Thank you from all of us at Sensata Technologies for purchasing this MS-G Series inverter/charger.
The MS-G Series products include the MS2000-G, MS2012-G, MS2812-G, and MS4024-G inverters;
all are under the Magnum-Dimensions brand from Sensata Technologies. We understand that you
have many purchasing options in the marketplace, and we are pleased that you have decided on
this product. This MS-G Series inverter/charger was proudly assembled and tested in the United
States at our facility in Everett, Washington.
At Sensata, we are committed to providing you with quality products and services, and hope that
your experience with us is pleasant and professional.
Disclaimer of Liability
The use of this manual and the conditions or methods of installation, operation, use, and
maintenance of the MS-G Series inverter/charger is beyond the control of Sensata Technologies.
Therefore, this company does not assume responsibility and expressly disclaims liability for loss,
damage, or expense whether direct, indirect, consequential or incidental that may arise out of or
be any way connected with such installation, operation, use, or maintenance.
Due to continuous improvements and product updates, the images shown in this manual may not
exactly match the unit purchased.
Restrictions on Use
The MS-G Series inverter/charger may only be used in life support devices and systems with
the express written approval of Sensata Technologies. Failure of this inverter can reasonably be
expected to cause failure of that life support device or system, or to affect the safety or effectiveness
of that device or system. If the MS-G Series inverter fails, it is reasonable to assume the health
of the user or other persons may be endangered.
Description – MS-G Series Owner’s Manual
Part Number and Revision – 64-0070 Rev A
Date Published – March 2015
This entire manual is available for download—with many of the diagrams available in color—under
the Document Library tab on our website at: www.Magnum-Dimensions.com.
Contact Information
For Magnum-Dimensions products:
Sensata Technologies
2211 West Casino Rd.
Everett, WA 98204
Phone: 425-353-8833
Fax: 425-353-8390
Web: www.Magnum-Dimensions.com
Record unit’s model & serial number in case you need to provide this information in the future.
THIS MANUAL CONTAINS IMPORTANT INSTRUCTIONS FOR THE MS-G SERIES INVERTER/CHARGER
THAT SHALL BE FOLLOWED DURING THE INSTALLATION AND OPERATION OF THIS PRODUCT.
Before using the MS-G Series, read all instructions and cautionary markings. Also, be sure to review
the individual manuals provided for each component of the system. The installation instructions
are for use by qualified personnel only. Do not perform any installation or servicing other than
that specified in this owner’s manual unless you are qualified to do so. Incorrect installation or
servicing may result in a risk of electric shock, fire, or other safety hazard.
Safety Symbols
The following safety symbols have been placed throughout this manual to indicate dangerous and
important safety instructions.
WARNING: This symbol indicates that failure to take a specifi ed action could result in
physical harm to the user.
CAUTION: This symbol indicates that failure to take a specifi ed action could result in
damage to the equipment.
Info: This symbol indicates information that emphasizes or supplements important
points of the main text.
Safety Precautions
• All electrical work must be performed in accordance with local and national electrical codes.
• This product is designed for indoor/compartment installation. It must not be exposed to rain,
snow, moisture, or liquids of any type.
• Use insulated tools to reduce the chance of electrical shock or accidental short circuits.
• There are no user-serviceable parts contained in this product.
• This unit is provided with integral protection against overloads.
• Live power may be present at more than one point since an inverter utilizes both DC (batteries,
PV, etc.,) and AC (utility or generator) power. To reduce risk of electric shock, ensure all DC
and AC wiring is disconnected prior to installing or performing maintenance on the inverter.
Turning off the inverter will not reduce this risk, the inverter must be totally disconnected
from all sources.
• Use Class 1 wiring methods for field wiring connections to terminals of a Class 2 circuit.
• Listed or labeled equipment shall be installed and used in accordance with any instructions
included in the listing or labeling.
• Always verify proper wiring prior to starting the inverter.
• Use only copper wires with a minimum temperature rating of 90°C (194°F).
• AC wiring must be no less than 10 AWG (5.3 mm²) gauge copper wire.
• Battery cables should be no less than #4/0 AWG (107.2 mm²) for 12 and 24-volt systems.
Crimped and sealed copper ring terminal lugs with a 5/16 hole should be used to connect to
the DC terminals on the inverter.
• Torque all AC wiring connections and DC cable connections to the required torque values.
• The inverter must be properly mounted, see Section 2.2 “Mounting the Inverter” in this
manual.
• Overcurrent protection for the battery supply is not provided as an integral part of this
inverter. Overcurrent protection of the battery cables must be provided as part of the system
installation. Refer to Section 2.4 “DC Wiring” for more information.
Page ii
Safety Information
• Overcurrent protection for the AC output wiring is not provided as an integral part of this
inverter. Overcurrent protection of the AC output wiring must be provided as part of the
system installation. Refer to Section 2.5 “AC Wiring” for more information.
