SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
RF Power Field Effect Transistor
N–Channel Enhancement–Mode
Designed primarily for wideband large–signal output and driver stages up to
200 MHz frequency range.
• Guaranteed Performance at 150 MHz, 28 Vdc
Output Power = 125 Watts
Minimum Gain = 9.0 dB
Efficiency = 50% (Min)
• Excellent Thermal Stability , Ideally Suited For Class A
Operation
• Facilitates Manual Gain Control, ALC and Modulation
Techniques
• 100% Tested For Load Mismatch At All Phase Angles
With 30:1 VSWR
• Low Noise Figure — 3.0 dB Typ at 2.0 A, 150 MHz
D
Order this document
by MRF174/D
MRF174
125 W, to 200 MHz
N–CHANNEL MOS
BROADBAND RF POWER
FET
G
S
CASE 211–11, STYLE 2
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage V
Drain–Gate Voltage
(RGS = 1.0 MΩ)
Gate–Source Voltage V
Drain Current — Continuous I
Total Device Dissipation @ TC = 25°C
Derate above 25°C
Storage Temperature Range T
Operating Junction Temperature T
V
DSS
DGR
GS
D
P
D
stg
J
65 Vdc
65 Vdc
±40 Vdc
13 Adc
270
1.54
–65 to +150 °C
200 °C
Watts
W/°C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
θJC
0.65 °C/W
REV 7
1
ELECTRICAL CHARACTERISTICS (T
Characteristic Symbol Min Typ Max Unit
= 25°C unless otherwise noted.)
C
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 50 mA) V
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) I
Gate–Source Leakage Current (VGS = 20 V, VDS = 0) I
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) V
Forward Transconductance (VDS = 10 V, ID = 3.0 A) g
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
FUNCTIONAL CHARACTERISTICS (Figure 1)
Noise Figure
(VDD = 28 Vdc, ID = 2.0 A, f = 150 MHz)
Common Source Power Gain
(VDD = 28 Vdc, P
Drain Efficiency
(VDD = 28 Vdc, P
Electrical Ruggedness
(VDD = 28 Vdc, P
VSWR 30:1 at all Phase Angles)
= 125 W, f = 150 MHz, IDQ = 100 mA)
out
= 125 W, f = 150 MHz, IDQ = 100 mA)
out
= 125 W, f = 150 MHz, IDQ = 100 mA,
out
(BR)DSS
DSS
GSS
GS(th)
fs
iss
oss
rss
NF — 3.0 — dB
G
ps
η 50 60 — %
ψ
65 — — Vdc
— — 10 mAdc
— — 1.0 µAdc
1.0 3.0 6.0 Vdc
1.75 2.5 — mhos
— 175 — pF
— 190 — pF
— 40 — pF
9.0 11.8 — dB
No Degradation in Output Power
ADJUST
RF INPUT
BIAS
R2
+
C9 C10
C3
C2
C1 — 15 pF Unelco
C2 — Arco 462, 5.0–80 pF
C3 — 100 pF Unelco
C4 — 25 pF Unelco
C6 — 40 pF Unelco
C7 — Arco 461, 2.7–30 pF
C5, C8 — Arco 463, 9.0–180 pF
C9, C11, C14 — 0.1 µF Erie Redcap
C10 — 50 µF, 50 V
C12, C13 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
D1R3
–
L1 L2
C4
R4
C5
L4
C12
R1
C11
RFC1
L3
DUTC1
L1 — #16 AWG, 1–1/4 Turns, 0.213 ″ ID
L2 — #16 AWG, Hairpin 0.25″
L3 — #14 AWG, Hairpin
L4 — 10 Turns #16 AWG Enameled Wire on R1
RFC1 — 18 Turns #16 AWG Enameled Wire, 0.3″ ID
R1 — 10 Ω, 2.0 W
R2 — 1.8 kΩ, 1/2 W
R3 — 10 kΩ, 10 Turn Bourns
R4 — 10 kΩ, 1/4 W
C6
C13
C7
0.062″
C8
C14
0.47″
0.2″
+
VDD = 28 V
–
RF OUTPUT
REV 7
2
Figure 1. 150 MHz Test Circuit
140
120
100
, OUTPUT POWER (WATTS)
out
P
, OUTPUT POWER (WATTS)
out
P
80
70
60
50
40
30
20
10
f = 100 MHz
VDD = 13.5 V
IDQ = 100 mA
150 MHz
200 MHz
f = 100 MHz
80
60
40
20
150 MHz
200 MHz
VDD = 28 V
IDQ = 100 mA
0
0
2
4 6 8 10 12 14
Pin, INPUT POWER (WA TTS)
0
0
46810121416
2
Pin, INPUT POWER (WA TTS)
Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power
160
140
120
100
80
60
, OUTPUT POWER (WATTS)
40
out
P
20
0
12 2814 16 18 20 22 24 26
IDQ = 100 mA
f = 100 MHz
VDD, SUPPLY VOLTAGE (VOLTS)
Pin = 6 W
4 W
2 W
160
140
120
100
, OUTPUT POWER (WATTS)
out
P
IDQ = 100 mA
f = 150 MHz
80
60
40
20
0
12 2814 16 18 20 22 24 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 12 W
8 W
4 W
Figure 4. Output Power versus Supply Voltage Figure 5. Output Power versus Supply Voltage
160
140
120
100
, OUTPUT POWER (WATTS)
out
P
80
60
40
20
IDQ = 100 mA
f = 200 MHz
0
12 2814 16 18 20 22 24 26
VDD, SUPPLY VOLTAGE (VOL TS)
Figure 6. Output Power versus Supply Voltage Figure 7. Power Gain versus Frequency
REV 7
3
Pin = 16 W
12 W
8 W
22
20
18
16
14
12
10
, POWER GAIN (dB)
8
PS
G
6
4
2
20
40 60 80 100 120 140 160 180 200 220
P
out
VDD = 28 V
IDQ = 100 mA
f, FREQUENCY (MHz)
= 125 W