Lucent Technologies Inc TMUX03155 Datasheet

Preliminary Data Sheet
April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer

Features

Multiplexes three STS-1 signals into a SONET STS-3 signal.
Multiplexes three AU-3 signals into an SDH STM-1 (AU-4) signal via a TUG-3 construction.
Demultiplexes three STS-1 signals from a SONET STS-3 signal.
Demultiplexes three AU-3 signals from an SDH STM-1 (AU-4) signal via a TUG-3 deconstruction.
High-speed microprocessor interface configurable to operate with most commercial microprocessors.
Detects STS-3/STM-1 (AU-4) loss-of-signal (LOS) conditions.
Detects STS-3/STM-1 (AU-4) out-of-frame and loss-of-frame (OOF/LOF) conditions.
Provides an 8-bit bus interface at the STS-1/AU-3 rate.
Provides a bit serial, nibble-wide, or byte-wide interface at STS-3/STM-1 (AU-4) rate.
Provides STS-3/STM-1 (AU-4) selectable scram­bler/descrambler functions and B1/B2/B3 genera­tion/detection.
Accepts bit rate, nibble rate, or byte rate high­speed clocks (155.52 MHz, 38.88 MHz, or
19.44 MHz, respectively).
STS-3/STM-1 (AU-4) internal clock and data recovery. Meets type B jitter tolerance of ITU-T G.958. Accommodates 0.5 UI jitter up to 20 MHz.
155.52 MHz input reference clock for on-chip PLL. Has on-chip PLL for clock synthesis, requiring only one external resistor. No output clock drift in absence of data transitions once lock is acquired.
STS-1 termination mode.

Applications

SONET/SDH line termination equipment.
SDH path origination and termination equipment.
SONET/SDH add/drop multiplexers.
SONET/SDH cross connects.
SONET/SDH test equipment.

Description

The TMUX03155 STS-3/STM-1 (AU-4) multiplexer device provides three modes of operation: STS-3, STM-1 (AU-4), and STS-1 modes. In STS-3 mode, the TMUX03155 device provides all of the functions necessary to multiplex and demultiplex up to three STS-1 signals to/from a SONET STS-3 signal. In AU-4 mode, the TMUX03155 provides the functional­ity to multiplex and demultiplex up to three AU-3 sig­nals to/from an STM-1 (AU-4) signal. In STS-1 mode, the high-speed side of the TMUX03155 operates at
51.84 MHz and can be used for STS-1 termination and for accessing transport overhead in the SONET frame. On the STS-3/STM-1 (AU-4) side, the device can be configured for either a 1-bit serial data inter­face, a 4-bit parallel (nibble-wide) data interface, or an 8-bit parallel (byte-wide) data interface. This allows the device to drive an OC3 optical signal directly or to allow for modular growth in terminal or add/drop applications. On the STS-1/AU-3 side, the TMUX03155 device provides a bus mode that can communicate with up to three STS-1/AU-3 devices at
19.44 Mbits/s. The TMUX03155 is designed to inter­face with the Agere Systems Inc. TMPR28051 device, or equivalent, providing complete mapping/ unmapping from/to an STS-3/STM-1 (AU-4) signal for up to 84 DS1 or 63 E1 signals.
–40 °C to +85 °C temperature range.
208-pin, shrink quad flat pack (SQFP) package.
Complies with GR-253-CORE (12/95), G.707 (3/96), G.783(1/94).
Preliminary Data Sheet
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
April 2001
Table of Contents
Contents Page
Features ...................................................................................................................................................................1
Applications .............................................................................................................................................................. 1
Description ................................................................................................................................................................1
Nomenclature Assumptions ...................................................................................................................................... 7
Block Diagram .......................................................................................................................................................... 7
Pin Information ......................................................................................................................................................... 9
Summary of I/O Pins ......................................................................................................................................... 15
Mode Control Signals (See Register Description on page 54.) ..............................................................................16
STS-1 Mode ........................................................................................................................................................... 16
Transmit Direction Overview .................................................................................................................................. 17
STS-1/AU-3 Bus Mode Input Retiming ..............................................................................................................17
Input Select Control ...........................................................................................................................................17
STS-1/AU-3 Inputs ............................................................................................................................................ 17
Out-of-Frame (OOF) and Loss-of-Frame (LOF) Monitoring ..............................................................................18
Descramble Enable/Disable .............................................................................................................................. 18
Monitor B1 and B2 Errors ..................................................................................................................................19
H4 Multiframe and Pointer Monitor (AU-4 Mode Only) ......................................................................................19
STS-3 Generate ................................................................................................................................................ 20
Transport Overhead Access Channel (TOAC) Insert ........................................................................................23
STS-3/STM-1 (AU-4) Scramble Enable ............................................................................................................ 23
STS-3/STM-1 (AU-4) B1, B2, and B3 BIP Generation ......................................................................................23
STS-3/STM-1 (AU-4) Loopback Control ............................................................................................................23
STS-3/STM-1 (AU-4) Output Interface .............................................................................................................. 23
Receive Direction Overview ................................................................................................................................... 23
Input Retime ......................................................................................................................................................24
Clock and Data Recovery ..................................................................................................................................24
STS-3/STM-1 (AU-4) Framing ...........................................................................................................................24
Loss of Signal ....................................................................................................................................................24
Loopback Select Logic ......................................................................................................................................25
RSTS-3/STM-1 (AU-4) Frame Synchronous Descrambling (SONET/SDH) ..................................................... 25
TOAC Drop ........................................................................................................................................................25
B1, B2, and B3 Checking .................................................................................................................................. 25
Monitoring Functions .........................................................................................................................................25
Pointer Interpretation .........................................................................................................................................25
Data Demultiplex and Conversion (AU-4 Mode Only) .......................................................................................26
STS-1/AU-3 Output Byte Control ...................................................................................................................... 26
B1 and B2 Generate .......................................................................................................................................... 26
STS-1/AU-3 Output Scramble ........................................................................................................................... 27
Output Selection Logic ......................................................................................................................................27
Output Data Formatter ...................................................................................................................................... 27
Maintenance Functions .......................................................................................................................................... 27
Maintenance Functions Disabled During Failure Conditions ............................................................................. 28
Common Maintenance and Control Functions ..................................................................................................28
Transmit Functions ............................................................................................................................................30
Receive Functions .............................................................................................................................................38
Typical Uses ...........................................................................................................................................................45
Section and Line Termination Multiplex ............................................................................................................45
Add/Drop Multiplex ............................................................................................................................................46
Digital Cross Connect ........................................................................................................................................ 46
Microprocessor Interface ........................................................................................................................................47
Overview ...........................................................................................................................................................47
2 Agere Systems Inc.
Preliminary Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Table of Contents
(continued)
Contents Page
Microprocessor Configuration Modes ................................................................................................................47
Microprocessor Interface Pinout Descriptions ...................................................................................................47
Microprocessor Interface Register Architecture ................................................................................................ 49
Register Description ..........................................................................................................................................54
I/O Timing ........................................................................................................................................................101
Absolute Maximum Ratings .................................................................................................................................. 106
Handling Precautions ........................................................................................................................................... 106
Operating Conditions ............................................................................................................................................107
Electrical Characteristics ......................................................................................................................................108
Timing Characteristics ..........................................................................................................................................110
Operational Timing ..........................................................................................................................................110
Outline Diagram .................................................................................................................................................... 117
208-Pin SQFP ................................................................................................................................................. 117
Ordering Information .............................................................................................................................................118
DS01-194PDH Replaces DS00-213TIC to Incorporate the Following Updates ...................................................118
Agere Systems Inc. 3
Preliminary Data Sheet
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
April 2001
List of Figures
Contents Page
Figure 1. TMUX03155 Block Diagram ................................................................................................................... 8
Figure 2. Pinout of 208 SQFP Device ................................................................................................................... 9
Figure 3. SFEBE Location ................................................................................................................................... 33
Figure 4. Line Termination Multiplex ................................................................................................................... 45
Figure 5. Add/Drop Multiplex ............................................................................................................................... 46
Figure 6. Digital Cross Connect ........................................................................................................................... 46
Figure 7. MODE 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0) ............................................................ 102
Figure 8. MODE 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0) ............................................................. 102
Figure 9. MODE 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1) ............................................................ 103
Figure 10. MODE 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1) ........................................................... 103
Figure 11. MODE 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0) .......................................................... 104
Figure 12. MODE 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0) ........................................................... 104
Figure 13. MODE 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1) .......................................................... 105
Figure 14. MODE 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1) ........................................................... 105
Figure 15. Single-Ended Input Specification ..................................................................................................... 108
Figure 16. THSJ0J1V1I Signal Structure Definition ........................................................................................... 112
Figure 17. Interface Data Timing ....................................................................................................................... 115
Figure 18. Bus Interface Signals ....................................................................................................................... 116
4 Agere Systems Inc.
Preliminary Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
List of Tables
Contents Page
Table 1. Pin Descriptions for the 208-Pin SQFP Package .................................................................................. 10
Table 2. Input/Output Summary .......................................................................................................................... 15
Table 3. Transmit Mode Control Signals ............................................................................................................. 16
Table 4. Receive Mode Control ........................................................................................................................... 16
Table 5. Input Select Control ............................................................................................................................... 17
Table 6. Expected STS-1/AU-3 Input Frame Format .......................................................................................... 18
Table 7. STS-3 Output Overhead Format ........................................................................................................... 20
Table 8. STM-1 (AU-4) Output Overhead Format ............................................................................................... 21
Table 9. STS-1/AU-3 Format and Overhead Control Summary .......................................................................... 26
Table 10. STS-1/AU-3 Output Select Control ...................................................................................................... 27
Table 11. Monitors Disabled During Failure Conditions ...................................................................................... 28
Table 12. SFEBE Values ..................................................................................................................................... 33
Table 13. G1 Byte—AU-4 Mode Only ................................................................................................................. 34
Table 14. PFEBE Values ..................................................................................................................................... 34
Table 15. Value Offset Load Values .................................................................................................................... 36
Table 16. Transport Overhead Byte Access—Transmit Direction ....................................................................... 36
Table 17. TTOAC Control Bits ............................................................................................................................. 37
Table 18. STS-1/AU-3 Overhead Control ............................................................................................................ 42
Table 19. Transport Overhead Byte Access—Receive Direction ........................................................................ 44
Table 20. Microprocessor Configuration Modes .................................................................................................. 47
Table 21. MODE [1—4] Microprocessor Pin Definitions ...................................................................................... 47
Table 22. Device-Level Register Map ................................................................................................................. 49
Table 23. Page 0—J1 Byte Insert and Monitor .................................................................................................... 51
Table 24. Page 1—Error Counters ...................................................................................................................... 52
Table 25. Page 2—BER Algorithm Parameters .................................................................................................. 53
Table 26. Register 0 (RO) ................................................................................................................................... 54
Table 27. Registers 1—3 (RO) ............................................................................................................................ 54
Table 28. Registers 4, 5: One-Shot Register 0 1 (R/W) .................................................................................. 54
Table 29. Register 6: Scratch Register (R/W) ..................................................................................................... 55
Table 30. Registers 7—15: Delta/Event (COR-RO) ............................................................................................ 55
Table 31. Registers 16—24: Mask Bits (R/W) ..................................................................................................... 60
Table 32. Registers 25—51: State Bits (RO) ....................................................................................................... 62
Table 33. Register 52: Mode Control (R/W) ........................................................................................................ 64
Table 34. Register 53: Low-Speed Transmit Common Signals (R/W) ................................................................ 65
Table 35. Register 54—59: Transmit Low-Speed Port Input Control (R/W) ........................................................ 66
Table 36. Registers 60, 61: Transmit High-Speed Clock/Port Control (R/W) ...................................................... 67
Table 37. Register 62: Transmit High-Speed Control Signals (R/W) .................................................................. 68
Table 38. Register 62, and Page 0, Registers 128—191: Transmit High-Speed J1 Insert (R/W) ....................... 69
Table 39. Register 62, 69: Transmit High-Speed Control Signals (R/W) ............................................................ 69
Table 40. Register 62, 66: Transmit High-Speed Control Signals (R/W) ............................................................ 69
Table 41. Registers 63—65: Trace/Growth Bytes (R/W) ..................................................................................... 69
Table 42. Register 66: Transmit F1 Data Byte (R/W) .......................................................................................... 70
Table 43. Registers 67 and 68: K1 and K2 Insert Bytes (R/W) ........................................................................... 70
Table 44. Register 69: Transmit Sync Status Byte (R/W) ................................................................................... 70
Table 45. Register 70: Path Signal Trace Byte (R/W) ......................................................................................... 70
Table 46. Register 71: Path User Channel Byte (R/W) ....................................................................................... 70
Table 47. Register 72: Path Growth Byte (R/W) .................................................................................................. 70
Table 48. Register 73: Tandem Connection Byte (R/W) ..................................................................................... 71
Table 49. Register 74: Transmit High-Speed Line RDI Insertion Inhibit Bits (R/W) ............................................ 71
Table 50. Register 75: Transmit High-Speed Path RDI Insertion Inhibit Bits (R/W) ............................................ 71
Table 51. Register 76: Transmit High-Speed Error Insert Control Parameters (R/W) ......................................... 72
Agere Systems Inc. 5
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Preliminary Data Sheet
April 2001
List of Tables
(continued)
Contents Page
Table 52. Register 77: Transmit High-Speed Error Insert Control Parameters (R/W) ......................................... 73
Table 53. Register 78: Transmit High-Speed Error Insert (R/W) ......................................................................... 73
Table 54. Register 79: Receive/Transmit TOAC Control (R/W) .......................................................................... 74
Table 55. Registers 80, 81: Transmit TOAC Control (R/W) ................................................................................ 75
Table 56. Register 83, 84: Transmit High-Speed STS-3/STM-1 Output Frame Offset (R/W) ............................. 77
Table 57. A1-1 Alignment Parameters ................................................................................................................ 80
Table 58. BITCNT Alignment Table ..................................................................................................................... 80
Table 59. Register 85: Receive High/Low-Speed Port Control (R/W) ................................................................. 81
Table 60. Register 86: Receive J1 and Receive Low-Speed Port Select Control (R/W) ..................................... 82
Table 61. Register 87: STS-1/AU-3 Receive Control Bits (R/W) ......................................................................... 82
Table 62. Register 88: STS-1/AU-3 Receive Low-Speed AIS Inhibit Control Bits (R/W) .................................... 83
Table 63. Registers 88, 89: STS-1/AU-3 Loss of Signal Detector (R/W) ............................................................ 83
Table 64. Register 90—95: Continuous N Times Detect (CNTD) Values (R/W) ................................................. 83
Table 65. Register 95: Continuous N Times Detect (CNTD) B1 Control Bit (R/W) ............................................. 85
Table 66. Register 96: Test Pattern Drop Control and Status ............................................................................. 86
Table 67. Register 97: Test Pattern Drop Error Counter (RO) ............................................................................ 86
Table 68. Register 98: Receive Low-Speed Overhead Control Bits (R/W) ......................................................... 86
Table 69. Register 99: Receive Low-Speed BIP Error Insert (R/W) .................................................................... 87
Table 70. Registers 100—102: Receive Low-Speed Overhead Control Bits (R/W) ............................................ 87
Table 71. Register 103: Receive Low-Speed L-RDI Inhibit Control (R/W) ..........................................................88
Table 72. Registers 104—106: Receive Low-Speed C1 Byte (R/W) .................................................................. 88
Table 73. Registers 107—109: Receive Low-Speed F1 Byte (R/W) ...................................................................88
Table 74. Registers 110—115: Receive Low-Speed K1, K2 Byte Insert (R/W) .................................................. 88
Table 75. Registers 116—118: Receive Low-Speed Pass Control (R/W) ........................................................... 89
Table 76. Register 127: Page Control Register (R/W) ........................................................................................ 90
Table 77. Page 0 - Registers 128—191: J1 Insert Parameters (R/W) ................................................................ 90
Table 78. Page 0 - Registers 192—255: J1 Monitor Bytes (RO) ......................................................................... 90
Table 79. Page 1 - Registers 128—133: STS-1/AU-3 B1 BIP Error Counters (RO) ........................................... 90
Table 80. Page 1 - Registers 134—140: STS-1/AU-3 B2 BIP Error Counters (RO) ........................................... 91
Table 81. Page 1 - Registers 141—142: STS-3/STM-1 (AU-4) B1 Error Count (RO) ......................................... 91
Table 82. Page 1 - Registers 143—145: STS-3/STM-1 (AU-4) B2 Error Count (RO) ......................................... 91
Table 83. Page 1 - Registers 146—151: STS-3/STM-1 (AU-4) B3 Error Count (RO) ......................................... 92
Table 84. Page 1 - Registers 152—163: STS-3/STM-1 (AU-4) Pointer Increment/Decrement Counter (RO) .... 92
Table 85. Page 1 - Registers 164—166: Receive High-Speed SFEBE Count (RO) ........................................... 92
Table 86. Page 1 - Registers 167—172: Receive High-Speed Path FEBE Count (RO) ..................................... 93
Table 87. Page 2 - Register 131 (R/W) ............................................................................................................... 93
Table 88. Page 2 - Registers 128—141 (R/W) .................................................................................................... 94
Table 89. Page 2 - Register 145 (R/W) ............................................................................................................... 97
Table 90. Page 2 - Registers 142—155 (R/W) .................................................................................................... 97
Table 91. Microprocessor Interface I/O Timing Specifications .......................................................................... 101
Table 92. Recommended Operating Conditions ............................................................................................... 107
Table 93. Power Measurements (VDD = 3.3 V, 23 ×C) .................................................................................... 107
Table 94. Logic Interface Characteristics .......................................................................................................... 108
Table 95. LVDS Interface Characteristics ......................................................................................................... 109
Table 96. Input Clock Specifications ................................................................................................................. 110
Table 97. Input Timing Specifications ................................................................................................................ 111
Table 98. Output Clock Specifications ............................................................................................................... 113
Table 99. Output Timing Specifications ............................................................................................................. 114
6 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Description
Automatic receive monitoring functions can be config­ured to provide an interrupt to the control system, or the device can be operated in a polled mode.
Built-in loopback at both the STS-1/AU-3 and STS-3/ STM-1 (AU-4) interfaces provides maximum flexibility for use in a number of SONET/SDH products including path termination multiplexers, add/drop multiplexers, and digital cross connects.
A high-speed microprocessor interface and full user programmability on STS-1/AU-3 to STS-3/STM-1 (AU-
4) slot insertion and drop provide maximum flexibility for I/O configuration.
(continued)

Nomenclature Assumptions

Throughout this document, certain assumptions are made about nomenclature. The transmission path that outputs the STS-3/STM-1 (AU-4) signal is called the transmit direction, while the transmission path that receives the STS-3/STM-1 (AU-4) signal is referred to as the receive path. The low-speed (LS) side of the device transmits or receives the STS-1/AU-3 signals, while the high-speed (HS) side of the device transmits or receives the STS-3/STM-1 (AU-4) signal.
The LSB (least significant bit) of a byte is labeled 0 and the MSB (most significant bit) is labeled N – 1, where N is the total number of bits in the word. A signal that ends in [3—1][7:0] implies there are three separate sig­nals, each containing 8 bits.