• The AC output neutral conductor and the DC negative conductors are not connected (bonded)
to the inverter chassis. Both the input and output conductors are isolated from the enclosure
and each other. System grounding, if required, is the responsibility of the system installer and
must comply with local and national electrical codes and standards. Refer to the Section 2.6
“Grounding Inverters” for more information.
Battery Safety
• Use insulated tools and be very careful when working around batteries, they can produce
extremely high currents if short-circuited (e.g., dropping a metal tool across the battery
terminal), which could cause a fire or explosion.
• Read and follow the battery manufacturer’s safety precautions before installing the inverter
and batteries. Always verify proper polarity and voltage before connecting the batteries
to the inverter. Once the batteries are connected to the inverter, ensure the maintenance
and charging requirements (i.e., charge voltage and charge rate) provided by the battery
manufacturer are followed to extend the life of the batteries and to prevent damage to the
batteries while charging.
• Wear eye protection such as safety glasses, and avoid touching your eyes and face when
working with batteries to keep any fl uid/corrosion on the battery from coming in contact
with eyes and skin. Have plenty of fresh water and soap nearby and thoroughly wash in case
battery acid contacts skin, clothing, or eyes. In the event of exposure to the eyes, flood them
for at least 15 minutes with running water and seek immediate medical attention. Baking soda
neutralizes lead acid battery electrolyte and vinegar neutralizes spilled NiCad and NiFe battery
electrolyte; depending on your battery type, keep a supply on hand near the batteries.
• Remove all jewelry such as rings, watches, bracelets, etc., when installing or performing
maintenance on the batteries and inverter. A battery can produce a short-circuit current high
enough to weld metal jewelry, causing severe burns.
• Never work alone. Always have someone within the range of your voice or close enough to
come to your aid when working around batteries.
• Use proper lifting techniques when working with batteries.
• Never use old or untested batteries. Check each battery’s label for age, type, and date code
to ensure all batteries are identical.
• Batteries are sensitive to changes in temperature. Install batteries in a stable environment.
• Batteries can produce explosive gasses, so install batteries in a well-ventilated area. For
compartment or enclosure installations, always vent batteries from the highest point to the
outside. Design the battery enclosure to prevent accumulation and concentration of hydrogen
gas in “pockets” at the top of the compartment.
• Provide at least one inch (2.5 cm) of air space between batteries to provide optimum cooling.
• Never smoke or allow a spark near batteries.
• To prevent a spark at the battery and reduce the chance of explosion, always connect the
cables to the batteries first. Then connect the cables to the inverter.
• Never charge a frozen battery.
• The battery bank should be installed in a clean, dry, ventilated environment where it is
protected from high and low temperatures. If installed in a vehicle/boat, the batteries must
be mounted upright (if using liquid batteries) and securely fastened. The location must be
fully accessible and protected from exposure to heat-producing devices, and away from any
fuel tanks.
CE MANUEL CONTIENT DE IMPORTANTES POUR LA SÉRIE MS-G ONDULEUR/CHARGEUR QUI
DOIVENT ETRE SUIVIES PENDANT L’INSTALLATION ET FONCTIONNEMENT DE CE PRODUIT.
Avant d’utiliser la série MS-G, lire toutes les instructions etles mises en garde. Aussi, n’oubliez pas
depasser en revue les différents manuels fournispour chaque composant du système. Lesinstructions
d’installation sont pour une utilisationpar du personnel qualifi é. Ne pas effectuer une installation
ou d’entretien autres que ceux spécifi és dans ce manuel, sauf si vous êtes qualifi é pour le faire.
Une mauvaise installation ou d’entretien peut entraîner un risque de choc électrique, un incendie
ou autre danger pour la sécurité.
Symboles de sécurité
Les symboles de sécurité suivants ont été placéstout au long de ce manuel pour indiquer des
conditions dangereuses et les consignes de sécurité importantes.
AVERTISSEMENT: Ce symbole indique que le défaut de prendre une action spécifi ée
pourraitcauser des dommages physiques à l’utilisateur.
ATTENTION: Ce symbole indique que le défaut de prendre une action spécifi ée peut
entraîner des dommages à l’équipement.
Info: Ce symbole indique une information qui met l’accent ou des suppléments points
importants du texte principal.
Consignes de sécurité
• Tous les travaux électriques doivent être effectués en conformité avec les codes locaux et
nationaux électriques.
• Ce produit est conçu pour l’installation / du compartiment intérieur. Il ne doit pas être exposé
à la pluie, la neige, l’humidité ou des liquides de tout type.
• Utiliser des outils isolés pour réduire le risque de choc électrique ou courts-circuits accidentels.
• Il n’y a pas réparable par l’utilisateur contenues dans ce produit.
• Cet appareil est fourni avec une protection intégrale contre les surcharges.
