M A COM MRF136 Datasheet

Rating
Symbol
Value
Unit
Characteristic
Symbol
Max
Unit
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
    
  
Designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range, in single ended configuration.
Guaranteed 28 Volt, 150 MHz Performance Output Power = 15 Watts Narrowband Gain = 16 dB (Typ) Efficiency = 60% (Typical)
Small–Signal and Large–Signal Characterization
100% Tested For Load Mismatch At All Phase
Angles With 30:1 VSWR
Excellent Thermal Stability , Ideally Suited For Class A Operation
Facilitates Manual Gain Control, ALC and Modulation Techniques
G
D
Order this document
by MRF136/D

15 W, to 400 MHz
N–CHANNEL
MOS BROADBAND
RF POWER FET
CASE 211–07, STYLE 2
S
MAXIMUM RATINGS
Drain–Source Voltage V Drain–Gate Voltage (RGS = 1.0 M) V Gate–Source Voltage V Drain Current — Continuous I Total Device Dissipation @ TC = 25°C
Derate above 25°C Storage Temperature Range T Operating Junction Temperature T
DSS
DGR
GS
D
P
D
stg
J
65 Vdc 65 Vdc
±40 Vdc
2.5 Adc 55
0.314
–65 to +150 °C
200 °C
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case R
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
θJC
3.2 °C/W
Watts
W/°C
REV 7
1
ELECTRICAL CHARACTERISTICS (T
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 5.0 mA)
Zero–Gate Voltage Drain Current
(VDS = 28 V, VGS = 0)
Gate–Source Leakage Current
(VGS = 40 V, VDS = 0)
ON CHARACTERISTICS (1)
Gate Threshold Voltage
(VDS = 10 V, ID = 25 mA)
Forward Transconductance
(VDS = 10 V, ID = 250 mA)
DYNAMIC CHARACTERISTICS (1)
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
FUNCTIONAL CHARACTERISTICS
Noise Figure
(VDS = 28 Vdc, ID = 500 mA, f = 150 MHz)
Common Source Power Gain (Figure 1)
(VDD = 28 Vdc, P
Drain Efficiency (Figure 1)
(VDD = 28 Vdc, P
Electrical Ruggedness (Figure 1)
(VDD = 28 Vdc, P VSWR 30:1 at all Phase Angles)
NOTES:
1. Each side measured separately.
= 15 W, f = 150 MHz, IDQ = 25 mA)
out
= 15 W, f = 150 MHz, IDQ = 25 mA)
out
= 15 W, f = 150 MHz, IDQ = 25 mA,
out
= 25°C unless otherwise noted.)
C
V
(BR)DSS
V
65 Vdc
I
DSS
I
GSS
GS(th)
g
fs
C
iss
C
oss
C
rss
NF 1.0 dB
G
ps
η 50 60 %
ψ
2.0 mAdc
1.0 µAdc
1.0 3.0 6.0 Vdc
250 400 mmhos
24 pF
27 pF
5.5 pF
13 16 dB
No Degradation in Output Power
REV 7
2
BIAS
ADJUST
R3
R2
D1
R4
C7
C8
C10
+ –
RFC1
C9
RFC2
C11
VDD = +28 V
RF INPUT
R1
C1
C1, C2 — Arco 406, 15–115 pF or Equivalent C3 — Arco 404, 8–60 pF or Equivalent C4 — 43 pF Mini–Unelco or Equivalent C5 — 24 pF Mini–Unelco or Equivalent C6 — 680 pF, 100 Mils Chip C7 — 0.01 µF Ceramic C8 — 100 µF, 40 V C9 — 0.1 µF Ceramic C10, C11 — 680 pF Feedthru D1 — 1N5925A Motorola Zener
L1
C2
DUT
Figure 1. 150 MHz T est Circuit
L2
C4
L1 — 2 Turns, 0.29 ID, #18 AWG, 0.10 Long L2 — 2 Turns, 0.23 ID, #18 AWG, 0.10 Long L3 — 2–1/4 Turns, 0.29 ID, #18 AWG, 0.125 Long RFC1 — 20 Turns, 0.30 ID, #20 AWG Enamel Closewound RFC2 — Ferroxcube VK–200 — 19/4B R1 — 27 , 1 W Thin Film R2 — 10 k, 1/4 W R3 — 10 Turns, 10 k R4 — 1.8 k, 1/2 W Board Material — 0.062 G10, 1 oz. Cu Clad, Double Sided
L3
C3
C6
RF OUTPUT
C5
REV 7
3
TYPICAL CHARACTERISTICS
2020 18 16 14 12 10
8 6
, OUTPUT POWER (WATTS)
out
4
P
2 0
0 200 600 800 1000
f = 100 MHz
Pin, INPUT POWER (MILLWA TTS)
150 MHz 200 MHz
VDD = 28 V IDQ = 25 mA
400
10
9 8 7 6 5 4 3
, OUTPUT POWER (WATTS)
out
2
P
1 0
0 200 400 600 800 1000
f = 100 MHz
200 MHz
Pin, INPUT POWER (MILLWA TTS)
Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power
20 18
f = 400 MHz
16
IDQ = 25 mA
14 12 10
8 6
, OUTPUT POWER (WATTS)
out
4
P
2 0
01234
P
, INPUT POWER (WATTS)
in
VDD = 28 V
VDD = 13.5 V
24 21 18 15 12
9
, OUTPUT POWER (WATTS)
6
out
P
3 0
12 16 20 24 28
14 18 22 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 600 mW
Figure 4. Output Power versus Input Power Figure 5. Output Power versus Supply Voltage
150 MHz
VDD = 13.5 V IDQ = 25 mA
400 mW
200 mW
IDQ = 25 mA f = 100 MHz
24 21 18 15 12
9
, OUTPUT POWER (WATTS)
6
out
P
3 0
12 16 20 24 28
14 18 22 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 900 mW
IDQ = 25 mA f = 150 MHz
Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage
REV 7
4
600 mW
300 mW
24 21 18 15 12
9
, OUTPUT POWER (WATTS)
6
out
P
3 0
12 16 20 24 28
14 18 22 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 1 W
0.7 W
0.4 W
IDQ = 25 mA f = 200 MHz
Loading...
+ 7 hidden pages