Block Diagram

In the transmit direction, the device outputs a clock and sync and accepts bused data [7:0] and a parity signal from up to three devices. The device outputs one data bundle at the STS-3/STM-1 (AU-4) rate (clock, sync, data [7:0], and parity bit). A local clock and optional frame sync signal are needed for operation of the device. A transport overhead access channel (TOAC) is provided to allow overwriting of the transport over­head bytes in the output STS-3/STM-1 (AU-4) frame.
In the receive direction, the device accepts one STS-3/ STM-1 (AU-4) bundle (clock, data, parity). Optional clock and data recovery is available on the STS-3/ STM-1 (AU-4) receive input. The device also accepts a loss-of-signal indication from an external source. The device outputs three STS-1/AU-3 signals over a bus interface (clock, data, J0 time, parity). The STS-3/STM­1 (AU-4) input clock is used to clock this direction. A transport overhead access channel is provided for additional external monitoring of the incoming transport overhead of the STS-3/STM-1 (AU-4) frame. A pointer interpreter is provided to monitor path functions.
The device also has loopback capabilities at the STS­1/AU-3 and STS-3/STM-1 (AU-4) interfaces. In addi­tion, the device supports STS-1 termination. An 8-bit microprocessor interface, JTAG control logic, and in­circuit test capabilities are also provided.
A control bit that has only one function causes that function to be active when the control bit is set to a logic 1. For example, setting RLSCLKINV, 0x57 to a logic 1 causes the low-speed output clock to be inverted. A control bit with two names performs the first choice when set to a logic 0 and the second choice when set to a logic 1. For example, TSONET_SDH, 0x34 when set to a logic 0 puts the transmit direction in the SONET mode and when set to a logic 1 puts the transmit direction in SDH mode.
Where necessary to avoid confusion, numbers may be expressed using a format to specify their base. The fol­lowing are examples:
9\D = 9 decimal.
0x04 = 04 hexadecimal.
11\B = 11 bina ry.
Agere Systems Inc. 7
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Block Diagram
#1R, #2R, #3R
TLSCLKO
(19.44 MHz)
TLSSPEO,
TLSC1J1V1TIMEO,
TLSV1TIMEO
BUS
TLSDATA[7:0]I
TLSPARI
TRANSMIT DIRECTION
RECEIVE DIRECTION
RLSCLKO
(19.44 MHz)
RLSJ0TIMEO
RLSDATA[7:0]O
RLSPARO
CONTROL
#1T, #2T, #3T
BUS
CONTROL
(continued)
#1T
ADD
SELECT/
MULTI-
#2T
CAST
LOGIC
#3T
#1R
DROP
MULTI-
CAST
LOGIC
#2R
#3R
SELECT/
LOCAL CLOCK
GENERATION
S#1T
OVERHEAD
MONITOR
S#2T
OVERHEAD
MONITOR
S#3T
OVERHEAD
MONITOR
BER
MONITOR
1:3
DEMUX
LOGIC
TOAC DROP
RTOACCLKO (5.184 MHZ),
RTOACSYNCO (8 kH
RTOACDATAO (5.184 Mbits/s)
SPE OVERHEAD GENERATE
3:1
MUX
LOGIC
TOAC
INSERT
TTOACCLKO (5.184 MH
TTOACSYNCO (8 kHZ),
TTOACDATAI (5.184 Mbits/s)
TRANSPORT
AND PATH
MONITORS
POINTER
INTERPRETER
),
Z
MICROPROCESSOR
LOOPBACK
SELECT
LOGIC
INTERFACE
LOOPBACK
SELECT
LOGIC
),
Z
LOS
THSSCLKOT/C (155.52 MH THSSSYNCOT/C (8 kHZ), THSSDATAOT/C (155.52 Mbits/s) OR
THSCLKO (38.88 MHz OR 19.44 MHz), THSSYNCO (8 kH THSDATA[7:0]O (38.88 Mbits/s OR 19.44 Mbits/ s), THSPARO (38.88 Mbits/s OR 19.44 Mbits/s)
RHSSCLKIT/C (155.52 MH RHSSDATAIT/C (155.52 Mbits/s) OR RHSCLKI (38.88 MHz OR 19.44 MHz), RHSDATA[7:0]I (38.88 Mbits/s OR 19.44 Mbits/s), RHSPARI (38.88 Mbits/s OR 19.44 Mbits/s)
FRAMER
LOSS OF
CLOCK
RHSLOSEXTI
Z
),
),
Z
Z
)
CDR
5-5294(F).ar.8

Figure 1. TMUX03155 Block Diagram

8 Agere Systems Inc.
Data Sheet April 2001

Pin Information

VSS VSS AD5 AD6 AD7
NC CS
INT WR_DS RD_RW
ALE_AS
VDD
RDY_DTACK
MPMUX
MPMODE
MPMODE3AL E
VDD
NC NC
TCLK
VSS
TDI
TMS
TRST
TDO VDD
SCAN_EN
TEST_MODE
NC
ICT
VSS
REF5VTOL
NC NC NC
VDD
TTOACCLKO
TTOACSYNCO
TTOACDATAI
VDD
RTOACCLKO
RTOACSYNCO
RTOACDATAO
VDD
NC NC NC NC
RHSLOSEXTI
RHSCLKI
VSS
NC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
NC
VSS
AD4
AD3
AD2
AD1
AD0A7A6A5A4A3VDDA2A1A0RLSPARO
208
207
206
205
204
203
202
201
200
199
198
197
196
5354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
195
194
193
192
RESERVED
191
RLSDATA0O
190
RLSDATA1O
189
RLSDATA2O
188
VSS
187
RLSDATA3O
186
RLSDATA4O
185
RLSDATA5O
184
RLSDATA6O
183
VSS
182
RLSDATA7O
181
VDD
180
RLSCLKONCVSS
179
178
177
RLSJ0TIMEONCTLSSPEO
176
175
174
TLSV1TIME0
173
TLSCLKO
172
TLSJ0J1V 1TIMEO
171
TLSDATA7I
170
TLSDATA6I
169
VDD
168
TLSDATA5I
167
TLSDATA4I
166
TLSDATA3I
165
TLSDATA2I
164
TLSDATA1I
163
TLSDATA0I
TLSPARINCNC
162
161
100
160
101
159
102
VSS
158
103
VSS
157
104
156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112
111 110 109 108 107 106 105
NC VSS MODE0 MODE1 VDD REF5VTOL THSJ0J1V 1I VSS THSCLKI VDD LVDS_REFSEL CTAP_THSSCLKI VDD THSSCLKIT THSSCLKIC CTAP_THSSJ0J1V1I THSSJ0J1V1IT THSSJ0J1V1IC VDD THSSCLKOT THSSCLKOC VSS THSSSYNCOT THSSSYNCOC THSSDATAOT THSSDATAOC VDD LVD S_R EF 10 LVD S_R EF 14 LVDS_RESHI LVD S_R ES LO VSS RHSSCLKIT RHSSCLKIC CTAP_RHSSCLKI VDD VSS RHSSDATAIT RHSSDATAIC CTAP_RHSSDATAI VDD VSS CDR_TSTMUXO RCDR10K2GND NC RSTN_TST THSCLKO THSSYNCO NC NC RESET VSS
NC
RHSDATA1I
RHSDATA0I
NCNCNCNCNCNCNC
VDD
VSS
VSS
RHSPARI
RHSDATA7I
RHSDATA6I
RHSDATA5I
RHSDATA4I
RHSDATA3I
RHSDATA2I
VDD
NCNCNC
VSS
NC
VSS
NCNCNC
VDD
NCNCNCNCNCNCNC
VSS
VDD
NC
VDD
THSDATA0O
THSDATA1O
THSDATA2O
THSDATA3O
THSDATA4O
VSS
THSPARO
THSDATA5O
THSDATA6O
THSDATA7O
5-4873(F)

Figure 2. Pinout of 208 SQFP Device

The pin descriptions for the 208 SQFP package follow in Table 1 on page 10.
Agere Systems Inc. 9
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Pin Information
(continued)

Table 1. Pin Descriptions for the 208-Pin SQFP Package

Pin* Symbol Type
Name/Description
Transmit Direction Signals
diff
143, 142 THSSCLKIT/C I
LVDS
Transmit High-Speed Serial Clock Input. The transmit clock can either be 155.52 MHz (serial), 38.88 MHz (nibble), or 19.44 MHz (byte).
145 CTAP_THSSCLKI I Center Tap for Transmit High-Speed Serial Clock Input. The cen-
ter tap input provides for center-tapped common-mode termination. This input should be terminated through an external capacitor to ground (approximately 0.1 µF).
140, 139 THSSJ0J1V1IT/C I
diff
LVDS
Transmit High-Speed Serial Sync Input. The transmit sync signal is active during J0 time (8 kHz), J11 time, and V11 time (2 kHz). This signal is active-high and is optional. (See Figure 16 on page 112 for details.)
141 CTAP_THSSJ0J1V1I I Center Tap for Transmit High-Speed Serial Sync Input. The cen-
ter tap input provides for center-tapped common-mode termination. This input should be terminated through an external capacitor to ground (approximately 0.1 µF).
148 THSCLKI I
d
Transmit High-Speed Clock Input. The transmit clock can either be
38.88 MHz (nibble) or 19.44 MHz (byte).
150 THSJ0J1V1I I
d
Transmit High-Speed Sync Input. The transmit sync signal is active during J0 time (8 kHz), J11 time, and V11 time (2 kHz). This signal is active-high and is optional.
172 TLSCLKO O Transmit Low-Speed Output Clock. The STS-1/AU-3 clock will be
19.44 MHz.
174 TLSSPEO O Transmit Low-Speed Synchronous Payload Envelope (SPE). The
STS-1/AU-3 SPE signal is low when the transport overhead is on the input bus (TLSDATA[7:0]I). (See Figure 18 on page 116 for details.)
171 TLSJ0J1V1TIMEO O Transmit Low-Speed J0, J1, and V1 Time Signal. J0 time is
defined when TLSSPEO is a logic 0, TLSJ0J1V1TIMEO is a logic 1, TLSV1TIMEO is a logic 0, and the J0 byte is on the input bus. J1 time is defined when TLSSPEO is a logic 1, TLSJ0J1V1TIMEO is a logic 1, TLSV1TIMEO is a logic 0, and J11 is on the input bus. (See Figure 18 on page 116 for details.)
173 TLSV1TIMEO O Transmit Low-Speed V1 Time. This signal is active-high when the
current frame contains the V1 byte. V1 time is defined when TLSSPEO is a logic 1, TLSJ0J1V1TIMEO is a logic 1, and TLSV1TIMEO is a logic 1. (See Figure 18 on page 116 for details.)
170, 169,
167—162
TLSDATA[7:0]I I
d
Transmit Low-Speed Data. TLSDATA7I is the most significant bit of the input byte. (See Figure 18 on page 116 for details.)
* Pin order follows symbol order, e.g., pin 170 refers to TLSDATA7I. † I = input, O = output, I/O = bidirectional signal, I
diff
= differential input or output. All I/O not explicitly stated with a buffer type are 5 V compatible. They will tolerate 5 V at their inputs or out-
O puts. LVDS = low-voltage differential signal.
d
= input with internal pull-down (~20 kW), Iu = input with internal pull-up (~100 kW), I
diff
or
1010 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Pin Information
(continued)
Table 1. Pin Descriptions for the 208-Pin SQFP Package (continued)
Pin* Symbol Type
Name/Description
Transmit Direction Signals (continued)
u
161 TLSPARI I
Transmit Low-Speed Parity Bit. The STS-1/AU-3 parity input is only defined for byte-wide data. The device can be provisioned to receive either odd or even parity.
137, 136 THSSCLKOT/C O
diff
LVDS
Transmit High-Speed Serial Clock. The STS-3/STM-1 (AU-4) clock will be 155.52 MHz for serial output data; otherwise, this output is placed in a high-impedance state.
134, 133 THSSSYNCOT/C O
132,131 THSSDATAOT/C O
diff
LVDS
diff
LVDS
Transmit High-Speed Serial Sync. The STS-3/STM-1 (AU-4) 8 kHz frame sync is coincident with the first or last bit of the frame.
Transmit High-Speed Serial Data. If the device is operating in the serial mode, then this output is used as the differential data pin. In nibble or parallel output mode, this output is placed in a high­impedance state.
110 THSC L K O O Transmit High-Speed Clock. The STS-3/STM-1 (AU-4) clock is
38.88 MHz for nibble data, or 19.44 MHz for byte-wide data.
109 THSSYNCO O Transmit High-Speed Sync. The STS-3/STM-1 (AU-4) 8 kHz frame
sync is coincident with the first or last nibble/byte of the frame.
101—94 THSDATA[7:0]O O Transmit High-Speed Data. Bit 7 is the most significant bit in nibble
or byte mode.
102 THSPARO O Transmit High-Speed Parity. The parity output is only defined for
nibble or byte-wide data. The device can be provisioned to source either an odd or even parity bit.
STS-3/STM-1 (AU-4) Transport Overhead Access Channel (TOAC) Insert
37 TTOACCLKO O Transmit TOAC Clock. (5.184 MHz.)
38 TTOACSYNCO O Transmit TOAC Sync. (8 kHz.)
39 TTOACDATAI I
* Pin order follows symbol order, e.g., pin 170 refers to TLSDATA7I. † I = input, O = output, I/O = bidirectional signal, I
diff
= differential input or output. All I/O not explicitly stated with a buffer type are 5 V compatible. They will tolerate 5 V at their inputs or out-
O puts. LVDS = low-voltage differential signal.
d
Transmit TOAC Data. (5.184 Mbits/s.)
d
= input with internal pull-down (~20 kW), Iu = input with internal pull-up (~100 kW), I
diff
or
Agere Systems Inc. 11
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Pin Information
(continued)
Table 1. Pin Descriptions for the 208-Pin SQFP Package (continued)
Pin* Symbol Type
Name/Description
Receive Direction Signals
diff
124, 123 RHSSCLKIT/C I
LVDS
Receive High-Speed Serial Clock Input. The STS-3/STM-1 (AU-4) serial clock is 155.52 MHz.
122 CTAP_RHSSCLKI I Center Tap for Receive High-Speed Serial Clock Input. The cen-
ter tap input provides for center-tapped common-mode termination. This input should be terminated through an external capacitor to ground (approximately 0.1 µF).
119, 118 RHSSDATAIT/C I
diff
LVDS
Receive High-Speed Serial Data Input. The STS-3/STM-1 (AU-4) serial data is 155.52 Mbits/s.
117 CTAP_RHSSDATAI I Center Tap for Receive High-Speed Serial Data Input. The center
tap input provides for center-tapped common-mode termination. This input should be terminated through an external capacitor to ground (approximately 0.1 µF).
113 RCDR10K2GND I Receive CDR Bias Resistor Input. Must be tied to ground, through
an external 10 k ±1% resistor.
50 RHSCLKI I
d
Receive High-Speed Clock Input. The STS-3/STM-1 (AU-4) clock is 38.88 MHz (nibble), or 19.44 MHz for byte-wide data.
d
56—63 RHSDATA[7:0]I I
Receive High-Speed Data Inputs. Data bit 7 is the most significant bit in nibble or byte mode.
55 RHSPARI I
u
Receive High-Speed Input Parity. The parity input is only defined for nibble- or byte-wide data. The device can be provisioned to accept either odd or even parity.
49 RHSLOSEXTI I
d
Receive High-Speed Loss of Signal. This is an active-high signal.
179 RLSCLKO O Receive STS-1/AU-3 Output Clock. The STS-1/AU-3 clock will be
19.44 MHz for byte-wide data (bus mode).
176 RLSJ0TIMEO O Receive STS1/AU-3 Output J0 Time. This signal will be active
(logic 1) each time the J0 byte is output.
181,
183—186,
RLSDATA[7:0]O O Receive STS-1/AU-3 Output Data. RLSDATA7O is the most signifi-
cant bit of the output byte.
188—190
192 RLSPARO O Receive STS-1/AU-3 Output Parity. The device can be provisioned
to source either an odd or even parity bit per byte transfer.
STS-3/STM-1 (AU-4) Transport Overhead Access Channel (TOAC) Drop
41 RTOACCLKO O Receive TOAC Clock. (5.184 MHz.)
42 RTOACSYNCO O Receive TOAC Sync. (8 kHz.)
43 RTOACDATAO O Receive TOAC Data. (5.184 Mbits/s.)
* Pin order follows symbol order, e.g., pin 170 refers to TLSDATA7I. † I = input, O = output, I/O = bidirectional signal, I
diff
O
= differential input or output. All I/O not explicitly stated with a buffer type are 5 V compatible. They will tolerate 5 V at their inputs or out-
puts. LVDS = low-voltage differential signal.
d
= input with internal pull-down (~20 kW), Iu = input with internal pull-up (~100 kW), I
diff
or
1212 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Pin Information
(continued)
Table 1. Pin Descriptions for the 208-Pin SQFP Package (continued)
Pin* Symbol Type
Name/Description
Mode/In-Circuit Test and Reset Control Inputs
u
30
ICT
In-Circuit Test Control (Active-Low). If
I
is forced low, certain
ICT
output pins are placed in the high-impedance state.
u
106
RESET
Hardware Reset (Active-Low). If
I
RESET
is forced low, all internal states in the transceiver paths are reset and data flow through each channel will be interrupted.
111
RSTN_TST
u
Test Reset (Active-Low). This pin is for test purposes only; it should
I
be left unconnected.
u
d
153, 154 MODE [1:0] I
Mode Control. Normal STS-3/STM-1 mode set MODE [1:0] = 10.
, I
STS-1 mode set MODE [1:0] = 00
Microprocessor Interface
14 MPMUX I Microprocessor Multiplex Mode. Setting MPMUX = 1 allows the
microprocessor interface to accept the multiplexed address and data signals. Setting MPMUX = 0 allows the microprocessor interface to accept demultiplexed (separate) address and data signals.
15 MPMODE I Microprocessor Mode. When MPMODE = 1, the device uses the
address latch enable type microprocessor read/write protocol with separate read and write controls. Setting MPMODE = 0 allows the device to use the address strobe type microprocessor read/write pro­tocol with a separate data strobe and a combined read/write control.
16 MPMODE3ALE I
u
Microprocessor MODE3 ALE Enable. When the device is in MODE3 (MPMODE = 1 and MPMUX = 0), the ALE signal can be used to retime the address or the address bus can be used directly without being retimed. This is an active-high signal.
9
WR_DS
I Write (Active-Low). If MPMODE = 1, this pin is asserted low by the
microprocessor to initiate a write cycle. Data Strobe (Active-Low). If MPMODE = 0, this pin becomes the data strobe for the microprocessor. When R/
= 0 (write), a low
W
applied to this pin latches the signal on the data bus into internal reg­isters.
11
ALE_AS
I Address Latch Enable. If MPMODE = 1, this pin becomes the
address latch enable for the microprocessor. When this pin transi­tions from high to low, the address bus inputs are latched into the internal registers. Address Strobe (Active-Low). If MPMODE = 0, this pin becomes the address strobe for the microprocessor. When this pin transitions from high to low, the address bus inputs are latched into the internal registers.
10
RD_R/W
I Read (Active-Low). If MPMODE = 1, this pin is asserted low by the
microprocessor to initiate a read cycle. Read/Write. If MPMODE = 0, this pin is asserted high by the micro­processor to indicate a read cycle or asserted low to indicate a write cycle.
* Pin order follows symbol order, e.g., pin 170 refers to TLSDATA7I. † I = input, O = output, I/O = bidirectional signal, I
diff
O
= differential input or output. All I/O not explicitly stated with a buffer type are 5 V compatible. They will tolerate 5 V at their inputs or out-
puts. LVDS = low-voltage differential signal.
d
= input with internal pull-down (~20 kW), Iu = input with internal pull-up (~100 kW), I
diff
or
Agere Systems Inc. 13
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Pin Information
(continued)
Table 1. Pin Descriptions for the 208-Pin SQFP Package (continued)
Pin* Symbol Type
Name/Description
Microprocessor Interface (continued)
7
CS
u
Chip Select (Active-Low). This pin is asserted low by the micropro-
I
cessor to enable the microprocessor interface. If MPMUX = 1, an internal 100 k pull-up is on this pin.
8INTOInterrupt. This pin is asserted high to indicate an interrupt produced
by an alarm condition. The activation of this pin can be masked by the microprocessor by setting the appropriate mask bits.
13
RDY_DTACK
O Ready. If MPMODE = 1, this pin is asserted high to indicate the
device has completed a read or write operation. This pin is in a high­impedance state when CS is high. Data Transfer Acknowledge (Active-Low). If MPMODE = 0, this pin is asserted low to indicate the device has completed a read or write operation.
5—3,
206—202
AD[7:0] I/O Microprocessor Interface Address/Data Bus. If MPMUX = 0,
these pins become the bidirectional, 3-state data bus. If MPMUX = 1, these pins become the multiplexed address/data bus.
201—197,
195—193
A[7:0] I
d
Microprocessor Interface Address. If MPMUX = 0, these pins become the address bus for the microprocessor interface registers.
JTAG Signals
u
20 TCLK I
22 TDI I
23 TMS I
24
TRST
JTAG Clock.
u
JTAG Input Data.
u
JTAG Mode Select.
u
JTAG Reset (Active-Low).
I
25 TDO O JTAG Output Data.
SCAN Specific Inputs
u
Scan Enable. Place device in scan mode (active-low).
27
SCAN_EN
28 TEST_MODE I
I
d
Test Mode. Disable all clocks and async resets (active-high).
114 CDR_TSTMUX0 O CDR Test Output. Test purpose only.
LVDS Control Signals
LVDS Reference Select. If LVDS_REFSEL = 0, then use external
146 LVDS_REFSEL I
u
1.0 and 1.4 reference voltages. If LVDS_REFSEL = 1, then use inter­nal references.
129 LVDS_REF10 I 1.0 V Reference for LVDS Buffers. This signal is optional.
128 LVDS_REF14 I 1.4 V Reference for LVDS Buffers. This signal is optional. 127 LVDS_RESHI I LVDS Resistor Pins. A 100 ±1% resistor must be placed between
126 LVDS_RESLO I
* Pin order follows symbol order, e.g., pin 170 refers to TLSDATA7I. † I = input, O = output, I/O = bidirectional signal, I
diff
= differential input or output. All I/O not explicitly stated with a buffer type are 5 V compatible. They will tolerate 5 V at their inputs or out-
O puts. LVDS = low-voltage differential signal.
these two pins when using the LVDS buffers.
d
= input with internal pull-down (~20 kW), Iu = input with internal pull-up (~100 kW), I
diff
or
1414 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Pin Information
(continued)
Table 1. Pin Descriptions for the 208-Pin SQFP Package (continued)
Pin* Symbol Type
Name/Description
Power and Ground Pins
1—2, 21
SS
I Ground Reference.
V
31, 51,
53—54,
74, 79, 84,
103, 105, 115, 120, 125, 135, 149, 155,
157—158,
177, 182,
187, 207
V
12, 17, 26,
DD
I Power Supply for Digital Circuitry. 36, 40, 44, 65, 73, 80,
85, 93, 116, 121, 130, 138, 144, 147, 152, 168,
180, 196
151, 32 REF5VTOL I 5 V Tolerant Reference Voltage.
* Pin order follows symbol order, e.g., pin 170 refers to TLSDATA7I. † I = input, O = output, I/O = bidirectional signal, I
diff
= differential input or output. All I/O not explicitly stated with a buffer type are 5 V compatible. They will tolerate 5 V at their inputs or out-
O puts. LVDS = low-voltage differential signal.
d
= input with internal pull-down (~20 kW), Iu = input with internal pull-up (~100 kW), I
diff
or