• Puissance en direct peuvent être présents à plus d’un point depuis un onduleur utilise à la fois
DC (piles, PV, etc) et AC (utilitaire ou générateur) d’alimentation. Pour réduire le risque de
choc électrique, assurez-vous que tout le câblage DC et AC est débranchée avant l’installation
ou la maintenance sur le variateur. Mise hors tension de l’onduleur ne réduira pas ce risque,
l’onduleur doit être totalement déconnectée de toutes les sources.
• Utiliser des méthodes de câblage classe 1 pour les connexions de câblage sur le terrain aux
bornes d’un circuit de Classe 2.
• Coté ou étiquetés équipement doit être installé et utilisé conformément aux instructions
fi gurant dans la liste ou l’étiquetage.
• Toujours vérifi er le câblage avant de commencer l’onduleur.
• Utilisez des fi ls de cuivre seulement avec une cote de température minimale de 90°C.
• AC câblage ne doit pas être inférieure à 10 AWG (5.3 mm²) de cuivre de calibre.
• Les câbles de batterie ne doit pas être inférieur à #4/0 AWG (107.2 mm²) pour 12 et 24-volts
systèmes. Frisées et scellé cosses en cuivre anneau des bornes avec un trou de 5/16 doit être
utilisé pour se connecter à des bornes de courant continu sur l’onduleur.
• Couple toutes les connexions de câblage ca et les connexions de câbles à courant continu à
des valeurs de couple nécessaires.
• L’onduleur doit être correctement monté, voir le montage de la section onduleur dans le
chapitre Installation de ce manuel.
• Protection contre les surintensités pour l’alimentation de la batterie n’est pas fourni en tant
que partie intégrante de cet inverseur. La protection contre les surintensités des câbles de
batterie doivent être fournis dans le cadre de l’installation du système. Reportez-vous à la
section Câblage cc dans le chapitre d’installation pour plus d’informations.
Page iv
Safety Information
• Protection contre les surintensités pour le câblage de sortie AC n’est pas fourni en tant que
partie intégrante de cet onduleur. Protection contre les surintensités du câblage de sortie CA
doit être fournie dans le cadre de l’installation du système. Reportez-vous à la Section 2.5
Câblage ca dans le chapitre d’installation pour plus d’informations.
• Le conducteur de sortie CA conducteurs neutre et continue négative ne sont pas connectés
(servitude) au châssis inverseur. La fois l’entrée et des conducteurs de sortie sont isolés de l’enceinte
et l’autre. La terre du système, si nécessaire, est de la responsabilité de l’installateur du système
et doit se conformer à des codes locaux et nationaux et les normes électriques. Reportez-vous à
la Section 2.6 Mise à la terre Onduleurs dans le chapitre d’installation pour plus d’informations.
Sécurité de la batterie
• Utiliser des outils isolés et être très prudent lorsque vous travaillez près des batteries, elles
peuvent produire des courants extrêmement élevés si en court-circuit (par exemple, échapper
un outil métallique à travers la borne de la batterie), ce qui pourrait provoquer un incendie
ou une explosion.
• Lisez et suivez les consignes de sécurité du fabricant de la batterie avant d’installer l’onduleur
et des batteries. Toujours vérifi er la polarité et la tension avant de brancher les batteries à
l’onduleur. Une fois que les batteries sont connectées à l’onduleur, assurer la maintenance et
les exigences de charge (c.-à-tension de charge et taux de charge) fournis par le fabricant de
la batterie sont suivies pour prolonger la vie des batteries et pour éviter d’endommager les
batteries pendant la charge.
• Porter des lunettes de protection tels que des lunettes de sécurité, et évitez de toucher vos yeux
et le visage lorsque l’on travaille avec des piles de garder tout fl uide / corrosion sur la batterie
d’entrer en contact avec les yeux et la peau. Ayez suffi samment d’eau fraîche et de savon à
proximité et se laver dans le cas d’acide contact avec la peau de la batterie, les vêtements ou les
yeux. Dans le cas d’exposition pour les yeux, les inonder pendant au moins 15 minutes à l’eau
courante et consulter immédiatement un médecin.Le bicarbonate de soude neutralise l’acide
de plomb électrolyte de la batterie et le vinaigre neutralise renversé NiCad et NiFe batterie à
électrolyte; en fonction de votre type de batterie, gardez sous la main près des batteries.
• Enlevez tous les bijoux tels que bagues, montres, bracelets, etc, lors de l’installation ou la
maintenance sur les batteries et l’onduleur. Une batterie peut produire un court-circuit assez
de courant élevé pour souder les bijoux en métal, provoquant de graves brûlures.
• Ne jamais travailler seul. Toujours avoir quelqu’un au sein de la gamme de votre voix ou
suffi samment près pour vous venir en aide lorsque vous travaillez près des batteries.
• Utiliser des techniques de levage appropriées lorsque vous travaillez avec des piles.
• Ne jamais utiliser de piles usagées ou non testés. Vérifi ez l’étiquette de chaque batterie à
l’âge, le type et le code de date afi n d’assurer toutes les batteries sont identiques.
