M A COM MRF275L Datasheet

SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
RF Power
Field-Effect Transistor
N–Channel Enhancement–Mode
Designed for broadband commercial and military applications using single ended circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands.
Output Power — 100 Watts Power Gain — 8.8 dB Typ Efficiency — 55% Typ
100% Ruggedness Tested At Rated Output Power
Low Thermal Resistance
Low C
— 17 pF Typ @ VDS = 28 Volts
rss
G
D
S
Order this document
by MRF275L/D
MRF275L
100 W, 28 V, 500 MHz
N–CHANNEL
BROADBAND
RF POWER FET
CASE 333–04, STYLE 2
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage V Gate–Source Voltage V Drain Current — Continuous I Total Device Dissipation @ TC = 25°C
Derate above 25°C Storage Temperature Range T Operating Junction Temperature T
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
ELECTRICAL CHARACTERISTICS (T
Characteristic
= 25°C unless otherwise noted)
C
Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage
(VGS = 0, ID = 50 mA) Zero Gate Voltage Drain Current
(VDS = 28 V, VGS = 0) Gate–Body Leakage Current
(VGS = 20 V, VDS = 0)
V
(BR)DSS
I
DSS
I
GSS
DSS
GS
D
P
D
stg
J
θJC
65 Vdc
2.5 mAdc
1.0 µAdc
65 Vdc
±20 Vdc
13 Adc
270
1.54
–65 to +150 °C
200 °C
0.65 °C/W
Watts
W/°C
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV2
1
ELECTRICAL CHARACTERISTICS — continued (T
Characteristic Symbol Min Typ Max Unit
= 25°C unless otherwise noted)
C
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) V Drain–Source On–Voltage (VGS = 10 V, ID = 5.0 A) V Forward Transconductance (VDS = 10 V, ID = 2.5 A) g
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
FUNCTIONAL CHARACTERISTICS
Common Source Power Gain
(VDD = 28 Vdc, P Drain Efficiency
(VDD = 28 Vdc, P Electrical Ruggedness
(VDD = 28 Vdc, P
VSWR 10:1 at all Phase Angles)
= 100 W, f = 500 MHz, IDQ = 100 mA)
out
= 100 W, f = 500 MHz, IDQ = 100 mA)
out
= 100 W, f = 500 MHz, IDQ = 100 mA,
out
GS(th)
DS(on)
fs
iss
oss
rss
G
ps
η 50 55 %
ψ
1.5 2.5 4.5 Vdc
0.5 0.9 1.5 Vdc
3.0 3.75 mhos
135 pF — 140 pF — 17 pF
7.5 8.8 dB
No Degradation in Output Power
+V
GG
C1
RF
INPUT
C3
C1, C11, C14 0.1 µF, Ceramic Capacitor C2 240 pF, ATC Type Chip Capacitor C3, C10 270 pF, ATC Type Chip Capacitor C4, C6, C8, C9 1–20 pF, Trimmer Capacitor, Johansen C5 24 pF, Mini–Unelco Type Capacitor C7 24 pF, Mini–Unelco Type Capacitor C12, C13 680 pF, Feedthru Capacitors C15 10 µF, 50 V, Electrolytic Capacitor
R1
Z1
R2
C2
Z2
C6C5C4
DUT
C12 C13
RFC2
C11
RFC1
Z3
C7 C8
RFC1 8 Turns AWG #18, 0.25I.D., Enameled RFC2, RFC3 Ferroxcube VK200 19/4B Z1, 0.250 x 0.800, Microstrip Line Z2, Z3 0.250 x 0.400,Microstrip Line Z4 0.250 x 1.25, Microstrip Line
Board Material 0.062 Glass Teflon,
Z4
C9
2 oz. Copper, Double Clad Copper Board, εr = 2.55
C10
RFC3
C14
RF
OUTPUT
+
+28 V
C15
REV2
2
Figure 1. 500 MHz Test Circuit
TYPICAL CHARACTERISTICS
160 140 120 100
, OUTPUT POWER (WATTS)
out
P
80
60
40
20
0
412
f = 225 MHz
8
10614218
Pin, INPUT POWER (WA TTS)
Figure 2. Output Power versus Input Power
10
VDS = 10 V
9
V
= 2.5 V
GS(th)
8 7 6 5 4 3
, DRAIN CURRENT (AMPS)
D
I
2 1 0
0
VGS, GATE–SOURCE VOLTAGE (VOLTS)
2
315
400 MHz
VDD = 28 V IDQ = 100 mA
500 MHz
16
4
100
90 80 70 60 50 40 30
, OUTPUT POWER (WATTS)
out
20
P
10
0
20
–10 00
–6 –4
–8
VGS, GATE–SOURCE VOLTAGE (VOLTS)
–2
VDS = 28 V IDQ = 100 mA Pin = Constant f = 500 MHz
42
Figure 3. Output Power versus Gate Voltage
140
0
IDQ = 100 mA f = 500 MHz
14 1612
18 20 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pin = 13.5 W
10 W
6 W
24
22 26
120
100
80
60
, OUTPUT POWER (WATTS)
40
out
P
20
4.52.50.5 3.51.5
Figure 4. Drain Current versus Gate Voltage
(Transfer Characteristics)
160
80
60
40
20
IDQ = 100 mA f = 400 MHz
0
14 1612 18 20 282422 26
VDD, SUPPLY VOLTAGE (VOLTS)
140 120 100
, OUTPUT POWER (WATTS)
out
P
Figure 6. Output Power versus Supply Voltage
REV2
3
Pin = 14 W
10 W
6 W
Figure 5. Output Power versus Supply Voltage
160
80 60 40 20
IDQ = 100 mA f = 225 MHz
0
14 1612 18 20 282422 26
VDD, SUPPLY VOLTAGE (VOLTS)
, OUTPUT POWER (WATTS)
out
P
140 120 100
Figure 7. Output Power versus Supply Voltage
Pin = 8 W
4 W
2 W
TYPICAL CHARACTERISTICS
1000
C
oss
C, CAPACITANCE (pF)
100
10
1
0
515
10
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
C
iss
C
rss
VGS = 0 V f = 1.0 MHz
20 1 10025
Figure 8. Capacitance versus Drain–Source V oltage
100
10
, DRAIN CURRENT (AMPS)
D
I
TC = 25°C
30
1
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
10
Figure 9. DC Safe Operating Area
REV2
4
Loading...
+ 9 hidden pages