Summary of I/O Pins

Table 2. Input/Output Summary

Type Number of Pins
Input Differential 8
Single Ended 57
Output Differential 6
Single Ended 35
Bidirectional 8
Total Signal 114
No Connect (Reserved) 45
REF5VTOL 2
LVDS_REF1 0 1
LVDS_REF1 4 1
V
DD
SS
(GND) 24
V
Total Package 208 SQFP
Agere Systems Inc. 15
21
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Mode Control Signals
(See Register Description on page 54.)
The device is controlled by four control signals: T/RSONET_SDH and T/RSTS3_AU4, 0x34. These signals control the following:
The type of input signal to expect (low-speed (LS) side—STS-1/AU-3).
The expected high-speed (HS) input/output signal format—STS-3/STM-1 (AU-4), or STS-1.
The default byte value in the outgoing HS frame.
These provisioning signals are summarized in Table 3 and Table 4.

Table 3. Transmit Mode Control Signals

TSTS3_AU4 TSONET_SDH Description
0 = STS-3
0 = SONET
1
Three STS-1 inputs multiplexed to an STS-3 output. Also used for STS-1 mode. See STS-1 Mode section for details.
1 = AU-4
0 = SONET
0 = STS-3 1 = SDH
1 = AU-4 1 = SDH
1. SONET = OOF 0 1, 4 times detect; default output byte = 0x00.
2. SDH = OOF 0 1, 5 times detect; default output byte = 0xFF.
*
Three AU-3 signals multiplexed to an STM-1 (AU-4) signal.
2
Three STS-1 inputs multiplexed to an STS-3 output.
Three AU-3 signals multiplexed to an STM-1 (AU-4) signal.

Table 4. Receive Mode Control

RSTS3_AU4 RSONET_SDH Description
1
0 = STS-3
0 = SONET
One STS-3 input demultiplexed to three STS-1 outputs. Also used for STS-1 mode. See STS-1 Mode section for details.
1 = AU-4
0 = SONET
0 = STS-3 1 = SDH
1 = AU-4 1 = SDH
1. SONET = OOF 0 1, 4 times detect; default output byte = 0x00; ignore SS bits.
2. SDH = OOF 0 1, 5 times detect; default output byte = 0xFF; verify SS bits = 10.
*
One STM-1 (AU-4) input demultiplexed to three AU-3 outputs.
2
One STS-3 input demultiplexed to three STS-1 outputs.
One STM-1 (AU-4) input demultiplexed to three AU-3 outputs.

STS-1 Mode

In STS-1 mode, all other device functions remain the same as in STS-3/STM-1 mode; except, the device runs at one-third the STS-3/STM-1 rate and operates on a single STS-1 frame. The high-speed side operates in the follow­ing three modes: 1) as a 51.84 Mbits/s serial interface, 2) as a parallel 12.96 MHz nibble wide, 3) or as a 6.48 MHz byte-wide interface. The low-speed STS-1/AU-3 side operates at 6.48 Mbytes/s and communicates with a single STS-1/AU-3 device (TMPR28051). Since the TOAC interface provides access to the transport overhead in a single STS-1 frame, its clock and data operate at 1.782 MHz, while the sync runs at 8 kHz. For STS-1 mode, set both mode pins 153 and 154 to a logic 0, and set all mode control bits TSTS3_AU4, TSONET_SDH, RSTS3_AU4, RSONET_SDH, 0x34, to a logic 0.
1616 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer

Transmit Direction Overview

The following major functions are performed in the transmit direction: STS-1/AU-3 bus mode retiming, input select control, STS-1/AU-3 inputs, out-of-frame (OOF) and loss-of frame (LOF) monitoring, descramble enable/disable, monitor B1 and B2 errors, H4 multiframe and pointer monitor (AU-4 mode only), STS-3 generate, STM-1 (AU-4) frame generation (AU-4 mode), transport overhead access channel (TOAC) insert, STS-3/STM-1 (AU-4) scramble enable, STS-3/STM-1 (AU-4) loopback control, and STS-3/STM-1 (AU-4) output interface.

STS-1/AU-3 Bus Mode Input Retiming

The bus mode provides a single byte-wide bus and parity bit that is shared with up to three devices at
19.44 Mbits/s. The device will source a clock (19.44 MHz), synchronous payload envelope (SPE) indicator, J0J1V1 indicator, and V1 time indicator signals toward the downstream devices. These signals guarantee frame alignment between all three STS-1/AU-3 inputs and H4 byte multiframe values (AU-4 mode). The V1 time signal can be dis­abled under software control (TLSV1DISABLE, 0x35).
The clock can be inverted leaving the device (TLSCLKINV, 0x35). An odd/even parity bit (TLSVOEPAR, 0x35) is verified per byte transfer (TLSPARE[3—1], TLSPARM[3—1], 0x07, 0x10).

Input Select Control

This function determines which signals are multiplexed to form the STS-3 signal. These control bits (TSEL[3— 1][2:0], 0x3A, 0x38, 0x36) allow loopback (STS-1/AU-3-R to STS-1/AU-3-T), input shuffle, and multicast opera-
tions to be possible. The selected STS-1/AU-3 inputs are labeled S#1T, S#2T, and S#3T in Figure 1.

Table 5. Input Select Control

TSEL
[3—1][2:0]
000 (0) STS-1/AU-3 #1 Transmit
001 (1) STS-1/AU-3 #2 Transmit
010 (2) STS-1/AU-3 #3 Transmit
011 (3) STS-1/AU-3 #1 Receive (Loopback)
STS3 Mode Only
100 (4) STS-1/AU-3 #2 Receive (Loopback)
STS3 Mode Only
101 (5) STS-1/AU-3 #3 Receive (Loopback)
STS3 Mode Only
110 (6) STS-1/AU-3 #1 Transmit
111 (7) STS-1/AU-3 #1 Transmit
Output

STS-1/AU-3 Inputs

The SONET/SDH STS-1/AU-3 frame is comprised of 9 rows x 90 columns that repeat at an 8 kHz rate. Each col­umn is 1-byte wide. The frame contains three columns of transport overhead, one column of path overhead, and 86 columns of payload. For column byte definitions, see Table 6 on page 18.
Agere Systems Inc. 17
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Transmit Direction Overview
STS-1/AU-3 Inputs
(continued)
(continued)
The 27 bytes of transport overhead from each STS-1/AU-3 input must be aligned* (A1-1, A1-2, A1-3 must all be coincident from all three STS-1/AU-3 inputs) and are allocated as shown in Table 6
.

Table 6. Expected STS-1/AU-3 Input Frame Format

Transport Overhead Payload
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5—90
Row 1 A1
Row 2 B1
†‡
†‡
†‡
A2
J0 J1 X
E1 F1 B3 X
Row 3D1D2D3C2 X
Row 4 H1
Row 5 B2
†‡
Row 6 D4 D5 D6 H4
H2
H3 G1 X
K1 K2 F2 X
X
Row 7 D7 D8 D9 Z3 X
Row 8 D10 D11 D12 Z4 X
Row 9 S1 M0 E2 Z5 X
† Monitored in STS-1 mode. ‡ Monitored in AU-4 mode.
Note: X = don’t care (payload).
The path overhead (POH) can start anywhere within the SPE and cannot be accessed in the STS-3 mode.
In the AU-4 mode, the pointer is fixed at 522\D; therefore, the J1 byte will always be in row 1, column 4. The H4 byte is the only valid byte in the POH and all other bytes are ignored.

Out-of-Frame (OOF) and Loss-of-Frame (LOF) Monitoring

The device monitors for out-of-frame (OOF) and loss-of-frame (LOF) states on each selected STS-1/AU-3 input (TLSOOF[3—1], TLSOOFD[3—1], TLSOOFM[3—1], TLSLOF[3—1], TLSLOFD[3—1, TLSLOFM[3—1], 0x08, 0x11, 0x19). Each input will be considered out-of-frame until two successive framing patterns (0xF628) separated in time by 125 µs occur without framing byte errors. Each selected STS-1/AU-3 input will be considered in frame until five (SDH)/four (SONET) successive frames separated in time by 125 µs occur with errored framing patterns. The device will be considered in the LOF state when an OOF condition persists for 24 consecutive frames (3 ms) or clear when the OOF condition is inactive for 24 consecutive frames (3 ms) with the correct framing patterns spaced 125 µs apart.

Descramble Enable/Disable

Each selected STS-1/AU-3 input can be descrambled (TLSDSCR[3—1], 0x3A, 0x38, 0x36) according to the frame synchronous descrambling sequence 1 + x byte following the C1 byte and descrambles all of the STS-1/AU-3 data except the A1, A2, and J0 bytes. Writing a logic 1 to the appropriate bit causes the selected STS-1/AU-3 signal to be descrambled.
6
+ x7. The seque n c e is reset to 1111111 a t the beg i n n i n g of the
* Can be provided by the Agere TMPR28051 mapper device.
1818 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Transmit Direction Overview
(continued)

Monitor B1 and B2 Errors

The device verifies B1 and B2 bit interleaved parity (BIP) values on each selected STS-1/AU-3 input. The device will count BIP errors or block errors under software control (BITBLOCKCNT, TLSB1ECNT[3—1][15:0],
TLSB2ECNT[3—2][15:0], TLSB2ECNT1[17:0], 0x34, Page 1 - 0x80—0x85, Page 1 - 0x86—0x88, Page 1 - 0x89—0x8C). These counters will update on LATCH_CNT, 0x04 and are large enough to store at least
1 second’s worth of data.

H4 Multiframe and Pointer Monitor (AU-4 Mode Only)

In this mode, all three input signals are required to have pointer values (H1, H2) with the same fixed value of 522\D. This ensures the J1 byte starts in row 1, column 4. The H4[1:0] multiframe bits must be the same from all inputs and equal to the internally expected value. This is required because the output STM-1 (AU-4) signal only has one H4 byte. The device will synchronize its H4 internal expected value to a 1 after detecting an embedded 2 kHz sync in the local frame sync signal (THS(S)J0J1V1I(T/C)).
The device will declare a pointer match after two consecutive pointer values of 522\D are detected 125 µs apart. A pointer mismatch will be declared after five successive frames separated in time by 125 µs occur with errored pointer values (TLSPTRMIS[3—1], TLSPTRMISD[3—1], TLSPTRMISM[3—1], 0x1A, 0x09, 0x12).
The device will declare an H4 multiframe match after two consecutive H4 values match the expected value spaced 125 µs apart. An H4 multiframe mismatch will be declared after five successive frames separated in time by 125 µs occur with H4 values not equal to the expected value (TLSH4MIS[3—1], TLSH4MISD[3—1], TLSH4MISM[3—1], 0x1A, 0x09, 0x12).
Agere Systems Inc. 19
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Transmit Direction Overview
(continued)

STS-3 Generate

The device will create the overhead according to Table 7. The POH byte locations are not fixed and cannot be accessed.