• Piles sensibles aux changements temporaires, installer dans un environnement stable.
• Les batteries peuvent produire des gaz explosifs, etc installer les piles dans un endroit bien
ventilé. Pour les installations compartiment ou une enceinte, toujours évacuer les piles du
plus haut point à l’extérieur. Concevoir le boîtier de piles pour éviter l’accumulation et la
concentration de gaz d’hydrogène dans “poches” en haut du compartiment.
• Fournir au moins un pouce de l’espace aérien entre les batteries pour fournir un refroidissement optimal.
• Ne jamais fumer ou laisser une étincelle près des batteries.
• Pour éviter une étincelle à la batterie et de réduire le risque d’explosion, toujours connecter
les câbles aux batteries en premier. Ensuite, connectez les câbles à l’onduleur.
• Ne jamais charger une batterie gelée.
• La banque de la batterie doit être installé dans un endroit propre, sec, aéré et où ils sont
protégés contre les températures élevées et basses. S’il est installé dans un véhicule / bateau,
les batteries doivent être monté en position verticale (si vous utilisez des piles liquides) et
solidement fi xés. L’emplacement doit être pleinement accessible et protégé contre l’exposition
à la chaleur la fabrication de dispositifs, et loin de toute réservoirs de carburant.
Congratulations on your purchase of a MS-G Series inverter/charger from Sensata. The MS-G
Series products include the MS2000-G, MS2012-G, MS2812-G, and MS4024-G inverters; all are
under the Magnum-Dimensions brand from Sensata Technologies. The MS-G Series is a “pure”
sine wave inverter designed especially for rugged mobile applications, home backup power, and
standalone applications. Powerful, yet simple to use, this inverter/charger will provide you with
years of trouble-free performance you have come to expect from Sensata.
Installation is easy. Simply connect the inverter’s output to your distribution circuits or electrical
panel, connect your utility or AC generator power to the inverter, connect the batteries, and then
switch it on for power.
Info: This is a sizable manual and much of it is fairly technical. Terms may be used
throughout the manual that are unfamiliar to you. Refer to the Inverter/Charger
Terminology glossary in Appendix D for clarifi cation.
The MS-G Series inverter/charger includes the following:
• 2000, 2800, or 4000 watt model in a small footprint—less area needed for installation
• Factory-installed Ground Fault Circuit Interrupter (GFCI) outlet (with test and reset
capability) for AC output
• Remote and Network ports (easy connection for optional accessories)
• Inverter-mounted ON/OFF switch with LED indicator
• 30-amp per leg AC pass-thru capability
• Field serviceable for qualifi ed personnel—tested repair kits available
• Automatic battery temperature compensation (when using the Battery Temperature
Sensor) for optimum charging even during extreme temperature changes
• Overcurrent, over-temperature, and high/low battery voltage protection
Regulatory Compliance
The MS-G Series inverter/charger is designated as a standalone (non grid-interactive) power
inverter with an internal battery charger. It can be connected to the utility grid (or to a generator)
to allow the inverter batteries to be charged, and to power inverter loads while connected. The
MS-G series is not a grid-interactive (also known as utility-interactive) inverter and does not have
the capability to export (or sell) power back into the utility grid.
The MS-G Series has been tested and listed to UL 458, 5th Edition (Power Converters/Inverters
and Power Converter/Inverter Systems for Land Vehicles and Marine Crafts) and UL 1741, 2nd
Edition¹ (Inverters, Converters and Controllers for Use in Independent Power Systems) for use
in the US; and is also certifi ed to CSA C22.2 No. 107.1-01 (General Use Power Supplies) for use
in Canada. It has been tested and certified to these product safety standards by Intertek Testing
Services (known as ETL), which is a Nationally Recognized Testing Laboratory (NRTL). NRTL’s
are qualified organizations that meet Occupational Safety and Health Administration (OSHA)
regulations to perform independent safety testing and product certifi cation.
The MS-G Series also meets the KKK-A-1822E standard for use in ambulances.
Note¹ – The MS2000-G model is not listed to the UL 1741 standard.
There are two modes of operation associated with this inverter/charger:
Inverter Mode
When the inverter is properly connected to batteries and turned on, the direct current (DC) from
the batteries is transformed into a pure sine wave alternating current (AC). This AC is similar to
the voltage provided by your utility and is used to power any electrical appliances (i.e., AC loads)
connected to the inverter’s output.
Standby Mode
When an external source of AC power (i.e., utility power or generator) is connected and
qualifi ed on the inverter’s AC input, it operates in Standby mode. In Standby mode, the unit
operates as a battery charger to convert the incoming AC power into DC power to recharge
the batteries; and at the same time, automatically closes an internal AC transfer relay to pass
the incoming AC power directly to the inverter’s output to continue powering the connected
electrical appliances.
