SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
N–Channel Enhancement–Mode MOSFET
Designed primarily for linear large–signal output stages in the 2.0–100 MHz
frequency range.
• Specified 50 Volts, 30 MHz Characteristics
Output Power = 600 Watts
Power Gain = 17 dB (Typ)
Efficiency = 45% (Typ)
D
Order this document
by MRF154/D
600 W, 50 V, 80 MHz
N–CHANNEL
BROADBAND
RF POWER MOSFET
G
CASE 368–03, STYLE 2
S
(HOG PAC)
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage V
Drain–Gate Voltage V
Gate–Source Voltage V
Drain Current — Continuous I
Total Device Dissipation @ TC = 25°C
Derate above 25°C
Storage Temperature Range T
Operating Junction Temperature T
DSS
DGO
GS
D
P
D
stg
J
125 Vdc
125 Vdc
±40 Vdc
60 Adc
1350
7.7
–65 to +150 °C
200 °C
Watts
W/°C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
θJC
0.13 °C/W
REV 2
1
ELECTRICAL CHARACTERISTICS (T
Characteristic Symbol Min Typ Max Unit
= 25°C unless otherwise noted)
C
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA) V
Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0) I
Gate–Body Leakage Current (VGS = 20 V, VDS = 0) I
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) V
Drain–Source On–Voltage (VGS = 10 V, ID = 40 A) V
Forward Transconductance (VDS = 10 V, ID = 20 A) g
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C
Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C
Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C
FUNCTIONAL TESTS
Common Source Amplifier Power Gain
(VDD = 50 V, P
Drain Efficiency
(VDD = 50 V, P
Intermodulation Distortion
(VDD = 50 V, P
f1 = 30 MHz, f2 = 30.001 MHz, IDQ = 800 mA)
= 600 W, IDQ = 800 mA, f = 30 MHz)
out
= 600 W, IDQ = 800 mA, f = 30 MHz)
out
= 600 W (PEP),
out
(BR)DSS
DSS
GSS
GS(th)
DS(on)
fs
iss
oss
rss
G
ps
η — 45 — %
IMD
(d3)
125 — — Vdc
— — 20 mAdc
— — 5.0 µAdc
1.0 3.0 5.0 Vdc
1.0 3.0 5.0 Vdc
16 20 — mhos
— 1600 — pF
— 950 — pF
— 175 — pF
— 17 — dB
— –25 — dB
+
0–6 V
–
RF
INPUT
C1 C2
C1, C3, C8 — Arco 469
C2 — 330 pF
C4 — 680 pF
C5, C19, C20 — 0.47 µF, RMC Type 2225C
C6, C7, C14, C15, C16 — 0.1 µF
C9, C10, C11 — 470 pF
C12 — 1000 pF
C13 — Two Unencapsulated 1000 pF Mica, in Series
C17, C18 — 0.039 µF
C21 — 10 µF/100 V Electrolytic
L1 — 2 Turns #16 AWG, 1/2″ ID, 3/8″ Long
L2, L3 — Ferrite Beads, Fair–Rite Products Corp. #2673000801
R1
C5 C6
C4
L1
C3
C7
R2
DUT
L2 L3
C14
C15 C16 C17 C18 C19
C10 C11 C12
C9
R1, R2 — 10 Ohms/2.0 W Carbon
T1 — RF Transformer, 1:25 Impedance Ratio. See M/A-COM
T1 — Application Note AN749, Figure 4 for details.
T1 — Ferrite Material: 2 Each, Fair–Rite Products
T1 — Corp. #2667540001
C13
T1
C8
C20 C21
+
50 V
–
RF
OUTPUT
All capacitors ATC type 100/200 chips or equivalent unless otherwise noted.
Figure 1. 30 MHz Test Circuit
REV 2
2
25
20
15
800
600
400
200
0
01020
VDD = 50 V
40 V
10
POWER GAIN (dB)
5
0
Figure 2. Power Gain versus Frequency Figure 3. Output Power versus Input Power
100
10
, DRAIN CURRENT (AMPS)
D
I
1
V
VDD = 50 V
IDQ = 800 mA
P
= 600 W
out
f, FREQUENCY (MHz)
, DRAIN–SOURCE VOLTAGE (VOLTS)
DS
TC = 25°C
P , OUTPUT POWER (WATTS)
2002 5 10 20 50 100
C, CAPACIT ANCE (pF)
200220
800
600
out
400
200
0
050
10,000
5000
2000
1000
500
200
100
12
(IDQ = 800 mA)
VDD = 50 V
40 V
P
, INPUT POWER (WATTS)
in
VGS = 0 V
f = 1 MHz
5 10 20 50 100
V
, DRAIN VOLTAGE (VOLTS)
DS
100 MHz 30 MHz
100
C
iss
C
oss
C
rss
Figure 4. DC Safe Operating Area Figure 5. Capacitance versus Drain V oltage
40
TYPICAL DEVICE SHOWN
30
VDS = 10 V
V
= 3.5 V
GS(th)
gfs = 24 mhos
20
10
, DRAIN CURRENT (AMPS)
DS
I
0
04
268
V
, GATE–SOURCE VOLTAGE (VOLTS)
GS
Figure 6. Gate V oltage versus Drain Current Figure 7. Common Source Unity Gain Frequency
REV 2
3
600
500
400
300
200
100
t
f , UNITY GAIN FREQUENCY (MHz)
0
04060
20
ID, DRAIN CURRENT (AMPS)
VDS = 30 V
15 V
versus Drain Current