Table 7. STS-3 Output Overhead Format

STS-3 Overhead
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col.
10—270
Row 1 A1-1 A1-2 A1-3 A2-1 A2-2 A2-3 J0 Z0-2 Z0-3 Payload
Row 2 B1 B1-2* B1-3*E1*E1-2* E1-3*F1*F1-2* F1-3*
Row 3 D1* D1-2* D1-3*D2*D2-2* D2-3*D3*D3-2* D3-3*
Row 4 H1-1 H1-2 H1-3 H2-1 H2-2 H2-3 H3-1 H3-2 H3-3
Row 5 B2-1 B2-2 B2-3 K1 K1-2* K1-3*K2K2-2* K2-3*
Row 6 D4* D4-2* D4-3*D5*D5-2* D5-3*D6*D6-2* D6-3*
Row 7 D7* D7-2* D7-3*D8*D8-2* D8-3*D9*D9-2* D9-3*
Row 8 D10* D10-2* D10-3*D11*D11-2* D11-3*D12*D12-2* D12-3*
Row 9 S1* Z1-2* Z1-3* Z2-1* Z2-2*M1 E2*E2-2* E2-3*
* Access through transmit TOAC (see Table 17 on page 37).
Note: Bold type within the table is not defined in the standard and is labeled here for clarity.
The following values are assigned to the transmitted overhead bytes:
A1—11110110 ( 0 x F 6 ) A2—00101000 (0x28) J0—TJ0DINS[7:0], 0x3F Z0-2—TZ02DINS[7:0], 0x40 Z0-3—TZ03DINS[7:0], 0x41 B1—Variable value (BIP-8 parity) F1—Variable value TF1DINS[7:0], 0x42 H1-1, 2, 3—Passed through from respective STS-1 H2-1, 2, 3—Passed through from respective STS-1 H3-1, 2, 3—Passed through from respective STS-1 B2-1, 2, 3—Variable value (BIP-24) K1—Variable value TAPSINS[12:5], 0x43, 0x44 K2—Variable value TAPSINS[4:0], TK2INS[2:0], 0x43, 0x44—RDI-L, AIS-L S1—Variable value TS1DINS[7:0], 0x45 M1—Variable value (Section FEBE—Number of B2 Errors) TSFEBEINH, 0x3E
All bytes not specified above, either:
(1) Are set to the fixed stuff value (0x00 (SONET)). (2) Are TOAC value-inserted. (3) Have passed through from the selected STS-1 input, all under software control.
The variable values are described beginning on page 30 in the Maintenance Functions section of this document.
2020 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Transmit Direction Overview
(continued)

STM-1 (AU-4) Frame Generation (AU-4 Mode)

The device will create the overhead according to the following table. The path overhead bytes are created in this mode. The three AU-3 inputs are converted to TUG-3 format and inserted into a VC-4 that is multiplexed into an AU-4.

Table 8. STM-1 (AU-4) Output Overhead Format

STM-1 (AU-4) Overhead AU-4 Payload
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9
Row 1 A1-1 A1-2 A1-3 A2-1 A2-2 A2-3 J0 Z0-2 Z0-3 J1
Row 2 B1 B1-2* B1-3*E1*E1-2* E1-3*F1*F1-2* F1-3*B3
Row 3 D1* D1-2* D1-3*D2*D2-2* D2-3*D3*D3-2* D3-3*C2
Row 4 H1-1 Y Y H2-1 1* 1* H3-1 H3-2 H3-3 G1
Row 5 B2-1 B2-2 B2-3 K1 K1-2* K1-3*K2K2-2* K2-3*F2
Row 6 D4* D4-2* D4-3*D5*D5-2* D5-3*D6*D6-2* D6-3*H4
Row 7 D7* D7-2* D7-3*D8*D8-2* D8-3*D9*D9-2* D9-3*Z3
Row 8 D10* D10-2* D10-3*D11*D11-2* D11-3*D12*D12-2* D12-3*Z4
Row 9 S1* Z1-2* Z1-3* Z2-1* Z2-2* M1 E2* E2-2* E2-3*Z5
* Access through transmit TOAC (see Table 17 on page 37).
POH
111213141516171819202122—
10
F
F
N
N
N
F
F
I
I
P
P
X
X
E
E
D
D
S
S
T
T
U
U
F
F
F
F
P
I
I
I
S
S
S
T
T
T
U
U
U
F
F
F
F
F
F
F
I
I
I X E D
S T U F F
T
X
X
U
E
E
G
D
D
3
S
S
T
T
A
U
U
F
F
F
F
270
T
T
U
U
G
G
-
­3
B
-
3
C
Note: Bold type within the table is not defined in the standard and is labeled here for clarity.
The following values are assigned to the transmitted overhead bytes:
A1—11110110 ( 0 x F 6 ) A2—00101000 (0x28) J0—Variable value TJ0DINS[7:0], 0x3F Z0-2—Variable value TZ02DINS[7:0], 0x40 Z0-3—Variable value TZ03DINS[7:0], 0x41 B1—Variable value (BIP-8 Parity) F1—Variable value TF1DINS[7:0], 0x42 H1-1—01101010 H2-1—00001010 (pointer value of 522\D) Y—10011011 (NDF, SS, PTR)—Concatenation indication
—All ones pattern
1 H3-1, 2, 3—Default byte value (0xFF) B2-1, 2, 3—Variable value BIP-24 K1—Variable value TAPSINS[12:5], 0x43, 0x44 K2—Variable value TAPSINS[4:0], TK2INS[2:0], 0x43, 0x44—RDI-L, AIS-L S1—Variable value TS1DINS[7:0], 0x45 M1—Variable value (section FEBE—number of B2 errors) TSFEBEINH, 0x3E
† Access through transmit TOAC.
Agere Systems Inc. 21
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Transmit Direction Overview
STM-1 (AU-4) Frame Generation (AU-4 Mode)
Path Bytes
J1—64-byte programmable sequence TJ1INS, 0x3E, TJ1DINS[64—1][7:0], 0x3E, 0x80—0xBF B3—Variable value BIP-8 C2—TC2DINS[7:0], 0x46 G1[7:4]—REICNT (B3 errors from receive side) TPFEBEEINS, 0x4D G1[3]—RDI indication TPRDIINS, 0x4B G1[2:0]—Default value F2—Variable value TF2DINS[7:0], 0x47 H4[1:0]—Position indicator (multiframe value (00\B to 11\B)) Z3—Variable value TZ3DINS[7:0], 0x48 Z4—Default value Z5—Variable value TZ5DINS[7:0], 0x49 Fixed stuff = depends on TSONET_SDH, 0x34 value (SONET = 0x00, SDH = 0xFF) NPI (null pointer indicator—byte 1, byte 2, and byte 3) = (10011011, 11100000, 11111111) . N P I is genera t e d f or
compatibility with older devices.
All bytes not specified above, either:
(1) Are set to the fixed stuff value 0xFF (SDH). (2) Are TOAC value inserted. (3) Have passed through from the selected AU-3 input, all under user control.
(continued)
(continued)
2222 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Transmit Direction Overview
(continued)

Transport Overhead Access Channel (TOAC) Insert

The device will allow the insertion of overhead data from the transmit TOAC under user control. (See TTOAC in the Maintenance Functions section, page 36, for more details.)

STS-3/STM-1 (AU-4) Scramble Enable

Scrambling of the STS-3/ STM-1 (AU-4) signal is provisionable (THSSCR, 0x3D). A frame synchronous scram- bling sequence 1 + x 3 byte and scrambles all of the STS-3/STM-1 (AU-4) data except all the A1, A2 and J0, Z0 bytes. Writing a logic 1 to this bit causes the signal to be scrambled.
6
+ x7 is used. Th e s e q u ence is re s e t t o 1111111 at t h e beginning of the byte following the Z0-

STS-3/STM-1 (AU-4) B1, B2, and B3 BIP Generation

The device will generate a B1-BIP-8, B2-BIP-24, and a B3-BIP-8 (AU-4 mode only) on the output signal. Each BIP calculator can be programmed to insert an inverted BIP value (THSB1ERRINS, THSB2ERRINS[3—1],
THSB3ERRINS, 0x4C).

STS-3/STM-1 (AU-4) Loopback Control

The output STS-3/STM-1 (AU-4) signal can be replaced by the receive STS-3/STM-1 (AU-4) signal under software control (RHS2THSLB, 0x3D). The output format (bit, nibble, or byte) will be the same as the receive input format not the transmit output port format.
Note: The transmit port type must be programmed to be the same as the receive input type.

STS-3/STM-1 (AU-4) Output Interface

The transmit STS-3/STM-1 (AU-4) output can either be serial at 155.52 Mbits/s, nibble at 38.88 Mbits/s, or byte at
19.44 Mbits/s. This is controlled by writing to THSPTYPE[1:0], 0x3C. The data is clocked out of the device on the rising edge of the clock. This clock can be inverted leaving the device (THSCLKINV, 0x3C). When provisioned in the parallel or nibble mode, an even or odd parity bit is generated per transfer (THSPAROEG, 0x3C). The output sync can be programmed to be active on the first clock cycle of the frame (A1-1 coincident with sync) or the last clock cycle of the frame (THSSA1orEND, 0x3C).
The output clock, sync, and data signals can be placed in a high-impedance state under user control (THSCHIZ = 1, THSSHIZ = 1, THSDHIZ = 1, 0x3D). Unused outputs in serial and nibble mode will be placed in a high­impedance state automatically by the device.

Receive Direction Overview

The following functions are performed in the receive direction: input retime, clock and data recovery, STS-3/STM-1 (AU-4) framing, loss-of-signal detection, loopback select logic, RSTS-3/STM-1 (AU-4) frame synchronous descrambling, TOAC drop, B1, B2, and B3 checking, monitoring functions, pointer interpretation, data demultiplex and conversion (AU-4 mode only), STS-1/AU-3 output byte control, B1 and B2 generate, STS-1/AU-3 output scramble, output selection logic, and output data formatter.
Agere Systems Inc. 23
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Receive Direction Overview
(continued)

Input Retime

The device accepts either a serial 155.52 MHz-Mbits/s, nibble 38.88 MHz-Mbits/s, or byte parallel 19.44 MHz­Mbits/s clock-data STS-3/STM-1 (AU-4) input. This is controlled by writing to RHSPTYPE[1:0], 0x55. The user can configure which edge of the clock to use to retime the data. RHSEDGE, 0x55 = 1 uses the rising edge; RHSEDGE = 0 uses the falling edge. If in nibble or parallel mode, an odd/even parity bit (RHSVOEPAR, 0x55) is verified per transfer (RHSPARE, RHSPARM, 0x0A, 0x13), otherwise, this indicator is disabled.

Clock and Data Recovery

The device provides an optional clock and data recovery circuit (CDR) on the serial STS-3/STM-1(AU-4) input. The CDR aligns the STS-3/STM-1 data signal to a local clock and then outputs a retimed data and clock signal. The input data and local clock rates need not be synchronous. The CDR only works at the nominal 155 Mbits/s rate and uses the high-speed transmit input clock (THSSCLKIT/C) as a reference for the local clock. The CDR is enabled by the RHSPORCDRSEL bit, 0x57.

STS-3/STM-1 (AU-4) Framing

The device will frame on the input STS-3/STM-1 (AU-4) signal. The state of the framer (RHSOOF), as well as any changes to this state (RHSOOFD, RHSOOFM, 0x0A, 0x13), will be reported. A loss-of-frame (RHSLOF, 0x1B) state bit, as well as any changes to this state (RHSLOFD, RHSLOFM, 0x0A, 0x13), will be reported.
Framing Algorithm
The 32-bit (A1-2, A1-3, A2-1, A2-2) framing pattern will be used in the frame detection. The device will be consid­ered out of frame until two successive framing patterns separated in time by 125 µs occur without framing byte errors.
The device will be considered in frame until five (SDH)/four (SONET) successive frames separated in time by 125 µs occur with errored framing patterns. If the framer transitions to the out-of-frame state, the framer will remain synchronized to the last known frame boundary or the latest detected unerrored framing pattern.
The device will be considered in the loss-of-frame state (LOF) when an OOF condition persists for 24 consecutive frames (3 ms). The device will transition out of the LOF state after receiving 24 consecutive frames with the correct framing patterns spaced 125 µs apart and the OOF condition is clear.

Loss of Signal

The device will detect a loss-of-signal condition by monitoring a unique input signal pin (RHSLOSEXTI) or detect­ing a continuous all-zeros/all-ones pattern for 51.44 ns to 105 µs in 51.44 ns steps (LOSDETCNT[10:0], 0x58— 0x59) before data is descrambled. To recover from the LOS state receiving two consecutive frames with the correct framing pattern spaced 125 µs apart without an incoming LOS all-zeros/ones pattern will cause an LOS state to be cleared. This recovery applies to both internal and external LOS failure causes. The device will report this condition to the microprocessor interface (RHSLOS, RHSLOSD, RHSLOSM, 0x1B, 0x0A, 0x13).
2424 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Receive Direction Overview
(continued)

Loopback Select Logic

The device can be configured to loopback the transmit STS-3/STM-1 (AU-4) (THS2RHSLB = 1, 0x55) or accept the local STS-3/STM-1 (AU-4) signal (THS2RHSLB = 0). While in the loopback mode, the RHSOOF, RHSLOF, and RHSLOS (0x1B) state bits are inhibited from causing an alarm indication signal (AIS) from being generated on the STS1/AU-3 output signals.

RSTS-3/STM-1 (AU-4) Frame Synchronous Descrambling (SONET/SDH)

The device will descramble the received SONET/SDH data (minus the first row of SOH) according to the frame synchronous descrambling polynomial; specifically: f(x) = 1 + x can be disabled (RHSDSCR = 1, 0x55).
6
+ x7. Under software control, frame descrambling

TOAC Drop

This channel drops all of the transport overhead bytes from the STS-3/STM-1 (AU-4) signal. (See RTOAC in the Maintenance Functions section, page 44, for more details (RTOACCLKO, RTOACSYNCO, RTOACDATAO)).

B1, B2, and B3 Checking

The device will monitor the incoming B1, B2, and B3 values for errors. The error counts will be latched when the
LATCH_CNT signal transitions from a low to a high (RHSB1ECNT[15:0], RHSB2ECNT[17:0], RHSB3ECNT[3—1][15:0], Page 1 - 0x8D—0x8E, Page 1 - 0x8F—0x91, Page 1 - 0x92—0x97). These counters will either count bit or block errors (BITBLOCKCNT, 0x34).

Monitoring Functions

The following transport overhead and path overhead bytes are monitored for failures or changes in states ((J0, Z0-2, Z0-3, F1, K1K2 (APS bytes), S1, M1), (J1,C2, G1, F2, H4, Z3, Z5)). The bit error rate of the incoming STS-3/ STM-1 (AU-4) signal is calculated to create signal fail and signal degrade indicators. (See Maintenance Functions Disabled During Failure Conditions in the Maintenance Functions section, page 28, for more details.)

Pointer Interpretation

The device will evaluate the current pointer state for the normal state, Path AIS (PAIS) state, or loss-of-pointer (LOP) conditions, as well as pointer increments and decrements (that are counted in RPTR_INC[3—1][10:0] and
RPTR_DEC[3—1][10:0] counters (0x98—0xA3), respectively). The current pointer state (RLOP[3—1], RPAIS[3—1], 0x1C) and any changes in pointer condition (RLOPD[3—1], RLOPM[3—1], RPAISD[3—1], RPAISM[3—1], 0x0B, 0x14), are reported to the control system. When the device is receiving a concatenated sig-
nal (STM-1(AU-3)), the RCONCATMODE, 0x55 bit must be set for the concatenation state machines (CONCAT_STATE[3—2][1:0], 0x1C, 0x1D) on ports 2 and 3 to contribute to pointer evaluation.
This state machine implements the pointer interpretation algorithm described in ETS 300 417-1-1: January 1996 ­Annex B.
The number of consecutive conditions for invalid pointer and invalid concatenation indication are programmable with a range 8—10 (CNTCIP_ICI[1:0], 0x5F).
Agere Systems Inc. 25
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Receive Direction Overview
(continued)

Data Demultiplex and Conversion (AU-4 Mode Only)

The device will demultiplex the STS-3/STM-1 (AU-4) signal into three STS-1/AU-3 signals, respectively. In the AU-4 mode, a conversion between the AU-4 payload format and the AU-3 payload format is performed. This requires the location of the J1 byte to be known, while this is not the case in the STS-3 mode, where the high­speed signal is byte demultiplexed and no format conversion occurs.

STS-1/AU-3 Output Byte Control

The output overhead bytes are controlled in one of four ways:
1. Errors can be inserted.
2. Values from the high-speed STS-3/STM-1 signal can be copied or set to the byte default.
3. Values can be inserted under software control.
4. Values can be inserted under hardware control.
Table 9 specifies the specific control allowed for each overhead byte. Table 18 in the Maintenance Functions sec­tion provides details for selecting each control mode.

Table 9. STS-1/AU-3 Format and Overhead Control Summary

Transport Overhead Payload
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5—90
E1
D2
H2
K1
D5
D8
D11
M0
1
2
2
1, 4
1, 3
2
2
2
1, 5
Row 1 A1 A2
Row 2 B1
Row 3 D1
Row 4 H1
Row 5 B2
Row 6 D4
Row 7 D7
Row 8 D10
Row 9 S1
1.Error insert.
2.Input pass or default value.
3.Software overwrite.
4.Copy of the selected byte from the incoming STM-1 (AU-4) frame; otherwise, the bytes pass without being changed (POH can start anywhere within the SPE).
5.Hardware overwrite.
1
2
1, 4
1
2
2
2
2
J0
F1
D3
H3
K2
D6
D9
D12
E2
3
2, 3
1, 3
4
J1
X
B3 X
2
4
2
2
2
2
4
C2
4
G1
4
F2
4
H4
4
Z3
Z4 X
4
Z5
X
X
X
X
X
X
Note: X = don’t care (payload).

B1 and B2 Generate

The B1 and B2 values of the outgoing STS-1/AU-3 signal are calculated. An error can be inserted into the B1 and B2 values on a per STS-1/AU-3 basis (RB1ERRINS[3—1], RB2ERRINS[3—1], 0x63).
2626 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Receive Direction Overview
(continued)

STS-1/AU-3 Output Scramble

The device allows scrambling of the output signals on a per-output basis (RLSSCR[3—1], 0x57).

Output Selection Logic

The demultiplexed signals can be routed to any output port or can be multicast to more than one port. The control bits (RSEL[3—1][1:0], 0x56) allow this to occur under software control. See Table 10.