1.1.1 Inverter Applications for Permanent Installations
An inverter can be used for backup power in a permanent location that normally uses utility power,
such as a home or offi ce. When utility power is available, the inverter keeps the batteries charged.
When the utility power fails, the inverter comes on automatically to supply AC power to your
home or offi ce during the power failure. For a home or business, reliable backup power is needed
to prevent lost computer data, maintain lights, and keep food fresh in the refrigerator/freezer.
In some areas, where utility power is not available, this inverter can be used in a standalone
renewable power system. The inverter allows AC electrical appliances to be run from the storage
battery bank. When the battery bank becomes discharged, either renewable DC sources (solar,
wind, or hydro power) can be used to recharge the batteries, or a generator can be connected to
the inverter to power the system while the batteries recharge.
1.1.2 Inverter Applications for Mobile Installations
Inverters can also be used to provide power in mobile situations, such as in an RV, truck, or boat.
In these applications, the inverter provides power to the AC loads using the energy stored in the
batteries and recharges the batteries when shorepower or an onboard generator is available.
1.2 Advantages of a Pure Sine Wave vs a Modifi ed Sine Wave Inverter
Today’s inverters come in three basic output waveforms: square wave, modifi ed sine wave (which
is actually a modifi ed square wave) and pure sine wave (see Figure C-1 in Appendix C). Modifi ed
sine wave inverters approximate a pure sine wave form and will run most appliances and electronics
without any problems. These inverters are less expensive, and therefore, offer a viable alternative
to more expensive pure sine wave inverters.
The output of the MS-G Series inverter—which is pure sine wave—is equal to, or in many cases,
better than the utility power used in your home. Virtually any electronic device will operate from
a pure sine wave inverter. Motors run cooler, microwaves usually cook faster, and clocks keep
better time just to name a few examples. Without compromising quality or performance, the
MS-G Series provides you with all the advantages of a pure sine wave inverter at a much lower
cost than many on the market.
The MS-G Series is built on the same platform as our popular ME and RD Series modifi ed sine
wave inverters—allowing for an easy upgrade to a pure sine wave inverter from the original ME
or RD Series installation. This standard platform also helps reduce cost by using standard parts/
accessories across many models. Accessories such as the Advanced Remote Control (ME-ARC),
Standard Remote Control (ME-RC), Automatic Generator Start – Networked (ME-AGS-N), and
Battery Monitor Kit (ME-BMK) can be used (see Section A-4 in Appendix A).
The MS-G Series inverter/chargers are designed to allow easy access to wiring, circuit breakers,
and controls. Their die cast baseplate with one-piece aluminum cover ensures maximum durability
with minimum weight, as well as a cooler, more effi cient operation.
Note: While not pictured, the MS2000-G inverter/charger has the same features as those listed
in this section (and as shown in Figures 1-1 through 1-3).
The front of the MS-G inverters are equipped with the following (refer to Figures 1-1 and 1-2):
Power ON/OFF Switch – a momentary pushbutton switch that alternately turns the
1
inverter on or off.
Status LED Indicator – this green LED illuminates to provide information on inverter
2
or charger operation.
Stack/Accessories Connection Port (red label) – a RJ11 port that allows series-
3
stacking, and accepts the optional RSAs (Remote Switch Adapters) for remote on/off
switch operation.
Info: The series-stacking capability—which allows two units to provide 120/240 VAC
output—is only available on the MS4024-G inverter/charger. See the ME-SSI owner’s
manual (PN: 64-0009) for additional information on series stacking.
Network Connection Port (green label) – a RJ11 port that accepts optional network
4
capable accessories (i.e., Auto Gen Start or Battery Monitor).
Remote Connection Port (blue label) – a RJ11 port that allows an optional remote
5
control to be connected.
Battery Temperature Sensor Connection Port (yellow label) – a RJ11 port that
6
accepts the remote Battery Temperature Sensor (BTS).
1
Power ON/OFF Switch
Status LED Indicator
2
(charging/inverting)
Stack/Accessories Connection Port
3
(red label – RJ11 connection)
Network Connection Port
4
(green label – RJ11 connection)
Remote Connection Port
5
(blue label – RJ11 connection)
Battery Temperature Sensor Port
6
(yellow label – RJ11 connection)
Figure 1-1, Power Switch, Status LED, and Accessory Connection Ports
The left side of MS-G Series inverters are equipped with the following features (refer to Figure 1-3):
Exhaust Air Vents – ventilation openings that allow heated air to be removed by the
13
internal cooling fan.
Model/Serial Number Label – includes model/serial number information, date of
14
manufacture, and inverter and charger specifi cations. See the MS-G Series specifi cations
in Appendix A for more information and a list of available models.
AC Access Cover – provides access to the internal AC wiring terminal block (see
15
Figure 2-10). This terminal block is used to hard wire all inverter AC input and output
wiring connections. Remove the two screws to access the AC wiring terminal block.
Note: The MS2000-G model does not have the AC wiring terminal block.
