most handling equipment contains these elements. In contact with these metals, HHC solvents could generate a corrosive reaction of a catalytic nature.
b. Equipment capable of withstanding pressure. When HHC solvent contact aluminum
or galvanized parts inside a closed container such as a pump, spray gun, or fluid handling system, the chemical reaction can, over time, result in a build-up of heat and pressure, which can reach explosive proportions.
When all three elements are present, the result can be an extremely violent explosion. The reaction can be sustained with very little aluminum or galvanized metal; any amount of aluminum is too much.
A. The reaction is unpredictable. Prior use of an HHC solvent without incident (corrosion or explosion) does NOT mean that such use is safe. These solvents can be dangerous alone (as a clean-up or flushing agent) or when used as a component or a coating material. There is no known inhibitor that is effective under all circumstances. Furthermore, the mixing of HHC
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 8
MAINTAINENCE AND REPAIR MANUAL PLV-1000
solvents with other materials or solvents, such as MEKP, alcohol, and toluene, may render the inhibitors ineffective.
B. The use of reclaimed solvents is particularly hazardous. Reclaimers may not add any inhibitors. Also, the possible presence of water in reclaimed solvents could feed the reaction.
C. Anodized or other oxide coatings cannot be relied upon to prevent the explosive reaction. Such coatings can be worn, cracked, scratched, or too thin to prevent contact. There is no known way to make oxide coatings or to employ aluminum alloys, which will safely prevent the chemical reaction under all circumstances.
D. Several solvent suppliers have recently begun promoting HHC solvents for use in coating systems. The increasing use of HHC solvents is increasing the risk. Because of their exemption from many State Implementation Plans as Volatile Organic Compounds (VOC’s), their low flammability hazard, and their not being classified as toxic or carcinogenic substances, HHC solvents are very desirable in many respects.
WARNING: Do not use Halogenated Hydrocarbon solvents in pressurized fluid systems having aluminum or galvanized wetted parts.
NOTE: Magnum Venus Plastech is aware of NO stabilizers available to prevent Halogenated Hydrocarbon solvents from reaction under all conditions with aluminum components in closed fluid system. TAKE IMMEDIATE ACTION… Halogenated Hydrocarbon solvents are dangerous when used with aluminum components in a closed fluid system.
A. Consult your material supplier to determine whether your solvent or coating contains Halogenated Hydrocarbon Solvents.
B. Magnum Venus Plastech recommends that you contact your solvent supplier regarding the best non-flammable clean-up solvent with the heat toxicity for your application.
C. If, however, you find it necessary to use flammable solvents, they must be kept in approved, electrically grounded containers.
D. Bulk solvent should be stored in a well-ventilated, separate building, 50 feet away from your main plant.
E. You should allow only enough solvent for one day’s use in your laminating area. F. “NO SMOKING” signs must be posted and observed in all areas of storage or where solvents
and other flammable materials are used. G. Adequate ventilation (as covered in OSHA Section 1910.94 and NFPA No.91) is important
wherever solvents are stored or used, to minimize, confine and exhaust the solvent vapors. H. Solvents should be handled in accordance with OSHA Section 1910.106 and 1910.107.
MAGNUM VENUS PLASTECH REV 1.00 APRIL 2010 PAGE 9
Loading...
+ 18 hidden pages