Table 10. STS-1/AU-3 Output Select Control

RSEL
[3—1][1:0]
00 (0) STS-1/AU-3 #1 Receive
01 (1) STS-1/AU-3 #2 Receive
10 (2) STS-1/AU-3 #3 Receive
11 (3) Undefined
Output

Output Data Formatter

The device outputs one clock at 19.44 MHz, one J0 time signal, an 8-bit data bus, and an odd/even (RPLSPAROEG, 0x57) parity bit. The bus can be shared with up to three other devices. Each device determines its time slot using the J0 time signal. The byte coincident with the J0 time sync signal is always available for device number 1. Subsequent bytes are available for device 2, device 3, and then device 1 again. The sense of the
19.44 MHz output clock can be inverted under user control (RLSCLKINV, 0x57).

Maintenance Functions

Maintenance functions are associated with monitoring signals and conditions in the device. This section is divided into a common section, a transmit section, and a receive section.
Agere Systems Inc. 27
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
(continued)

Maintenance Functions Disabled During Failure Conditions

Several maintenance functions are disabled during failure conditions. These are listed in the following table. Event and status information will be disabled and all BIP and far-end bit error (FEBE) counters will be held at 0.

Table 11. Monitors Disabled During Failure Conditions

Direction Failure Monitors Disabled
Transmit TILOC (0x19) Transmission path and all monitors dis-
abled
Receive
TLSOOF[3—1] and
TLSOOF_AISINH[3—1]
or
TLSLOF[3—1] and
TLSLOF_AISINH[3—1]
(0x19, 0x37, 0x39, 0x3B)
RHSLOS or RHSLOF or RHSOOF (0x1B)
RILOC and RRILOC_AISINH (0x1B, 0x58)
RHSLOS and RHSLOF and RHSOOF and (0x1B, 0x58)
RRHSLOS_AISINH
RRHSLOF_AISINH
RRHSOOF_AISINH
TLSB1ECNT[3—1][15:0], TLSB2ECNT[1][17:0], TLSB2ECNT[3—2][15:0] (Page 1 - 0x80—0x8C)
SFEBE and PFEBE (AU-4 mode only) insert (value set to 0)
Transmission path and all monitors dis­abled
J0Z0MON, F1MON, APSMON, K2MON,
or
LRDIMON, LAISMON, RHSSF, RHSSD,
or
RHSB1ECNT[15:0], RHSB2ECNT[16:0], RSFEBECNT[7:0], RPFEBECNT[3—1][15:0], and all path monitoring functions (0x1B, 0xA6—0xAC, 0x8E)
(RPAIS[3:1] or RLOP[3:1]) and
PAIS LOP_AISI NH
(0x1C, 0x57)
All path monitoring functions: J1, C2, B3, G1, F2, H4, Z3, Z5

Common Maintenance and Control Functions

The common section addresses maintenance functions that are common to both directions.
Device Reset
The device will provide a device reset function (RSTCTL, 0x04). This device reset will be initiated by a unique input signal or by a command received through the control interface. A device reset will set all maintenance and control registers to their default values. A device reset is service affecting.
Note: This signal must toggle from 0 1 0.
Composite Service Request
The device will provide a summary of the device monitoring conditions (INT, 0x00).
Mask Bit Operation
Mask bits will only inhibit the contribution of the event or delta bit contributing to the interrupt. The event or delta bits will not be cleared if the corresponding mask bit is cleared. Delta and event bits clear-on-read. 2828 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Common Maintenance and Control Functions
(continued)
(continued)
Device Version and Device ID Number
The device will have a version number (DEVVER[7:0], 0x03). The version increments each time the device func­tionality is changed, from the controller’s perspective. The device ID (DEVID[15:0], 0x01—0x02) is a fixed pattern used to identify the device by software.
Scratch Byte
The device will provide a 1-byte scratch register for the control interface to verify write capability to the device (SCRATCH[7:0], 0x06).
Multibyte Registers
If a read value parameter register requires more than 8 bits, the device must prevent the value from changing between 8-bit read commands. In these cases, the controller reads the lowest address byte first and transfers the higher address bytes to a holding register where the value is held until the controller reads them. Similarly, if a multibyte writable register is implemented, the controller writes the lowest address byte first, which is stored in a holding register until the controller writes the highest address byte, and then all of the bytes take effect.
To simplify device design, the controller reads or writes all of the bytes of a multibyte register before reading or writ­ing other registers so that the holding registers may be shared among all multibyte registers. This read/write oper­ation is valid on all multibyte registers not controlled by the LATCH_CNT, 0x04 bit.
Update Counter Control
For performance monitoring purposes, there are a number of BIP, FEBE, and pointer interpreter increment/decre­ment error counters in the receive/transmit section. All of these internal counters are comprised of a running error counter and a hold register that present stable results to the microprocessor. The counts in all of the running counters are latched to the hold registers when LATCH_CNT, 0x04 is written from a logic 0 to a logic 1. This zeros all of the running counters. The results are held to be read by the microprocessor. All of the internal counters have the ability to store more than 1 second’s worth of counts, so as long as the LATCH_CNT occurs every second, or faster, no counts will be lost. In case this doesn’t happen, all of the running counters will hold their maximum value rather than roll over to 0. The following counters
TLSB1ECNT[3—1][15:0], 0x08—0x85
TLSB2ECNT[1][17:0], 0x86—0x88
TLSB2ECNT[3—2][15:0], 0x89—0x8C
RHSB1ECNT[15:0], 0x8D—0x8E
RHSB2ECNT[17:0], 0x8F—0x91
RHSB3ECNT[3—1][15:0], 0x92—0x97
RPTR_INC[3—1[10:0], 0x98—0x9D
RPTR_DEC[3—1][10:0], 0x9E—0xA3
RSFEBECNT[17:0], 0xA4—0xA6
RPFEBECNT[3—1][15:0], 0xA7—0xAC
1
are affected by LATCH_CNT:
1 All addresses for these counters are in Page 1 registers.
Agere Systems Inc. 29
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
Common Maintenance and Control Functions
Bit or Block Count
The device allows all counters, except the pseudorandom error counter, to either count the actual number of bit errors or the number of blocks (a block equals one frame) that contain an error (BITBLOCKCNT, 0x34).
The section and path FEBE counters count the actual number of bit errors or the number of blocks that contain an error (FEBEBITBLOCKCNT, 0x34).
(continued)
(continued)

Transmit Functions

The transmit section addresses maintenance functions that are unique to the transmit direction.
Parity (B1, B2, B3)
The device will perform a bit interleaved BIP-8 parity (B1) calculation and will write these bits into the B1 section overhead byte. The device will perform a bit interleaved BIP-24 parity (B2) calculation and will write these bits into the B2 line overhead byte. The device will perform a bit interleaved BIP-8 parity (B3) calculation and will write these bits into the B3 path overhead byte (AU-4 mode only).
The device can perform a B1 (THSB1ERRINS, 0x4C), B2 (THSB2ERRINS[3—1], 0x4C), and B3 (THSB3ERRINS, 0x4C) parity byte inversion via microprocessor control.
A1, A2 Error Enable
The device will allow, under software control, from 1 to 32 continuous frames to have errored A1A2 patterns in the outgoing frame (TA1A2ERRINS[4:0], 0x4D and TA1A2ERREN, 0x04).
Section Trace/Growth Byte Insert (J0/Z0)
The device inserts the data written into TJ0DINS[7:0], 0x3F, TZ02DINS[7:0], 0x40, and TZ03DINS[7:0], 0x41 into the outgoing J0/Z0 bytes.
Fault Location Insert (F1)
Via microprocessor control of TF1INS, 0x3E and TF1DINS[7:0], 0x42, data information may be inserted into the outgoing F1 byte. Direct microprocessor insert has higher priority than the TOAC insert control bit (TTOAC_F1[1:0], 0x51).
Sync Status Byte Insert (S1)
Via microprocessor control of TS1INS, 0x3E and TS1DINS[7:0]0x45, data information may be inserted into the outgoing S1 byte. Direct microprocessor insert has higher priority than the TOAC insert control bit (TTOAC_Z1[1:0], 0x51).
Automatic Protection Switch (APS) Insertion (K1[7:0], K2[7:3])
The device writes the K1 and K2 bytes into the transmit K1 and K2 overhead bytes (TAPSINS[12:0], 0x43, 0x44). The K1 and K2[7:3] bits will only change when both values are valid. The TAPSINS[4:0], 0x44 byte is the
trigger for updating the APS bytes in the outgoing frame.
3030 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Transmit Functions
APS Babbling Test Control
Setting the TAPSBABLEINS, 0x4D register, via microprocessor control, forces the APS bytes (K1[7:0], K2[7:3]) to an inconsistent state.
Line Remote Defect Indication (RDI-L) Insertion (K2[2:0] = 110)
The device will write Line RDI into the data signal using the following equation:
TLRDIINT =(RILOC AND
(RHSLOS AND (RHSOOF AND (RHSLOF AND (RLAISMON AND (RHSSF AND
(See 0x1A, 0x1B, 0x1D, and 0x4A.)
Hardware insert of Line RDI will occur when TLRDIINT, 0x1A is active and the software insert control bit (TLRDIINH, 0x4A) is disabled. User-provided data (TK2INS[2:0], 0x43) will be inserted into the K2[2:0] bits in the STS-3/STM-1 (AU-4) frame when TLRDIINH = 0. The insertion of Line RDI consists of writing the pattern 110 into the three LSBs of the K2 LOH byte.
(continued)
TRILOC_LRDIINH
TRHSSF_LRDIINH
(continued)
OR
)
TRHSLOS_LRDIINH
TRHSOOF_LRDIINH
TRHSLOF_LRDIINH
TRLAISMON_LRDIINH
);
) OR
) OR
) OR
) OR
Unequipped and AIS Generation (Automatic/Manual)
Line AIS or AU4-AIS or TUG-3 AIS can be generated automatically by the hardware under certain failure condi­tions or via microprocessor control only. This is accomplished with the following equations and control signals:
FAILURE[3—1] = ((TLSOOF[3—1] AND
(TLSLOF[3—1] AND
H4PTRMIS[3—1] = ((TLSH4MIS[3—1] AND
(TLSPTRMIS[3—1] AND ( AU-4 mode only
LAIS[3—1] = TLS_LAISINS[3—1] OR FAILURE[3—1] OR H4PTRMIS[3—1];
AU4AISGen = LAIS1 AND LAIS2 AND LAIS3;
(See 0x1A, 0x37, 0x39, 0x3B.)
Each alarm contribution that can cause AIS generation can be selectively inhibited. Line AIS is generated in the STS-3 mode per STS-1 input when the appropriate FAILURE[3—1] or TLS_LAISINS[3—1] (software enable) sig­nals are active. (Line overhead and the entire payload is set to an all-ones pattern.) In this mode, the H4PTRMIS[3—1] contribution will always be 0. AU4-AIS generation will set all H1, H2, H3, and payload bytes to an all-ones pattern in the output STM-1 (AU-4) signal. TUG-3 AIS generation will force all the data in the selected TUG-3 signal to be set to an all-ones pattern.
In the STS-3 mode, an unequipped signal can be generated for any STS1 input under software control (TLS_UNEQUIP[3—1], 0x3B, 0x39, 0x37 and (H1 = 0110SS00 AND H2 = 00000000)) and the selected payload is set to 0). In AU-4 mode, the H1 and H2 bytes will not change from their default values and the entire payload will be set to 0.
TLSOOF_AISINH[3—1]
TLSLOF_AISINH[3—1]
TLSH4MIS_AISINH[3—1]
TLSPTRMIS_AISINH[3—1]
) OR
))
) OR
)) AND STS1_AU4;
The SS bits will be set to the value written into register bits (TSS[1:0], 0x3E). AIS generation has higher priority than unequipped signal generation.
Agere Systems Inc. 31
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
Transmit Functions
H1 and H2 Corruption
Setting the TH1H2CRUPEN[3—1], 0x4E, register, via microprocessor control, allows the outgoing H1 and H2 val­ues to be corrupted for each STS-1 channel. Either an invalid pointer or a continuous new data flag can be inserted (TH1H2CRUPPorNDF, 0x4E).
Loss-of-Transmit Clock or Loss-of-Frame Sync
The device will detect a loss-of-transmit clock condition for the clock input in the transmit direction. Also, the device was designed to detect a loss-of-frame sync for the frame sync input signal (Note, the loss-of-frame sync (TILOF) feature is not supported in version 3 of the device). The state of TILOC and TILOF (0x19) along with any changes to TILOCFD and TILOCFM (0x07 and 0x10) will be reported to the control system.
Transmit Clock Frequency Provisioning
The device must be provisioned (THSCLKTYPE[1:0], 0x3C) with the speed (155.52 MHz—bit, 38.88 MHz— nibble, 19.44 MHz—byte) of the transmit clock. This information is needed to set the internal clock divider circuitry and determine valid output port modes (e.g., a byte clock input cannot support a serial output port at
155.52 Mbits/s).
(continued)
(continued)
3232 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Transmit Functions
(continued)
(continued)
Section Far-End Bit Error (SFEBE)
The device will insert SFEBE in the transmitted M1 byte whenever there are bit errors in the received B2 bytes. This function can be inhibited (TSFEBEINH, 0x3E) and the default value inserted, either all ones (SDH) or all zeros (SONET). The device can insert a continuous error into the M1 byte under user control (TSFEBEEINS, 0x4D). SFEBE will be inserted into the M1 byte as defined in Figure 3.
23 (MSB) 0 (LSB)
Z2-1 Z2-2 M1
0 (LSB)7 (MSB)
SECTION FEBE
5-5295(F)

Figure 3. SFEBE Location

The values for SFEBE are summarized in Table 12.

Table 12. SFEBE Values

Section or Line FEBE Number of B2 Bit Errors in
the Receive Signal
00000000 0 (no errors)
00000001 1
00000010 2
. . . . . .
00010111 23
00011000 24
00011001 No errors
. . .
11111110
11111111 (SDH)
00000000 (SONET)
Section FEBE not supported
(no errors)
Agere Systems Inc. 33
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
Transmit Functions
Path - Trace Byte (J1)—AU-4 Mode Only
The device will continuously insert a 64-byte sequence (TJ1DINS[64—1][7:0], 0x80—0xBF) into the outgoing STM-1 (AU-4) signal when the TJ1INS signal is active; otherwise, all zeros will be inserted into this byte.
Path - Signal Label Byte (C2)—AU-4 Mode Only
The device will allow data to be inserted into the outgoing C2 byte under software control (TC2DINS[7:0], 0x46).
Path - G1 Status Byte (PFEBE (REICNT))—AU-4 Mode Only
The G1 byte contains the PFEBE (B3 errors) as shown in Table 13.

Table 13. G1 Byte—AU-4 Mode Only

MSB
(7)
Valid values (0 to 8) all others
654 321LSB
PFEBE[3:0]
indicate no errors
(continued)
(continued)
(0)
RDI-P 111 (SDH) or
000 (SONET)
The device will insert PFEBE in the transmitted G1 byte whenever there are bit errors in the received B3 byte. This function can be inhibited (TPFEBEINH, 0x3E) and the default value inserted, either all ones (SDH) or all zeros (SONET). The device can insert a continuous error into the G1 PFEBE[3:0] byte under user control (TPFEBEEINS, 0x4D).
The values for PFEBE are summarized in Table 14.

Table 14. PFEBE Values

Section or Line FEBE Number of B3 Bit Errors in
the Receive Signal
0000 0 (no errors)
0001 1
0010 2
. . . . . .
0111 7
1000 8
1001 No errors
. . .
1111
3434 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Transmit Functions
Path - G1 Status Byte (RDI-P)—AU-4 Mode Only
The G1 byte contains the RDI-P bit as shown in Table 13.
Path RDI is inserted automatically under hardware control. Each failure contribution can be excluded from the gen­eration equation by setting the appropriate inhibit bit.
TPRDIINT =((RILOC AND
(RHSLOS AND (RHSOOF AND (RHSLOF AND (RLAISMON AND (RPAIS1 AND (RLOP1 AND TPRDIINS (software insert));
(See 0x1A, 0x1B, 0x4B.)
PRDI can be forced, via microprocessor control, by setting TPRDIINS to a logic 1.
Path - User Channel Byte (F2)—AU-4 Mode Only
(continued)
(continued)
TRILOC_PRDIINH
TRHSLOS_PRDIINH
TRHSOOF_PRDIINH
TRHSLOF_PRDIINH
TRLAISMON_PRDIINH
TRPAIS1_PRDIINH
TRLOP1_PRDIINH
), 0x4B, OR
), 0x4B, OR
), 0x4B, OR
), 0x4B, OR
), 0x4B, OR
), 0x4B, OR
), 0x4B, OR
Via microprocessor control of the (TF2DINS[7:0], 0x47), data information may be inserted into the outgoing F2 byte.
Path - Growth Byte (Z3)—AU-4 Mode Only
Via microprocessor control of the (TZ3DINS[7:0], 0x48), data information may be inserted into the outgoing Z3 byte.
Path - Tandem Connection Byte (Z5)—AU-4 Mode Only
Via microprocessor control of the (TZ5DINS[7:0], 0x49), data information may be inserted into the outgoing Z5 byte.
Pseudorandom Test Pattern Insert—AU-4 Mode Only
A pseudorandom test sequence can be inserted into any selected (TSTGEN_PSEL[1:0], 0x4E) TUG-3 within the AU-4 signal. The pattern can be selected from the following two equations: Q23 + Q17 + 1 or Q15 + Q14 + 1 (TPAT23or15, 0x4E). A one shot is provided to inject eight (8) errors into the selected pseudorandom sequence (TSTGENE8INS, 0x04). A value of zero in the TSTGEN_PSEL[1:0] register disables this function.
Agere Systems Inc. 35
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
Transmit Functions
(continued)
(continued)
Output Offset
The device will output the STS-3/STM-1 (AU-4) frame a programmable number of clock cycles from the input frame sync. These registers allow movement of the output frame with a granularity of one high-speed clock cycle. The values programmed in (TLBITCNT[2:0], TLSTS1CNT[1:0], TLCOLCNT[6:0], TLROWCNT[3:0], 0x53, 0x54) must be within the valid ranges for the mode selected (see Table 15). See Table 56 on page 77 for more details.