GFCI (Ground Fault Circuit Interrupter) – a 20-amp rated dual outlet that quickly
16
stops the flow of electricity in the event a ground fault occurs on the device that is plugged
into the inverter.
HOT 1 Input – this 30-amp circuit breaker protects the unit’s internal charger wiring
17
and pass-thru relay while in Standby mode. The circuit breaker pops out when it opens—
press in to reset. The input circuit breaker is not branch-rated, therefore branch-rated
circuit breakers must be installed in the inverter’s input wiring.
GFCI Output – this 20-amp circuit breaker is branch-rated and protects the wiring to the
18
GFCI outlet. This circuit breaker pops out when it opens—press in to reset. It can also be
manually pulled to disconnect the inverter’s loads.
CAUTION: The inverter’s internal AC transfer relay is rated for 30 amps per wired input
(not the GFCI circuit). The pass-thru current must be no greater than 30 amps per leg
or damage to the relays may occur.
Info: Installations should be performed by qualifi ed personnel, such as a licensed
or certifi ed electrician. It is the installer’s responsibility to determine which safety
codes apply and to ensure that all applicable installation requirements are followed.
Applicable installation codes vary depending on the specifi c location and application of
the installation.
CAUTION: Review the “Important Product Safety Information” on pages ii-v before any
installation.
CAUTION: The inverter is heavy. Use proper lifting techniques during installation to
prevent personal injury.
The simplifi ed system diagram shown in Figure 2-1 should be reviewed to assist you in planning
and designing your installation. This drawing is not intended to override or restrict any national
or local electrical codes. This drawing should not be the determining factor as to whether the
installation is compliant, that is the responsibility of the electrician and the on-site inspector.
2.1 Pre-Installation
Before proceeding, read the entire Installation section to determine how best to install your MS-G
inverter/charger. The more thorough you plan in the beginning, the better your inverter needs
will be met.
2.1.1 Unpacking and Inspection
Carefully remove the MS-G Series inverter/charger from its shipping container and inspect all
contents. Verify the following items are included:
• The MS-G Series inverter/charger
• Red and black DC terminal covers with Phillips screws
• Two 5/16” Kep or Flange nuts (installed on the DC terminals)
• Battery Temperature Sensor
• Warning label
• MS-G Series Owner’s Manual
If items appear to be missing or damaged, contact your Magnum product authorized dealer or
Sensata. If at all possible, keep your shipping box to help protect your inverter from damage if it
ever needs to be returned for service. Save your proof-of-purchase as a record of your ownership;
it will also be needed if the unit should require in-warranty service.
Record the unit’s model and serial number in the front of this manual in case you need to provide
this information in the future. It is much easier to record this information now, instead of trying
to gather it after the unit has been installed.
2.1.2 Required Tools and Materials
Hardware/Materials
• Conduit, strain-reliefs and appropriate fi ttings• Electrical tape
• 1/4” mounting bolts and lock washers (x4 min.)• Wire ties
Only install the inverter in a location that meets the following requirements:
Clean and Dry – The inverter should not be installed in an area that allows dust, fumes, insects, or
rodents to enter or block the inverter’s ventilation openings. This area also must be free from any
risk of condensation, water, or any other liquid that can enter or fall on the inverter. The inverter
uses stainless steel fasteners and plated copper busbars, has a powder-coated aluminum base, and
the internal circuit boards are conformal coated—all to help fi ght the harmful effects of corrosive
environments. However, the inverter’s life is uncertain if used in these type of environments, and
inverter failure under these conditions is not covered under warranty.
Info: If the inverter is installed in an area where moisture may occur, we recommend
putting silicone dielectric grease compound into the electrical ports (Figure 1-1, Items
3-6). Before installing the cables, or if leaving any ports open, squirt a liberal amount
into each port. Silicone dielectric compound makes an effective moisture and corrosive
barrier to help protect and prevent corrosion to the RJ11 connections.
Cool – The inverter should be protected from direct sun exposure or equipment that produces
extreme heat. The ambient temperature around the inverter must not exceed 77°F (25°C) to
meet power specifi cations.
Ventilation – In order for the inverter to provide full output power and to avoid over-temperature
fault conditions, do not cover or block the inverter’s ventilation openings or install this inverter in
an area with limited airfl ow. The inverter uses two fans to provide forced air cooling, these fans
pull in air through the intake vents (Figure 1-2, Item 9) and blow out air through the exhaust vents
(Figure 1-3, Item 13). Allow at the minimum an airspace clearance of 6” (15.2 cm) at the intake
and exhaust vents, and 3” (7.6 cm) everywhere else to provide adequate ventilation.
If installed in an enclosure, a fresh air intake opening must be provided directly to the front side
(intake vents) of the inverter and an exhaust opening on the back side (exhaust vents) of the
inverter. This allows cool air from the outside to fl ow into the inverter, and allows interior heated
air to exit the inverter and the enclosure. When mounted in an enclosed compartment, airfl ow must
be ≥ 100 cfm in order to maintain no more than a 68°F (20°C) rise in compartment temperature.
