SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
RFPowerField-EffectTransistor
N–Channel Enhancement–Mode MOSFET
Designed for broadband commercial and military applications at frequencies
to 175 MHz. The high power, high gain and broadband performance of this
device makes possible solid state transmitters for FM broadcast or TV channel
frequency bands.
•Guaranteed Performance at 30 MHz, 28 V:
Output Power — 150 W
Gain — 18 dB (22 dB Typ)
Efficiency — 40%
•Typical Performance at 175 MHz, 50 V:
Output Power — 150 W
Gain — 13 dB
•Low Thermal Resistance
•Ruggedness Tested at Rated Output Power
•Nitride Passivated Die for Enhanced Reliability
G
D
S
Order this document
by MRF141/D
MRF141
150 W, 28 V, 175 MHz
N–CHANNEL
BROADBAND
RF POWER MOSFET
CASE 211–11, STYLE 2
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage V
Drain–Gate Voltage V
Gate–Source Voltage V
Drain Current — Continuous I
Total Device Dissipation @ TC = 25°C
Derate above 25°C
Storage Temperature Range T
Operating Junction Temperature T
DSS
DGO
GS
D
P
D
stg
J
65 Vdc
65 Vdc
±40 Vdc
16 Adc
300
1.71
–65 to +150 °C
200 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
θ
JC
0.6 °C/W
Watts
W/°C
REV 9
1
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted)
C
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA) V
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) I
Gate–Body Leakage Current (VGS = 20 V, VDS = 0) I
(BR)DSS
DSS
GSS
ON CHARACTERISTICS (1)
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) V
Drain–Source On–Voltage (VGS = 10 V, ID = 10 A) V
Forward Transconductance (VDS = 10 V, ID = 5.0 A) g
GS(th)
DS(on)
fs
DYNAMIC CHARACTERISTICS (1)
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) C
iss
oss
rss
FUNCTIONAL TESTS
Common Source Amplifier Power Gain, f = 30; 30.001 MHz
(V
= 28 V, P
DD
= 150 W (PEP), IDQ = 250 mA) f = 175 MHz
out
Drain Efficiency
(V
= 28 V, P
DD
= 250 mA, ID (Max) = 5.95 A)
I
DQ
= 150 W (PEP), f = 30; 30.001 MHz,
out
Intermodulation Distortion (1)
(V
= 28 V, P
DD
f2 = 30.001 MHz, I
= 150 W (PEP), f = 30 MHz,
out
= 250 mA)
DQ
Load Mismatch
(V
= 28 V, P
DD
I
= 250 mA, VSWR 30:1 at all Phase Angles)
DQ
= 150 W (PEP), f1 = 30; 30.001 MHz,
out
G
ps
η 40 45 — %
IMD
(d3)
IMD
(d11)
ψ
CLASS A PERFORMANCE
Intermodulation Distortion (1) and Power Gain
(V
= 28 V, P
DD
f2 = 30.001 MHz, I
= 50 W (PEP), f1 = 30 MHz,
out
= 4.0 A)
DQ
NOTE:
1. To MIL–STD–1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.
IMD
IMD
G
PS
(d3)
(d9–13)
65 — — Vdc
— — 5.0 mAdc
— — 1.0 µAdc
1.0 3.0 5.0 Vdc
0.1 0.9 1.5 Vdc
5.0 7.0 — mhos
— 350 — pF
— 420 — pF
— 35 — pF
16
—
20
10
—
dB
—
dB
—
—
–30
–60
–28
—
No Degradation in Output Power
—
—
—
23
–50
–75
—
dB
—
—
+
BIAS
0–12 V
–C5
C11 R4
R1
C2
RF INPUT
T1
R3
C2, C5, C6, C7, C8, C9 — 0.1 µF Ceramic Chip or
Monolythic with Short Leads
C3 — Arco 469
C4 — 820 pF Unencapsulated Mica or Dipped Mica
with Short Leads
C10 — 10 µF/100 V Electrolytic
C11 — 1 µF, 50 V, Tantalum
C12 — 330 pF, Dipped Mica (Short leads)
Figure 1. 30 MHz Test Circuit (Class AB)
REV 9
2
R2
C6
D.U.T.
C4
C7
L1
C8
L2
C9
+
–
T2
C3
C12
L1 — VK200/4B Ferrite Choke or Equivalent, 3.0 µH
L2 — Ferrite Bead(s), 2.0 µH
R1, R2 — 51 Ω/1.0 W Carbon
R3 — 1.0 Ω/1.0 W Carbon or Parallel Two 2 Ω, 1/2 W Resistors
R4 — 1 kΩ/1/2 W Carbon
T1 — 16:1 Broadband Transformer
T2 — 1:25 Broadband Transformer
Board Material — 0.062″ Fiberglass (G10),
1 oz. Copper Clad, 2 Sides,
e
= 5
r
C10
+
28 V
–
RF
OUTPUT
TYPICAL CHARACTERISTICS
100
10
, DRAIN CURRENT (AMPS)
D
I
1
1 100
TC = 25°C
10
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)
V
DS
Figure 2. DC Safe Operating Area Figure 3. Gate–Source Voltage versus
2000
VDS = 20 V
10 V
1.04
1.03
1.02
ID = 5 A
1.01
1
0.99
0.98
4 A
0.97
0.96
0.95
0.94
0.93
0.92
, GATE-SOURCE VOLTAGE (NORMALIZED)
0.91
GS
0.9
–25 100
25 50 750
T
, CASE TEMPERATURE (°C)
C
1 A
0.5 A
0.25 A
Case T emperature
200
0
C
oss
C
iss
2 A
1000
200
C, CAPACITANCE (pF) V
C
, UNITY GAIN FREQUENCY (MHz)
T
f
0
020
26812161814410
I
, DRAIN CURRENT (AMPS)
D
Figure 4. Common Source Unity Gain Frequency
versus Drain Current
30
25
20
0 5 10 15 20 25
V
, DRAIN–SOURCE VOLTAGE (VOL TS)
DS
Figure 5. Capacitance versus
Drain–Source Voltage
300
200
rss
100
20
15
, POWER GAIN (dB)
PS
G
10
5
2010 100 200
VDD = 28 V
I
= 250 mA
DQ
= 150 W
P
out
f, FREQUENCY (MHz) P
0
0 5 10 15 20 25
300
, OUTPUT POWER (WATTS)
200
out
P
100
0
12345
, INPUT POWER (WA TTS)
in
Figure 6. Power Gain versus Frequency Figure 7. Output Power versus Input Power
f = 175 MHz
V
= 28 V
DD
= 250 mA
I
DQ
f = 30 MHz
V
= 28 V
DD
= 250 mA
I
DQ
REV 9
3