Table 15. Value Offset Load Values

Mode TLBITCNT[2:0] TLSTS1CNT[1:0] TLCOLCNT[6:0] TLROWCNT[3:0]
BIT 0—7 0—2 0—89 0—8
NIBBLE 0—1 0—2 0—89 0—8
BYTE 0 0—2 0—89 0—8
Transmit Transport Overhead Access Channel (TTOAC)
A transport overhead access channel (TOAC) is provided on-chip to provision the TOH portion of the outgoing SDH or SONET frame. The TOAC consists of the following signals:
A 5.184 MHz clock signal, sourced by the device (TTOACCLKO, TTOAC_CLKINV).
A 5.184 Mbits/s data signal received by the device in the transmit direction (TTOACDATAI).
An 8 kHz synchronization signal (TTOACSYNCO), sourced by the device. The sync signal is normally low; during the last clock period of each frame coincident with the least significant bit of the eighty-first byte or during the first clock period of each frame coincident with the most significant bit of the first byte, the sync signal is high (TTOACSA1orEND, 0x4F).
An inhibit signal is provided through the control interface to place the clock and sync signals in a high-impedance state (TTOACINH, 0x4F).
The data signal is partitioned into frames of 81 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are received most significant bit first. The MSB of the first byte of each frame contains an odd/even parity bit over the 648 bits of the previous frame. The remaining 7 bits of this byte are not specified.
Bytes shown in Table 16 summarize the access capabilities of the transmit TOAC. Bytes indicated in bold type are not specified in the standard, but are labeled here for clarity. X symbols indicate don’t cares.

Table 16. Transport Overhead Byte Access—Transmit Direction

OH PtyXXXXXXXX
X B1-2 B1-3 E1 E1-2 E1-3 F1 F1-2 F1-3
D1 D1-2 D1-3 D2 D2-2 D2-3 D3 D3-2 D3-3
XXXXXXXXX
XXXXK1-2 K1-3 X K2-2 K2-3
D4 D4-2 D4-3 D5 D5-2 D5-3 D6 D6-2 D6-3
D7 D7-2 D7-3 D8 D8-2 D8-3 D9 D9-2 D9-3
D10 D10-2 D10-3 D11 D11-2 D11-3 D12 D12-2 D12-3
S1 Z1-2 Z1-3 Z2 Z2-2 X E2 E2-2 E2-3
3636 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Transmit Functions
OH Parity
An event indication is provided at the control interface if an overhead parity error occurs. Odd/even parity is checked (TTOAC_OEPMON, TTOAC_PERRM, TTOAC_PERRE, 0x4F, 0x10, 0x07).
D1—D3, D4—D12, E1, E2, F1, Z1, Z2 Overhead Bytes
Table 17 summarizes the insertion options for the specified overhead bytes. The device allows (1) the default value for unused SDH or SONET bytes to be inserted, or (2) the transmit TOAC values to be inserted, or (3) the received STS-1/AU-3 value to be inserted into the outgoing STS-3 frame.

Table 17. TTOAC Control Bits

Overhead Bytes Control Bits
D1—D3 TTOAC_D1TO3[1:0] SDH (1s) or
D4—D12 TTOAC_D4TO12[1:0]
E1 TTOAC_E1[1:0]
E2 TTOAC_E2[1:0]
F1 TTOAC_F1[1:0]
S1, Z1-2, Z1-3 TTOAC_Z1[1:0]
Z2, Z2-2 TTOAC_Z2[1:0]
B1-2, B1-3 TTOAC_INS[1:0] SDH (1s) or
E1-2, E1-3
F1-2, F1-3
D1-2, 3 to D3-2, 3
K1-2, K1-3
K2-2, K2-3
D4-2, 3 to D12-2, 3
E2-2, E2-3
1. See Address 0x50, 0x51 for control bits.
(continued)
(continued)
1
00 (Default)
or 11
SONET (0s)
Default Values
SONET (0s)
Default
Values
Values
01 10
TTOAC
Data
TTOAC Pass Through
Pass Through
Associated
STS-1/AU-3
Data
Associated
STS-1/AU-3
Data
Agere Systems Inc. 37
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
(continued)

Receive Functions

A number of the receive maintenance functions require a continuous N times detection (CNTD) of a signal to change an alarm status. All of these continuous N times detect signals require not only that the monitored signal be consistent for N consecutive frames, but also that the frame bytes, A1 and A2, be error free for all N frames before the status can be updated. If there are any errors in the framing pattern, then the consecutive N times detection counters must be reset to 0. N can range from 3 to 15. There is also a signal (CNTDB1SEL, 0x5F) that will cause these continuous N times detection counters to be reset to 0 if there are any errors in the received B1 byte.
Continuous N Times Detect B1 Error Reset Enable
The following CNTD monitors are affected by this control bit (CNTDB1SEL):
1. AIS-L (K2[2:0] = 111)
2. RDI-L (K2[2:0] = 110)
3. K2MON (K2[2:0])
4. APSMON (K1[7:0], K02[7:3])
Receive Loss of Clock
The device will detect a receive loss-of-clock (RILOC, 0x1B) condition for the clock input and notify the control sys­tem of any changes to this condition (RILOCD, 0x0A, and RILOCM, 0x13).
Insertion of Line AIS (Automatic/Manual)
The device will write Line AIS into each STS-1/AU-3 output signal if either the appropriate alarms occur or the soft­ware insert bit is active.
LAIS_COMMON = ((RILOC AND
(RRHSOOF AND (RHSLOF AND (RHSLOS AND (LAISMON AND
(See 0x1B, 0x58.)
If (RLAISINS[3—1] = 1 OR LAIS_COMMON = 1), then insert Line AIS on the selected output.
When a RILOC condition exists, the transmit clock is used to generate the Line AIS signal downstream, if possible.
Insertion of Path AIS (Automatic)
The device will write Path AIS into each STS-1/AU-3 output signal if the appropriate alarms occur.
PAIS_COMMON[3—1] = ((PAIS[3—1] OR LOP[3—1]) AND PAISLOP_AISINH
If (PAIS_COMMON[3—1] = 1), then insert Path AIS on the appropriate output. (PAIS consists of writing all ones into the H1, H2, H3 bytes, and into the entire payload.)
RRILOC_AISINH
RHSOOF_AISINH
RRHSLOF_AISINH
RRHSLOS_AISINH
RRLAISMON_AISINH
) OR
) OR
) OR
) OR
));
)
B1 BIP-8 Parity
The device will perform B1 (BIP-8) calculation and error checking in the receive path. The device will allow access to the B1 errored bit/block (one block is equal to one frame) count (BITBLOCKCNT, 0x34, RHSB1ECNT[15:0], 0x8D-0x8E). This counter will update when LATCH_CNT transitions from a logic 0 to a logic 1.
3838 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Receive Functions
B2 BIP-24 Parity
The device will perform B2 (BIP-24) calculation and error checking. The device will allow access to the B2 errored bit/block (one block is equal to one frame) count (BITBLOCKCNT, 0x34, RHSB2ECNT[16:0], Page 1 - 0x8F—
0x91). This counter will update when LATCH_CNT, 0x04 transitions from a logic 0 to a logic 1.
Signal Degrade BER Algorithm
A signal degrade state and change of state indication will be provided to the control interface (RHSSD, RHSSDD, RHSSDM, 0x1B, 0x0A, 0x13). This bit error rate algorithm can operate on either B1 or B2 errors (SDB1B2SEL, 0x83). Signal degrade is declared when SDLSet[3:0], Page 2 - 0x83 or more bit errors in SDNsSet[18:0], Page 2 - 0x8E—0x90 and frames occur SDMSet[7:0], Page 2 - 0x84 times out of SDBSet[11:0], Page 2 - 0x85—0x86
blocks (one block is equal to one measurement period of SDNsSet[18:0] frames), and it is removed when less than SDLClear[3:0], Page 2 - 0x8A bit errors in SDNsClear[18:0], Page 2 - 0x87—0x89 frames occur SDM- Clear[7:0], Page 2 - 0x8B times out of SDBClear[11:0], Page 2 - 0x8C—0x8D blocks.
The above algorithm can detect bit error rates from 1 x 10
Signal Fail BER Algorithm
A signal fail state and change of state indication will be provided to the control interface (RHSSF, RHSSFD, RHSSFM, 0x1B, 0x0A, 0x13). This bit error rate algorithm can operate on either B1 or B2 errors (SFB1B2SEL, Page 2 - 0x91). Signal fail is declared when SFLSet[3:0], Page 2 - 0x91 or more bit errors in SFNsSet[18:0], Page 2 - 0x8E—0x90 frames occur SFMSet[7:0], Page 2 - 0x92 times out of SFBSet[11:0], Page 2 - 0x93—0x94 blocks (one block is equal to one measurement period of SFNsSet[18:0] frames), and it is removed when less than SFLClear[3:0], Page 2 - 0x98 bit errors in SFNsClear[18:0], Page 2 - 0x96—0x98 frames occur SFMClear[7:0], Page 2 - 0x99 times out of SFBClear[11:0] Page 2 - 0x9A—0x9B blocks.
The above algorithm can detect bit error rates from 1 x 10
(continued)
(continued)
–3
to 1 x 10–9.
–3
to 1 x 10–9.
Section Trace (J0, Z0-2, Z0-3) Byte Monitoring
The device will monitor the section trace bytes (RJ0MON[7:0], RZ02MON[7:0], RZ03MON[7:0], RCDRLOC, 0x1E, 0x1F, 0x20, 0x1B) on the receive input. A new section trace value will be detected after CNTDJ0Z0[3:0], 0x5A and consecutive consistent occurrences of a new pattern in the section trace overhead bytes. Any changes to these bytes will be reported to the control system (RJ0Z0MOND, RJ0Z0MONM, 0x0C, 0x15).
Fault Location Monitoring (F1MON)
The device will monitor the fault location byte (RF1MON0[7:0], 0x21) on the receive input. A new fault location state will be detected after CNTDF1[3:0], 0x5A consecutive consistent occurrences of a new pattern in the F1 overhead byte. The device will also maintain a history of the previous valid F1 byte (RF1MON1[7:0], 0x22). Any changes to this byte will be reported to the control system (RF1MOND, RF1MONM, 0x0C, 0x15).
Automatic Protection Switch (APS) Monitoring
The device will monitor the K1 byte and the K2 byte (5 MSBs only) on the input side of the device receive path (RAPSMON[12:0], 0x23, 0x24). After CNTDAPS[3:0], 0x5B consecutive consistent occurrences of new K1 and K2 bytes, the device will notify the control system (RAPSMOND, RAPSMONM, 0x0B, 0x14).
Agere Systems Inc. 39
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
Receive Functions
APS Babbling Monitor
The device will monitor the APS bytes (K1[7:0], K2[7:3]) in the receive direction and report to the control interface (RAPSBABLEE, RAPSBABLEM, 0x0C, 0x15) when the K1 bytes are inconsistent. Inconsistent APS bytes are defined as CNTDAPSFRAME[3:0], 0x5C (Default = 12) successive frames, starting with the last frame containing previously consistent code, where no CNTDAPS[3:0], 0x5B (Default = 3) consecutive frames contain identical APS bytes.
Line AIS (AIS-L) Monitoring
The device will monitor line AIS on the receive input (RLAISMON, 0x1D). Line AIS will be detected after CNTDK2[3:0], 0x5B consecutive occurrences of the AIS-L pattern (xxxxx111) in the K2 overhead byte. Any changes to this byte will be reported to the control system (RLAISMOND, RLAISMONM, 0x0C, 0x15).
Line Remote Defect Indication (RDI-L) Monitoring
The device will monitor an RDI-L condition on the receive input (RLRDIMON, 0x1D). A Line RDI condition will be detected after CNTDK2[3:0] consecutive occurrences of the Line RDI pattern (xxxxx110) in the K2 overhead byte. Any changes to this byte will be reported to the control system (RLRDIMOND, RLRDIMONM, 0x0C, 0x15).
(continued)
(continued)
K2 Byte Monitoring
The device will monitor the K2 byte (3 LSBs only) on the input side of the receive direction (RK2MON[2:0], 0x23). After CNTDK2[3:0], 0x5B consecutive consistent occurrences of new K2 bits, the device will notify the control sys­tem (RK2MOND, RK2MONM, 0x0B, 0x14).
Sync Status (S1) Byte Monitoring
The device will monitor the sync trace byte (RS1MON[7:0], 0x25) on the receive input. A new sync trace value will be detected after CNTDS1[3:0], 0x5C consecutive consistent occurrences of a new pattern in the overhead bytes. Any changes to this byte will be reported to the control system (RS1MOND, RS1MONM, 0x0C, 0x15).
Section FEBE (M1) Monitoring
The device will monitor a Section FEBE condition (M1) on the receive input. The device will allow access to the Section FEBE errored bit/block (one block is equal to one frame) count (FEBEBITBLOCKCNT, 0x34, RSFEBECNT[17:0], Page 1 - 0x34, 0xA4, 0xA6). This counter will update when LATCH_CNT transitions from a logic 0 to a logic 1.
AU-4 NPI (Null Pointer Indication) Monitoring
The device will monitor the three NPI values in the incoming STM-1(AU-4) signal. When five consecutive mis­matches occur (any one of the three NPI values are in error) separated in time by 125 µs, the device will declare an NPI mismatch condition. An NPI match condition is declared when two consecutive matches occur (all three NPI values match), separated in time by 125 µs. The delta, mask, and state bits are RHSNPIMISD, RHSNPIMISM, RHSNPIMIS, 0x0D, 0x16, 0x1D, respectively.
4040 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Receive Functions
STM-1(AU-4) H4 Multibyte Monitor
The device will monitor the path H4 byte for correct multibyte sequence. Each time the expected value mismatches with the received value, an event indication is set. When a mismatch occurs, the device accepts the new value plus 1 as the expected value for the next frame. The event and mask bits are RHSH4MISE, RHSH4MISM, 0x0D, 0x16.
Path Trace Byte (J1) Monitoring
The device will monitor the path trace byte (RJ1MON[64—1][7:0], 0xC0—0xFF) on the receive input. Only one J1 byte can be monitored (J1PSELMON[1:0], 0x56) out of the three possible J1 bytes. The device will store a 64-byte sequence and declare a mismatch each time the incoming value does not agree with the stored value (RJ1MISE,
RJ1MISM, 0x0C, 0x15).
Path Signal Label (C2) Monitoring
The device will monitor the C2 bytes on the receive input (RC2MON[3—1][7:0], 0x28, 0x27, 0x26). After CNTDC2[3:0], 0x5D consecutive consistent occurrences of a new C2 byte, the device will notify the control system (RC2MOND[3—1], RC2MONM[3—1], 0x0D, 0x16).
Path FEBE (G1) Byte Error Count
(continued)
(continued)
The device will monitor for a path FEBE condition (G1[7:4]) on the input signal. The device will allow access to the path FEBE errored bit/block (one block is equal to one frame) count (FEBEBITBLOCKCNT, RPFEBECNT[3—1][15:0], 0x34, 0xA7—0xAC). These counters will update when LATCH_CNT, 0x04 transitions from a logic 0 to a logic 1.
Path RDI (Path Yellow (G1[3] or Enhanced Failure Code (G1[3:1])))
The device will monitor the G1 bytes for path yellow condition or for an enhanced failure code (RRDI_MPYorEFC, 0x55) on the receive input (RRDIP[3—1][2:0], 0x32, 0x33). After CNTDG1[3:0], 0x5D consecutive consistent occurrences of a new G1 value, the device will notify the control system (RRDIPE[3—1], RRDIPM[3—1], 0x16).
Path User Channel (F2) Monitoring
The device will monitor the F2 byte (RF2MON[3—1][7:0], 0x29, 0x2A, 0x2B) on the receive input. A new value will be detected after CNTDF2[3:0], 0x5E consecutive consistent occurrences of a new pattern in the overhead bytes. Any change to this byte will be reported to the control system (RF2MOND[3—1], RF2MONM[3—1], 0x0E,
0x17).
Path Growth Byte (Z3) Monitoring
The device will monitor the Z3 bytes (RZ3MON[3—1][7:0], 0x2C, 0x2D, 0x2E) on the receive input. A new value will be detected after CNTDZ3[3:0], 0x5E consecutive consistent occurrences of a new pattern in the overhead bytes. Any change to this byte will be reported to the control system (RZ3MOND[3—1], RZ3MONM[3—1], 0x0E,
0x17).
Path Tandem Connection Byte (Z5) Monitoring
The device will monitor the Z5 bytes (RZ5MON[3—1][7:0], 0x31, 0x30, 0x2F) on the receive input. A new value will be detected after CNTDZ5[3:0], 0x5F consecutive consistent occurrences of a new pattern in the overhead bytes. Any change to this byte will be reported to the control system (RZ5MOND[3—1], RZ5MONM[3—1], 0x0F, 0x18). Agere Systems Inc. 41
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
Receive Functions
Test Pattern Drop (AU-4 Mode Only)
The device will monitor a pseudorandom pattern (RPAT23or15, 0x60) on a per TUG-3 basis (RTSTDRP_PSEL[1:0], 0x60). The drop logic will provide an out-of-sync indication (RTSTDRP_OOS, 0x60) and an error count (RTSTDRP_ECNT[7:0], 0x61). This counter will hold at its maximum value and is not affected by the LATCH_CNT, 0x04 signal. The detector will transition to the in-sync-state after 32 consecutive matches occur. The detector will transition from the in-sync-state to the out-of-sync state if 32 consecutive errors are detected.
STS-1/AU-3 Byte Error Insert or Overwrite Control
This section summarizes the output error and overwrite capabilities on a per STS1/AU-3 basis. All path overhead bytes pass through from the input signal.