CAUTION: Do not mount this inverter in a zero clearance compartment, nor cover or
obstruct the ventilation openings—overheating may result.
Safe – Keep any fl ammable/combustible material (i.e., paper, cloth, plastic, etc.) that may be
ignited by heat, sparks, or fl ames at a minimum distance of 2 feet (61 cm) away from the inverter.
WARNING: The MS-G Series inverter/charger is not ignition-protected. Do not install
this inverter in any area that contains extremely fl ammable liquids like gasoline or
propane.
Close to the battery bank – The inverter should be located as close to the batteries as possible.
Long DC wires tend to lose effi ciency and reduce the overall performance of an inverter. However,
the unit should not be installed in the same compartment as the batteries or mounted where it
will be exposed to gases produced by the batteries. These gases are corrosive and will damage
the inverter; also, if these gases are not ventilated and allowed to collect, they could ignite and
cause an explosion.
Accessible – Do not block access to the inverter’s remote control and accessory ports, as well
as the inverter’s on/off switch and status indicator. Allow enough room to access the AC and DC
wiring terminals and connections, as they will need to be checked and tightened periodically. See
Figures 2-4 & 2-5 for the MS-G Series inverter/charger’s dimensions.
Away from sensitive electronic equipment – High powered inverters can generate levels of RFI
(Radio Frequency Interference). Locate any electronic equipment susceptible to radio frequency
and electromagnetic interference as far away from the inverter as possible.
The inverter base can reach a temperature up to 90°C (194°F) and should be mounted on a
noncombustible surface*. This surface and the mounting hardware must also be capable of
supporting at least twice the weight of the inverter. To meet regulatory requirements, the MS-G
Series must be mounted in one of the following positions as shown in Figure 2-3:
• above or under a horizontal surface (shelf or table),
• on a vertical surface (wall) with the DC terminals to the right,
• on a vertical surface (wall) with the DC terminals toward the bottom, the MP-HOOD (inverter
hood) installed on the top, and either the ME-CB or MPX-CB (Conduit box), or the MMP series
(single inverter enclosure) installed on the inverter’s bottom.
Info: The ME-CB, MPX-CB, and MMP Series enclosures prevent material from falling
out the bottom in the event of an internal fi re, and also allow suffi cient ventilation to
prevent the inverter from overheating under normal operating conditions. The MPHOOD inverter hood prevents items from falling inside causing damage to the inverter.
Info: Sensata provides a backplate for mounting the inverter. These backplates also
provide the ability to mount the MMP Series enclosure (PN: BP-MMP).
After determining the mounting position, refer to the physical dimensions as shown in Figures
2-4 or 2-5, or use the base of the inverter as a template to mark your mounting screw locations.
After marking the mounting screw locations, mount the unit with appropriate mounting hardware.
* Noncombustible surface – A surface made of material that will not ignite, burn, support combustion, or
release fl ammable vapors when subjected to fi re or heat as per the ASTM E136 standard. For the most part,
these are materials that are largely comprised of inorganic materials such as stone, steel, iron, brick, tile,
concrete, slate, and glass. Avoid common building materials such as gypsum board as well as any paint, wall
coverings, and all types of wood.
This section describes the requirements and recommendations for wiring the MS-G Series inverter/
charger. Before wiring the MS-G Series inverter/charger, carefully read all instructions.
Wiring should meet all local codes and industry standards, and be performed by qualifi ed
personnel such as a licensed electrician.
The NEC (National Electric Code, ANSI/NFPA 70) for the United States and the CEC (Canadian
Electrical Code) for Canada provide the standards for safe wiring standards. The NEC/CEC lists
requirements for wire sizes, overcurrent protection, and installation methods/standards.
Inverter/charger systems involve power from multiple sources (inverter, generator, utility, batteries,
solar arrays, etc.) which make the wiring more hazardous and challenging.
The input and output AC and DC circuits are isolated from the inverter chassis. The inverter system
grounding is the responsibility of the installer in accordance with the NEC/CEC and local codes.
WARNING: Ensure all sources of DC power (i.e., batteries, solar, wind, or hydro) and
AC power (utility power or AC generator) are de-energized (i.e., breakers opened, fuses
removed) before proceeding—to prevent accidental shock.
2.3.1 Protecting Wire – Conduit Box
The AC and DC wires to and from the inverter must be protected as required by code. This can be
done by using jacketed wires or by feeding the wires through conduit. Sensata offers a DC conduit
box (ME-CB or MPX-CB) and a single inverter enclosure (MMP Series) that include the necessary AC
and DC inverter breakers that allow both the AC and DC conduit to be connected to the inverter.
Info: The strain reliefs can be removed and replaced with 3/4” grommets if you are using
either the ME-CB or MPX-CB conduit box, or the MMP enclosure, and the AC wires are
individual conductors (i.e., not jacketed).
