M A COM MRF150 Datasheet

SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
RFPowerField-E ffectTransistor
N–Channel Enhancement–Mode
Designed primarily for linear large–signal output stages up to150 MHz
frequency range.
Specified 50 Volts, 30 MHz Characteristics Output Power = 150 Watts Power Gain = 17 dB (Typ) Efficiency = 45% (Typ)
Superior High Order IMD
IMD
IMD
100% Tested For Load Mismatch At All Phase Angles With
(150 W PEP) — –32 dB (Typ)
(d3)
(150 W PEP) — –60 dB (Typ)
(d11)
30:1 VSWR
D
Order this document
by MRF150/D
MRF150
150 W,to150 MHz
N–CHANNEL MOS
LINEAR RF POWER
FET
G
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage V Drain–Gate Voltage V Gate–Source Voltage V Drain Current — Continuous I Total Device Dissipation @ TC = 25°C
Derate above 25°C Storage Temperature Range T Operating Junction Temperature T
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
CASE 211–11, STYLE 2
S
DSS
DGO
GS
D
P
D
stg
J
θ
JC
125 Vdc 125 Vdc ±40 Vdc
16 Adc
300
1.71
–65 to +150 °C
200 °C
0.6 °C/W
Watts
W/°C
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV 9
1
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted.)
C
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA) V Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0) I Gate–Body Leakage Current (VGS = 20 V, VDS = 0) I
(BR)DSS
DSS GSS
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) V Drain–Source On–Voltage (VGS = 10 V, ID = 10 A) V Forward Transconductance (VDS = 10 V, ID = 5.0 A) g
GS(th)
DS(on)
fs
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C
iss
oss
rss
FUNCTIONAL TESTS (SSB)
Common Source Amplifier Power Gain f = 30 MHz
(V
= 50 V, P
DD
= 150 W (PEP), IDQ = 250 mA) f = 150 MHz
out
Drain Efficiency
(V
= 50 V, P
DD
(Max) = 3.75 A)
I
D
= 150 W (PEP), f = 30; 30.001 MHz,
out
Intermodulation Distortion (1)
(V
= 50 V, P
DD
f1 = 30 MHz, f2 = 30.001 MHz, I
= 150 W (PEP),
out
= 250 mA)
DQ
Load Mismatch
(V
= 50 V, P
DD
= 250 mA, VSWR 30:1 at all Phase Angles)
I
DQ
= 150 W (PEP), f = 30; 30.001 MHz,
out
G
ps
η 45 %
IMD
(d3)
IMD
(d11)
ψ
CLASS A PERFORMANCE
Intermodulation Distortion (1) and Power Gain
(V
= 50 V, P
DD
f2 = 30.001 MHz, I
= 50 W (PEP), f1 = 30 MHz,
out
= 3.0 A)
DQ
NOTE:
1. To MIL–STD–1311 Version A, Test Method 2204B, T wo Tone, Reference Each Tone.
IMD
IMD
G
PS
(d3)
(d9–13)
125 Vdc
5.0 mAdc — 1.0 µAdc
1.0 3.0 5.0 Vdc
1.0 3.0 5.0 Vdc
4.0 7.0 mhos
400 pF — 240 pF — 40 pF
— —
17
8.0
dB
dB — —
–32 –60
— —
No Degradation in Output Power
— — —
20 –50 –75
dB — —
REV 9
2
BIAS
+
0–12 V
C5
R1
C2
RF
INPUT
T1
R3
C1
R2
C1 — 470 pF Dipped Mica C2, C5, C6, C7, C8, C9 — 0.1 µF Ceramic Chip or
Monolythic with Short Leads
C3 — 200 pF Unencapsulated Mica or Dipped Mica
with Short Leads
C4 — 15 pF Unencapsulated Mica or Dipped Mica
with Short Leads
Figure 1. 30 MHz Test Circuit (Class AB)
L1
C6 C8 C9 C10
C7
L2
+ –
DUT
T2
C4
C3
C10 — 10 µF/100 V Electrolytic L1 — VK200/4B Ferrite Choke or Equivalent, 3.0 µH L2 — Ferrite Bead(s), 2.0 µH R1, R2 — 51 /1.0 W Carbon R3 — 3.3 /1.0 W Carbon (or 2.0 x 6.8 /1/2 W in Parallel T1 — 9:1 Broadband Transformer T2 — 1:9 Broadband Transformer
+
50 V
OUTPUT
RF
25
20
15
10
VDD = 50 V I
= 250 mA
DQ
= 150 W (PEP)
P
out
POWER GAIN (dB)
5
0
2 5 10 20 20050 100
f, FREQUENCY (MHz)
Figure 2. Power Gain versus Frequency Figure 3. Output Power versus Input Power
250 200 150
VDD = 50 V
100
50
0
40 V IDQ = 250 mA
1002030
250 200
, OUTPUT POWER (WATTS)
150
out
P
100
50
0
0 12345
VDD = 50 V
40
V
IDQ = 250 mA
Pin, INPUT POWER (WA TTS)
150 MHz30 MHz
6
–30 –35
150 MHz
–40 –45 –50
VDD = 50 V, IDQ = 250 mA, TONE SEPARATION = 1 kHz
–30 –35
30 MHz –40 –45
IMD, INTERMODULATION DISTORTION (dB)
–50
0 40 60 80 100
20 120 140 160
P
, OUTPUT POWER (WA TTS PEP)
out
Figure 4. IMD versus P
1000
d
3
d
5
800
600
VDS = 30 V
15 V
400
, UNITY GAIN FREQUENCY (MHz)
200
d
3
d
5
out
T
f
0
0 5 10 20
I
, DRAIN CURRENT (AMPS)
D
15
Figure 5. Common Source Unity Gain Frequency
versus Drain Current
10
8
6
REV 9
3
4
, DRAIN CURRENT (AMPS)
2
DS
I
0
24 6 8100
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Figure 6. Gate Voltage versus
Drain Current
VDS = 10 V g
= 5 mhos
fs
Loading...
+ 5 hidden pages