Table 18. STS-1/AU-3 Overhead Control

Control Signal per STS-1/
AU-3 Signal
RA1A2ERREN,
RA1A2ERRPEN[3—1],
RA1A2ERRINS[4:0]
(0x05, 0x62)
RC1DINS[3—1][7:0]
(0x68, 0x69, 0x6A)
RB1ERRINS[3—1]
(0x63)
R_E1_PASS[3—1]
(0x74)
RF1INS[3—1]
RF1DINS[3—1][7:0],
R_F1_PASS[3—1]
(0x64, 0x6B—0x6D, 0x74)
R_D1TOD3_PASS[3—1]
(0x75)
RH1H2CRUPEN[3—1],
RH1H2CRUPPorNDF
(0x64)
RB2ERRINS[3—1]
(0x63)
RAPSBABLEINS[3—1],
RAPSINS[3—1][12:0]
(0x66, 0x6E—0x73)
(continued)
(continued)
Bytes
Affected/
Action
A1, A2
Error Insert
C1 Always insert values.
B1
Error Insert
E1 1 = pass input data, 0 = insert default value.
F1
Software or
Pass
D1 to D3 1 = pass input data, 0 = insert default value.
H1, H2
Error Insert
B2
Error Insert
K1, K2[7:3]
Error or
Software
If (RA1A2ERREN = 0 →1) then insert RA1A2ERRINS[4:0] consecutive frame errors on the selected ports (RA1A2ERRPEN[3—1]) else insert correct framing pattern.
1 = insert error, 0 = insert normal value.
If (RF1INS = 1) then insert software value (RF1DINS) else if (R_F1_PASS = 1) then pass input data else set byte to the default value.
If (RH1H2CRUPPorNDF = 0 AND RH1H2CRUPEN = 1) then continuously corrupt the pointer value else if (RH1H2CRUPPorNDF = 1 AND RH1H2CRUPEN = 1) then continuously send NDF (1001) pattern else pass input data.
1 = insert error, 0 = insert normal value.
If (RAPSBABLEINS = 1) then continuously insert a nonconsistent K1K2 value else insert software value RAPSINS.
Action
4242 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Maintenance Functions
Receive Functions
Table 18. STS-1/AU-3 Overhead Control (continued)
Control Signal per STS-1/
AU-3 Signal
RLRDIINT[3—1]
RTILOC_LRDIINH, RTLSLOF_LRDIINH[3—1], RTLSOOF_LRDIINH[3—1],
RK2DINS[3—1][2:0]
(0x1D, 0x67, 0x6E, 0x70,
0x72)
R_D4TOD12_PASS[3—1]
(0x75)
R_S1_PASS[3—1]
(0x76)
RSFEBEINH[3—1]
RSFEBEERRINS[3—1]
(0x65)
R_E2_PASS[3—1]
(0x76)
1. Software enable when all hardware inhibit signals are 1.
(continued)
(continued)
Bytes
Affected/
Action
K2[2:0]
Automatic/
Software
D4 to D12 1 = pass input data, 0 = insert default value.
S1 1 = pass input data, 0 = insert default value.
M0
Automatic
or Error
Insert
E2 1 = pass input data, 0 = insert default value.
RLRDIINT[3—1] = (TILOC (RTLSLOF[3—1] (RTLSOOF[3—1] If (all associated inhibit signals are active) then insert software value RK2DINS[3—1][2:0] else insert 110 pattern when RLRDIINT[3—1] is active else insert 000 pattern.
If (RSFEBEINH = 1) then inhibit the insertion of B2 errors and set the byte to the default value else if (RSFEBEERRINS = 1) then insert an error into the output byte else output B2 errors per frame from the associated transmit input.
Action
TILOC_LRDIINH
AND
RTLSLOF_LRDIINH[3—1]
AND
RTLSOOF_LRDIINH[3—1]
AND
OR
) ) OR
1
);
Agere Systems Inc. 43
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Maintenance Functions
Receive Functions
Receive Transport Overhead Access Channel (RTOAC)
A TOAC is provided on-chip to drop the TOH portion of the incoming SDH or SONET frame. The TOAC channel consists of the following signals:
1. 5.184 MHz clock signal, sourced by the device (RTOACCLKO, RTOAC_CLKINV).
2. A 5.184 Mbits/s data signal, sourced by the device (RTOACDATAO).
3. An 8 kHz synchronization signal, sourced by the device. The sync signal is normally low; during the last clock period of each frame coincident with the least significant bit of the eighty-first byte or coincident with the least significant bit of the first byte, the sync signal can go high (RTOACS_A1orEND, 0x4F).
An inhibit signal is provided through the control interface to place the clock, data, and sync signal into a high­impedance state (RTOACINH, 0x4F).
The data signal is partitioned into frames of 81 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first. The MSB of the first byte of each frame contains an odd/even parity bit over the 648 bits of the previous frame. The remaining 7 bits of this byte are not specified.
Bytes shown in Table 19 summarize the access capabilities of the receive TOAC. Bytes indicated in bold type are not specified in the standard, but are labeled here for clarity.

Table 19. Transport Overhead Byte Access—Receive Direction

(continued)
(continued)
OH Pty A1-2 A1-3 A2-1 A2-2 A2-3 J0 Z0-2 Z0-3
B1 B1-2 B1-3 E1 E1-2 E1-3 F1 F1-2 F1-3
D1 D1-2 D1-3 D2 D2-2 D2-3 D3 D3-2 D3-3
H1-1 H1-2 H1-3 H2 H2-2 H2-3 H3 H3-2 H3-3
B2-1 B2-2 B2-3 K1 K1-2 K1-3 K2 K2-2 K2-3
D4 D4-2 D4-3 D5 D5-2 D5-3 D6 D6-2 D6-3
D7 D7-2 D7-3 D8 D8-2 D8-3 D9 D9-2 D9-3
D10 D10-2 D10-3 D11 D11-2 D11-3 D12 D12-2 D12-3
S1 Z1-2 Z1-3 Z2-1 Z2-2 M1 E2 E2-2 E2-3
OH Parity
Even or odd parity can be inserted into the first bit of the MSB byte (RTOAC_OEPINS, 0x4F) of the TOAC outgo­ing frame.
4444 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer

Typical Uses

Section and Line Termination Multiplex

Using the device without internal loopbacks results in a multiplex/demultiplex operation.
SPE
LOCAL CLOCK
GENERATION
OVERHEAD
MONITOR
OVERHEAD GENERATE
MICROPROCESSOR
INTERFACE
CONTROL SIGNALS
STS-1/AU-3 IN
TRANSMIT DIRECTION
RECEIVE DIRECTION
CONTROL SIGNALS
STS-1/AU-3 OUT
BUS
CONTROL
BUS
CONTROL
DROP
SELECT
LOGIC
ADD
SELECT/
MULTI-
CAST
LOGIC
OVERHEAD
MONITOR
OVERHEAD
MONITOR
1:3
DEMUX
LOGIC
3:1
MUX
LOGIC
TOAC
INSERT
TRANSPORT/PATH
MONITOR
TOAC DROP
FRAMER
STS-3/STM-1 (AU-4) OUT
STS-3/STM-1 (AU-4) IN
5-5296 (F)

Figure 4. Line Termination Multiplex

Agere Systems Inc. 45
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Typical Uses
(continued)

Add/Drop Multiplex

Using the device with STS-1/AU-3 internal loopbacks results in an add/drop multiplex.
STS-3 IN
RECEIVE DIRECTION TRANSMIT DIRECTION
DROP SELECT
LOGIC
FRAMER
TRANSPORT
MONITOR
1:3
DEMUX
LOGIC
DROP SELECT
LOGIC
BUS
CONTROL
LOGIC
STS-1/AU-3 IN
STS-1/AU-3 OUT
SELECT/
MULTI-
ADD
CAST
LOGIC
OVERHEAD
GENERATE
3:1
MUX
LOGIC
STS-3 OUT
5-5297 (F)

Figure 5. Add/Drop Multiplex

Digital Cross Connect

Using the device with STS-3 internal loopback results in a digital cross connect.
OVERHEAD GENERATE
STS-1/AU-3 #1 IN
STS-1/AU-3 #2 IN
STS-1/AU-3 #3 IN
OVERHEAD
MONITOR
OVERHEAD
MONITOR
OVERHEAD
MONITOR
3:1
MUX
LOGIC
FRAMER
TRANSPORT
MONITOR
1:3
DEMUX
LOGIC

Figure 6. Digital Cross Connect

DROP
SELECT
LOGIC
STS-1/AU-3 #1 OUT
STS-1/AU-3 #2 OUT
STS-1/AU-3 #3 OUT
5-5298 (F)
4646 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer

Microprocessor Interface

Overview

The device is equipped with an asynchronous microprocessor interface that can operate with most commercially available microprocessors. Inputs MPMUX and MPMODE are used to configure this interface into one of four pos­sible modes. The MPMUX setting selects either a multiplexed 8-bit address/data bus (AD[7:0]) or a demultiplexed 8-bit address bus (A[7:0]) and an 8-bit data bus (AD[7:0]). The MPMODE setting selects the associated set of reg­isters within the device.
Due to device flexibility, there are no default powerup or reset states. All read/write registers must be written by the microprocessor on system start-up to guarantee proper device functionality. The microprocessor interface can operate at speeds up to 32.768 MHz in interrupt-driven or polled modes without requiring any wait-states.

Microprocessor Configuration Modes

Table 20 highlights the four microprocessor modes controlled by the MPMUX and MPMODE inputs.

Table 20. Microprocessor Configuration Modes

Mode MPMODE MPMUX Address/Data Bus Generic Control, Data and Output Pin Names
MODE 1 0 0 DeMUXed CS
MODE 2 0 1 MUXed CS, AS, DS, R/W, AD[7:0], INT, DTACK
MODE 3* 1 0 DeMUXed CS, ALE, RD, WR, A[7:0], AD[7:0], INT, RDY
MODE 4 1 1 MUXed CS
* When the MPMODE3ALE input pin = 0, ALE is not used to retime the incoming address.
, AS, DS, R/W, A[7:0], AD[7:0], INT, DTACK
, ALE, RD, WR, AD[7:0], INT, RDY

Microprocessor Interface Pinout Descriptions

The MODE [1—4] specific pin definitions are given in Table 21. Note that the microprocessor interface uses the same set of pins in all modes.

Table 21. MODE [1—4] Microprocessor Pin Definitions

Configuration Device Pin
Name
MODE 1 WR
_DS DS Input Active-Low Data Strobe
RD
_R/W R/W Input Read/Write
ALE_AS
Generic Pin
Name
AS Input Address Strobe
Pin
Typ e
Assertion
Sense
R/W R/W
Function
= 1 for Read = 0 for Write
CS
INT INT Output Active-High Interrupt
RDY_DTACK
AD[7:0] AD[7:0] I/O Data Bus
A[7:0] A[7:0] Input Address Bus
Agere Systems Inc. 47
CS Input Active-Low Chip Select
DTACK Output Active-Low Data Acknowledge
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Microprocessor Interface Pinout Descriptions
Table 21. MODE [1—4] Microprocessor Pin Definitions (continued)
Configuration Device Pin
Name
MODE 2 WR
MODE 3 WR
_DS DS Input Active-Low Data Strobe
RD
_R/W R/W Input Read/Write
ALE_AS
CS
INT INT Output Active-
RDY_DTACK
AD[7:0] AD[7:0] I/O Address/Data Bus
_DS WR Input Active-Low Write
_R/W RD Input Read
RD
(continued)
Generic Pin
Name
DTACK Output Active-Low Data Acknowledge
(continued)
Pin
Type
AS Input Address Strobe
CS Input Active-Low Chip Select
Assertion
Sense
High
Function
R/W
= 1 for Read
R/W
= 0 for Write
Interrupt
MODE 4 WR
* Optional (MPMODE3ALE).
ALE_AS
CS
INT INT Output Active-
RDY_DTACK
AD[7:0] AD[7:0] I/O Data Bus
A[7:0] A[7:0] Input Address Bus
_DS WR Input Active-Low Write
RD
_R/W RD Input Read
ALE_AS
CS
INT INT Output Active-
RDY_DTACK
AD[7:0] AD[7:0] I/O Address/Data Bus
ALE* Input Address Latch
Enable
CS Input Active-Low Chip Select
Interrupt
High
RDY Output Active-Low Ready
ALE Input Address Latch
Enable
CS Input Active-Low Chip Select
Interrupt
High
RDY Output Active-Low Ready
4848 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
(continued)

Microprocessor Interface Register Architecture

The register bank architecture of the microprocessor interface is shown in Table 22. Addresses referred to in this section are given in decimal, with the hexadecimal representation in parentheses.