2.3.2 Wiring Requirements
• All conductors that are at risk for physical damage must be protected by conduit, tape, or
placed in a raceway.
• Always check for existing electrical, plumbing, or other areas of potential damage prior to
making cuts in structural surfaces or walls.
• Do not mix AC and DC wiring in the same conduit or panel unless specifi cally approved/
designed for both AC and DC wiring. Where DC wiring must cross AC or vice-versa, try to
make the wires at the crossing point perpendicular (90 degrees) to one another.
• Both AC and DC overcurrent protection must be provided as part of the installation.
• The inverter requires a reliable negative and ground return path directly to the battery.
• Use only copper wires with a minimum temperature rating of 75°C (167°F).
2.3.3 Wire Routing
Before connecting any wires, determine all wire routes to and from the inverter. Conductors passing
through walls, bulkheads, or other structural members must be protected to minimize insulation
damage, such as chafi ng. During installation, always avoid placing conductors near sources of
chafi ng caused by vibration or constant rubbing. Typical routing scenarios are:
• AC input wiring from the main AC panel to the inverter
• AC input wiring from a generator (optional) to the inverter
• DC input wiring from the batteries to the inverter
• AC output wiring from the inverter to an AC sub-panel or to dedicated circuits
• Battery Temperature Sensor cable from the inverter to the batteries
• Remote control cable (optional) to the inverter
• Ground wiring to and from the inverter
2.3.4 Torque Requirements
Torque all AC wiring connections to 16 lbf-in (1.8 N-m). Torque DC cable connections from 10 to
12 lbf-ft (13.6 to 16.3 N-m).
This section describes the inverter’s required DC wire sizes, the recommended disconnect/
overcurrent protection, and how to make the DC connections to the inverter and the battery bank.
Refer to Figure 2-6 when connecting the DC wires.
Note: Figure 2-6 shows the MS-G attached to MMP enclosure.
WARNING: Even though DC voltage is “low voltage”, signifi cant hazards may be
present, particularly from short circuits of the battery system.
CAUTION: The inverter is NOT reverse polarity protected—which means that if the
negative and positive battery voltage is connected backwards to the inverter, the inverter
will likely be damaged. You should verify the correct voltage polarity using a voltmeter
BEFORE connecting the DC wires. Color code the DC cables/wires with colored tape or
heat shrink tubing: RED for positive (+); WHITE for negative (–); and GREEN (or bare
copper) for DC ground, to avoid polarity problems.
CAUTION: To remove battery power from the inverter, disconnect the battery positive
connection before the negative connection. This requirement can prevent damage to
the inverter and/or an accessory connected to the inverter.
Note: When an accessory that is not powered by the inverter (e.g., ME-AGS-N and ME-
BMK) is installed and connected to the inverter (via a network communication cable),
the battery negative connection of the inverter and each accessory must be at the same
potential (i.e., electrically common with each other) until the positive connection of
each device is removed. This prevents a high impedance path developing between the
connected devices (i.e., inverter and accessories), which can cause the network cable
to become the DC return path to the battery—possibly resulting in permanent damage
to all connected devices on the network. This can be prevented if the battery negative
connection of each device is always connected before connecting/disconnecting any
battery positive.
CAUTION: Before wiring the DC cables, review the safety information at the beginning
of this manual and the information below to ensure a safe and long-lived system.
• When the inverter is installed in a photovoltaic system, the NEC requires that the DC circuit
conductors and overcurrent devices to the inverter be sized to carry not less than 125% of
the inverter’s maximum current rating.
• The DC positive and negative cables connected to the inverter from the battery bank should
be tied together with wire ties or electrical tape approximately every 6 inches (15.2 cm). This
helps improve the surge capability and reduces the effects of inductance, which improves the
inverter waveform and reduces the wear of the inverter’s fi lter capacitors.
• Crimped and sealed copper ring terminal lugs with a 5/16” hole should be used to connect the
DC wires to the inverter’s DC terminals.
• The battery bank voltage MUST match the DC voltage required by the inverter (i.e., 24-volt
battery bank for a 24-volt inverter) or the inverter may be damaged.
• To ensure the maximum performance from the inverter, all connections from the battery bank
to the inverter should be minimized—the exception is the DC overcurrent disconnect in the
positive line and a shunt in the negative line. Any other additional connection will contribute
to additional voltage drops, and these extra connection points may loosen during use.
• Check all wiring to the battery terminals periodically (once a month) for proper tightness. The
torque requirement for the DC terminals is between 10 to 12 lbf-ft (13.6 to 16.3 N-m). Be
aware that overtightening or misthreading the nuts on the DC terminals can cause the bolts
to strip and snap/break off.
• A brief spark or arc may occur when connecting the battery cables to the inverter DC terminals;
this is normal and due to the inverter’s internal capacitors being charged.