Table 22. Device-Level Register Map

Addr
D (Hex)
0(00) INT
1(01) DEVID[15:8] = 0x31
2(02) DEVID[7:0] = 0x55
3(03) DEVVER[7:0] = 0x00
4(04) TA1A2ERREN TSTGENE8INS SFCLEAR SFSET SDCLEAR SDSET RSTCTL LATCH_CNT
5(05) RA1A2ERREN
6(06) SCRATCH[7:0]
7(07) TILOCFD TTOAC_PERRE TLSPARE3 TLSPARE2 TLSPARE1
8(08) TLSLOFD3 TLSLOFD2 TLSLOFD1 TLSOOFD3 TLSOOFD2 TLSOOFD1
9(09) TLSH4MISD3 TLSH4MISD2 TLSH4MISD1 TLSPTRMISD3 TLSPTRMISD2 TLSPTRMISD1
10(0A) RHSPA RE RHSSFD RHSSDD RHSLOSD RHSLOFD RHSOOFD RILOCD
11(0B) RAPSMOND RK2MOND RPAISD3 RPAISD2 RPAISD1 RLOPD3 RLOPD2 RLOPD1
12(0C) RAPSBABLEE RLRDIMOND RLAISMOND RJ1MISE RS1MOND RF1MOND RJ0Z0MOND
13(0D) RHS NPIMISD RHSH4MISE RRDIPD3 RRDIPD2 RRDIPD1 RC2MOND3 RC2MOND2 RC2MOND1
14(0E) RZ3MOND3 RZ3MOND2 RZ3MOND1 RF2MOND3 RF2MOND2 RF2MOND1
15(0F) RZ5MOND3 RZ5MOND2 RZ5MOND1
16(10) TILOCFM TTOAC_PERRM TLSPARM3 TLSPARM2 TSLSPARM1
17(11) TLSLOFM3 TLSLOFM2 TLSLOFM1 TLSOOFM3 TLSOOFM2 TLSOOFM1
18(12) TLSH4MISM3 TLSH4MISM2 TLSH4MISM1 TLSPTRMISM3 TLSPTRMISM2 TLSPTRMISM1
19(13) RHSPARM RHSSFM RHSSDM RHSLOSM RHSLOFM RHSOOFM RILOCM
20(14) RAPSMONM RK2MONM RPAISM3 RPAISM2 RPAISM1 RLOPM3 R LOPM2 RLOPM1
21(15) RAPSBABLEM RLRDIMONM RLAISMONM RJ1MISM RS1MONM RF1MONM RJ0Z0MONM
22(16) RHSNPIMISM RHSH4MISM RRDIPM3 RRDIPM2 RRDIPM1 RC2MONM3 RC2MONM2 RC2MONM1
23(17) RZ3MONM3 RZ3MONM2 RZ3MONM1 RF2MONM3 RF2MONM2 RF2MONM1
24(18) RZ5MONM3 RZ5MONM2 RZ5MONM1
25(19) TILOC TILOF TLSLOF3 TLSLOF2 TLSLOF1 TLSOOF3 TLSOOF2 TLSOOF1
26(1A) TPRDIINT TLRDIINT TLSH4MIS3 TLSH4MIS2 TLSH4 MIS1 TLSPTRMIS3 TLSPTRMIS2 TLSPTRMIS1
27(1B) RCDRLOC RHSSF RHSS D RHSLOSEXTI RHSLOS RHSLOF RHSOOF RILOC
28(1C) CONCAT_STATE2[1:0] RPAIS3 RPAIS2 RPAIS1 RLOP3 RLOP2 RLOP1
29(1D) RHSNPIMIS RLRDIMON RLAISMON CONCAT_STATE3[1:0] RLRDIINT3 RLRDIINT2 RLRDIINT1
30(1E) RJ0MON[7:0]
31(1F) RZ02MON[7:0]
32(20) RZ03MON[7:0]
33(21) RF1MON0[7:0]
34(22) RF1MON1[7:0]
35(23) RAPSMON[12:8] RK2MON[2:0]
36(24) RAPSMON[7:0]
37(25) RS1MON[7:0]
38(26) RC2MON1[ 7:0]
39(27) RC2MON2[ 7:0]
40(28) RC2MON3[ 7:0]
41(29) RF2MON1[7:0]
42(2A) RF2MON2[7:0]
7 (1) 6 (2) 5 (3) 4 (4) 3 (5) 2 (6) 1 (7) 0 (8)
One-Shot (0 to 1 Transition) Control Bit Parameters—Read/Write (R/W)
* Shaded blocks are reserved for future or internal use.
Bit Number—Device (ANSI)*
Common Fixed Parameters—Read Only (RO)
Controller Scratch Byte—R/W
Delta and Event Parameters—COR-RO
INTN Mask Parameters—R/W
State and Value Parameters—RO
Receive Monitor Values—RO
Agere Systems Inc. 49
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Microprocessor Interface Register Architecture
(continued)
(continued)
Table 22. Device-Level Register Map (continued)
Addr
D (Hex)
43(2B) RF2MON3[7:0]
44(2C) RZ3MON1[7:0]
45(2D) RZ3MON2[7:0]
46(2E) RZ3MON3[7:0]
47(2F) RZ5MON1[7:0]
48(30) RZ5MON2[7:0]
49(31) RZ5MON3[7:0]
50(32) RRDIP2[2:0] RRDIP1[2:0]
51(33) RRDIP3[2:0]
52(34) RSONET_SDH RSTS3_AU4 MODE [1:0] – RO
53(35) TLSCLKINV T LSV1DISABLE TLSVOEPAR
54(36) TSEL1[2:0] TLSDSCR1
55(37) TLS_UNEQUIP1 TLS_LAISINS1
56(38) TSEL2[2:0] TLSDSCR2
57(39) TLS_UNEQUIP2 TLS_LAISINS2
58(3A) TSEL3[2:0] TLSDSCR3
59(3B) TLS_UNEQUIP3 TLS_LAISINS3
60(3C)
61(3D) T HSSCR RHS2THSLB THSCHIZ THSS HIZ THSDHIZ
62(3E) TSS[1:0] TPFEBEINH TSFE BEINH TJ1INS TS1INS TF1INS
63(3F) TJ0DINS[7:0]
64(40) TZ02DINS[7:0]
65(41) TZ03DINS[7:0]
66(42) TF1DINS[7:0]
67(43) TAPSINS[12:8] TK2INS[2:0]
68(44) TAPSINS[7:0]
69(45) TS1DINS[7:0]
70(46) TC2DINS[7:0]
71(47) TF2DINS[7:0]
72(48) TZ3DINS[7:0]
73(49) TZ5DINS[7:0]
74(4A) TLRDIINH TRHSSF_LRDIINH
75(4B) TPRDIINS TRLOP1_PRDIINH
76(4C)
77(4D) TPFEBEEINS TSFEBEEINS TAPSBABLEINS
78(4E) TH1H2CRUPEN[3—1]
79(4F) RTOAC_CLKINV
80(50) TTOAC_E2[1:0] TTOAC_E1[1:0] TTOAC_D4TO12[1:0] TTOAC_D1TO3[1:0]
81(51) TTOAC_INS[1:0] TTOAC_Z2[1:0] TTOAC_Z1[1:0] TTOAC_F1[1:0]
82(52) TSTPHASE UPDWN CHOLD CNTEN BYPASS CDR_TSTSHFTLD CDR_TSTMODE
83(53) TLBITCNT[2:0] TLSTS1CNT[1:0] TLCOLCNT[6:4]
84(54) TLCOLCNT[3:0] TLROWCNT[3:0]
7 (1) 6 (2) 5 (3) 4 (4) 3 (5) 2 (6) 1 (7) 0 (8)
Low-Speed Transmit Common Control Signals—R/W
THSCLKSEL_DORS
THSPAROEG THSSA1orEND TH SCLKINV THSPTYPE[1:0] THSCLKTYPE[1:0]
RTOACS_A1orEND
Transmit High-Speed Clock/Port Control—R/W
TRPAIS1_PRDIINH TRLAISMON_PRDIINH TRHSLOF_PRDIINH TRHSOOF_PRDIINH TRHSLOS_PRDIINH
Transmit High-Speed Error Insert Control Parameters—R/W
RTOAC_OEPINS RTOACINH TTOAC_CLKINV TTOACSA1orEND TTOAC_OEPMON TTOACINH
* Shaded blocks are reserved for future or internal use.
Bit Number—Device (ANSI)*
Mode Control—R/W
Transmit Low-Speed Port 1 Input—R/W
Transmit Low-Speed Port 2 Input—R/W
Transmit Low-Speed Port 3 Input—R/W
Transmit High-Speed Control Signals—R/W
Transmit High-Speed Line RDI Insertion Inhibit Bits—R/W
TRLAISMON_LRDIINH TRHSLOF_LRDIINH TRHSOOF_LRDIINH TRHSLOS_LRDIINH
Transmit High-Speed Path RDI Insertion Inhibit Bits—R/W
THSB3ERRINS
TH1H2CRUPPorNDF
Receive/Transmit TOAC Control—R/W
Transmit High-Speed Output Offset Control—R/W
FEBEBITBLOCKCNT
TLSPTRMIS_AISINH1 TLSH4MIS_AISINH1
TLSPTRMIS_AISINH2 TLSH4MIS_AISINH2
TLSPTRMIS_AISINH3 TLSH4MIS_AISINH3
BITBLOCKCNT TSONET_SDH TSTS3_AU4
THSB2ERRINS[3—1] THSB1ERRINS
TA1A2ERRINS[4:0]
TPAT23or15 TSTGEN_PSEL[1:0]
TLSLOF_AISINH1 TLSOOF_AISINH1
TLSLOF_AISINH2 TLSOOF_AISINH2
TLSLOF_AISINH3 TLSOOF_AISINH3
TRILOC_LRDIINH
TRILOC_PRDIINH
5050 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Microprocessor Interface Register Architecture
(continued)
(continued)
Table 22. Device-Level Register Map (continued)
Addr
D (Hex)
85(55) THS2RHSLB RHS DSCR
86(56) J1PSELMON[1: 0] RSEL3[1: 0] RSEL2[1:0] RSEL1[1:0]
87(57) RLSSCR[3—1]
88(58)
89(59) LOSDETCNT[7:0]
90(5A) CNTDF1[3:0] CNTDJ0Z0[3:0]
91(5B) CNTDAPS[3:0] CNTDK2[3:0]
92(5C) CNTDAPSFRAME[3:0] CNTDS1[3:0]
93(5D) CNTDG1[3:0] CNTDC2[3:0]
94(5E) CNTDF2[3:0] CNTDZ3[3:0]
95(5F) CNTDB1SEL RLOCINH CNTCIP_ICI[1:0] CNTDZ5[3:0]
96(60)
97(61)
98(62) RA1A2ERRPEN[3—1] RA1A2ERRINS[4:0]
99(63) RB2ERRINS[3—1] RB1ERRINS[3—1]
100(64)
101(65) RSFEBEERRINS[3—1] RSFEBEINH[3—1]
102(66) RLAISINS[3—1] RAPSBABLEINS[3—1]
103(67)
104(68) RC1DINS1[7:0]
105(69) RC1DINS2[7:0]
106(6A) RC1DINS3[7:0]
107(6B) RF1DINS1[7:0]
108(6C) R F1DINS2[7:0]
109(6D) R F1DINS3[7:0]
110(6E) RAPSINS1[12:8] RK2DINS1[2:0]
111( 6F) RAPSINS1[7:0]
112(70) RAPSINS2[12:8] RK2DINS2[2:0]
113(71) RAPSINS2[7:0]
114(72) RAPSINS3[12:8] RK2DINS3[2:0]
115(73) RAPSINS3[7:0]
116(74) R_OVH_PASS R_Z2_PASS R_F1_PASS[3—1] R_E1_PA SS[3—1]
117(75) R_Z1_PASS[3—2] R_D4TOD12_PASS[3—1] R_D1TOD3_PASS[3—1]
118(76) R_E2_PASS[3—1] R_S1_PASS[3—1]
119(77)—
126(7E)
127(7F) PAGE[1:0]
7 (1) 6 (2) 5 (3) 4 (4) 3 (5) 2 (6) 1 (7) 0 (8)
RCONCATMODE
RRLAISMON_AISINH RRHSLOS_AISINH RRHSLOF_AISINH RRHSOOF_AISINH RRILOC_AISINH
RTSTDRP_OOS
Receive Low-Speed Output Overhead Control—R/W
RH1H2CRUPPorNDF
RTILOC_LR DIINH
* Shaded blocks are reserved for future or internal use.
Bit Number—Device (ANSI)*
Receive High/Low-Speed Port Control—R/W
RRDI_MPYorEFC RHSVOEPAR RHSEDGE RHSPTYPE[1:0]
RHSPORCDRSEL
Continuous N Times Detect Values—R/W
Receive Test Pattern Drop—R/W, RO
RH1H2CRUPEN[3—1] RF1INS[3—1]
RTLSLOF_LRDIINH[3—1] RTLSOOF_LRDIINH[3—1]
PAISLOP_AISINH TLS2RLSLB RLSCLKINV RLSPAROEG
LOSDETCNT[10:8]
RPAT23or15 RTSTDRP_PSEL[1:0]
RTSTDRP_ECNT[7:0]

Table 23. Page 0—J1 Byte Insert and Monitor

Addr
D (Hex)
128 (80)— 191 (BF)
192 (C0)—255 (FF)
7 (1) 6 (2) 5 (3) 4 (4) 3 (5) 2 (6) 1 (7) 0 (8)
Bit Number—Device (ANSI)
J1 Byte Transmit Insert—64 Bytes—R/W
TJ1DINS[64—1][7:0]
J1 Byte Receive Monitor—64 Bytes—RO
RJ1MON[64—1][7:0]
Agere Systems Inc. 51
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Microprocessor Interface Register Architecture
(continued)
(continued)

Table 24. Page 1—Error Counters

Addr
D (Hex)
128(80) TLSB1ECNT1[15:8]
129(81) TLSB1ECNT1[7:0]
130(82) TLSB1ECNT2[15:8]
131(83) TLSB1ECNT2[7:0]
132(84) TLSB1ECNT3[15:8]
133(85) TLSB1ECNT3[7:0]
134(86) TLSB2ECNT1[17:16]
135(87) TLSB2ECNT1[15:8]
136(88) TLSB2ECNT1[7:0]
137(89) TLSB2ECNT2[15:8]
138(8A) TLSB2ECNT2[7:0]
139(8B) TLSB2ECNT3[15:8]
140(8C) TLSB2ECNT3[7:0]
141(8D) RHSB1ECNT[15:8]
142(8E) RHSB1ECNT[7:0]
143(8F) RHSB2ECNT[17:16]
144(90) RHSB2ECNT[15:8]
145(91) RHSB2ECNT[7:0]
146(92) RHSB3ECNT1[15:8]
147(93) RHSB3ECNT1[7:0]
148(94) RHSB3ECNT2[15:8]
149(95) RHSB3ECNT2[7:0]
150(96) RHSB3ECNT3[15:8]
151(97) RHSB3ECNT3[7:0]
152(98) RPTR_INC1[10:8]
153(99) RPTR_INC1[7:0]
154(9A) RPTR_INC2[10:8]
155(9B) RPTR_INC2[7:0]
156(9C) RPTR_INC3[10:8]
157(9D) RPTR_INC3[7:0]
158(9E) RPTR_DEC1[10:8]
159(9F) RPTR_D EC1[7:0 ]
160(A0) RPTR_DEC2[10:8]
161(A1) RPTR_DE C2[7:0]
162(A2) RPTR_DEC3[10:8]
163(A3) RPTR_DE C3[7:0]
164(A4) RSFEBEC NT[17:16]
165(A5) RSFEBECNT[15:8]
166(A6) RSFEBECNT[7:0]
167(A7) RPFEBECNT1[15:8]
168(A8) RPFEBECNT1[7:0]
169(A9) RPFEBECNT2[15:8]
170(AA) RPFEBECNT2[7:0]
171(AB) RPFEBECNT3[15:8]
172(AC) RPFEBECNT3[7:0]
7 (1) 6 (2) 5 (3) 4 (4) 3 (5) 2 (6) 1 (7) 0 (8)
Transmit Low-Speed B1 and B2 Error Counts—RO
Receive High-Speed B1, B2, and B3 Error Counts—RO
Receive High-Speed Pointer INCrement and DECrement Counters—RO
Receive High-Speed Section/Path FEBE Counts—RO
* Shaded blocks are reserved for future or internal use.
Bit Number—Device (ANSI)*
5252 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Microprocessor Interface Register Architecture
(continued)
(continued)

Table 25. Page 2—BER Algorithm Parameters

Addr
D (Hex)
128(80) SDNsSet[18:16]
129(81) SDNsSet[15:8]
130(82) SDNsSet[7:0]
131(83) SDB1B2SEL SDLSet[3:0]
132(84) SDMSet[7:0]
133(85) SDBSet[15:8]
134(86) SDBSet[7:0]
135(87) SDNsClear[18:16]
136(88) SDNsClear[15:8]
137(89) SDNsClear[7:0]
138(8A) SDLClear[3:0]
139(8B) SDMClear[7:0]
140(8C) SDBClear[15:8]
141(8D) SDBClear[7:0]
142(8E) SFNsSet[18:16]
143(8F) SFNsSet[15:8]
144(90) SFNsSet[7:0]
145(91) SFB1B2SEL SFLSet[3:0]
146(92) SFMSet[7:0]
147(93) SFBSet[15:8]
148(94) SFBSet[7:0]
149(95) SFNsClear[18:16]
150(96) SFNsClear [15:8]
151(97) SFNsClear[7:0]
152(98) SFLClear[3:0]
153(99) SFMClear[7:0]
154(9A) SFBClear[15: 8]
155(9B) SFBClear[7:0]
156(9C)—
255(FF)
7 (1) 6 (2) 5 (3) 4 (4) 3 (5) 2 (6) 1 (7) 0 (8)
Signal Degrade Set/Clear Control Registers—R/W
Signal Fail Set/Clear Control Registers—R/W
* Shaded blocks are reserved for future or internal use.
Bit Number—Device (ANSI)*
Invalid
Agere Systems Inc. 53
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
(continued)

Register Description

This section gives a brief description of each register bit and its functionality. All algorithms are described in the main text of the document or in the maintenance section of the document. The abbreviations after each register indicate if the register is read only (RO), clear-on-read (COR), or read/write (R/W).

Table 26. Register 0 (RO)

Address
Dec (Hex)
0 (0x00) 0 INT Interrupt. The active-high bit is a copy of the INT

Table 27. Registers 1—3 (RO)

Address
Dec (Hex)
1 (0x01) 7—0 DEVID[15:8] Device ID. Upper device ID byte of the number
2 (0x02) 7—0 DEVID[7:0] Device ID. Lower device ID byte of the number
3 (0x03) 7—0 DEVVER[7:0] Device Version Number. Device version register
Bit Name Function Reset
Default
0 pin. This bit is the ORing of all event and delta bits (registers 0x07—0x0F). An event or delta bit contribution can be inhibited from contributing to this bit by setting the appropriate mask bit (see Mask Bit Operation on page 28).
Bit Name Function Reset
Default
0x31
which uniquely identifies the device.
0x55
which uniquely identifies the device.
0x03
will change each time the device is changed.
Table 28. Registers 4, 5: One-Shot Register 0 1 (R/W)
Address
Dec (Hex)
4 (0x04) 7 TA1A2ERREN Transmit A1/A2 Error Enable. Inserts framing
4 (0x04) 6 TSTGENE8INS Test Generation 8 Error Insert. Inserts eight errors
4 (0x04) 5 SFCLEAR Signal Fail Clear. Allows the signal fail algorithm to
4 (0x04) 4 SFSET Signal Fail Set. Allows the signal fail algorithm to
4 (0x04) 3 SDCLEAR Signal Degrade Clear. Allows the signal degrade
4 (0x04) 2 SDSET Signal Degrade Set. Allows the signal degrade
Bit Name Function Reset
errors into the output STS-3/STM-1 (AU-4) signal. The number of consecutive errors is controlled by TA1A2ERRINS[4:0], 0x4D.
into the pseudorandom signal being inserted into the selected TUG-3 signal.
be forced into the normal state.
be forced into the failed state.
algorithm to be forced into the normal state.
algorithm to be forced into the failed state.
Default
0
0
0
0
0
0
5454 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Description
Table 28. Registers 4, 5: One-Shot Register 0 1 (R/W) (continued)
Address
Dec (Hex)
4 (0x04) 1 RSTCTL Reset Control (Software). Resets the device. This
4 (0x04) 0 LATCH_CNT Latch Count. Causes all counters to latch their val-
5 (0x05) 7 RA1A2ERREN Receive A1/A2 Error Enable. Inserts framing

Table 29. Register 6: Scratch Register (R/W)

Address
Dec (Hex)
6 (0x06) 7—0 SCRATCH [7:0] Scratch Register. Allows the control system to
Bit Name Function Reset
Bit Name Function Reset
(continued)
(continued)
reset has the same effect as the external RESET pin. This is a service affecting action. All state machines and registers bits will revert to their default values.
ues and clear their internal counters, except the test drop counter. These counters are large enough to hold at least one second’s worth of data.
errors into the respective output STS-1/AU-3 signal.
verify read and write operations to the device without affecting device operation.
Default
0
0
0
Default
0x00

Table 30. Registers 7—15: Delta/Event (COR-RO)

Address
Dec (Hex)
7 (0x07) 7 TILOCFD Transmit Input Loss of Clock and Frame Delta.
7 (0x07) 3 TTOAC_PERRE Transmit Transport Overhead Access Channel
7 (0x07) 2—0 TLSPARE[3—1] Transmit Low-Speed Parity Error Event (Input
Bit Name Function Reset
Delta bit indicates a change of state for the local clock (TILOC, 0x19) or frame sync (TILOF, 0x19). The delta bit clears when read. Its mask bit is TILOCFM, 0x10.
Note: The TILOF state is not supported in version
3 of the device.
(TOAC) Parity Error Event. Event register indicates a parity error was detected on the incoming transmit section overhead access channel. The bit will be cleared when read, but will be set again if the condition persists. Its mask bit is TTOAC_PERRM, 0x10.
Port Number). Indicates a byte transfer parity error on the respective STS-1/AU-3 input. These bits will clear when read, but will be set again if the condi­tion persists. Their mask bits are TLSPARM[3—1], 0x10.
Default
0
0
000
Agere Systems Inc. 55
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 30. Registers 7—15: Delta/Event (COR-RO) (continued)
Address
Dec (Hex)
8 (0x08) 5—3 TLSLOFD[3—1] Transmit Low-Speed Loss-of-Frame Delta. Delta
8 (0x08) 2—0 TLSOOFD[3—1] Transmit Low-Speed Out-of-Frame Delta. Delta
9 (0x09) 5—3 TLSH4MISD[3—1] Transmit Low-Speed H4 Mismatch Delta. Delta
9 (0x09) 2—0 TLSPTRMISD[3—1] Transmit Low-Speed Pointer Mismatch Delta.
10 (0x0A) 7 RHSPARE Receive High-Speed Parity Error Event. Event bit
10 (0x0A) 6 RHSSFD Receive High-Speed Signal Fail Delta. Receive 10 (0x0A) 5 RHSSDD 0
10 (0x0A) 3 RHSLOSD Receive High-Speed Loss-of-Signal Delta. Delta
(continued)
Bit Name Function Reset
(continued)
bits indicate a change in state of the loss-of-frame (TLSLOF[3—1], 0x19) monitor on each STS-1/AU­3 input. The associated mask bits are TLSLOFM[3—1], 0x10.
bits indicate a change in state of the out-of-frame (TLSOOF[3—1], 0x19) monitor on each STS-1/ AU-3 input. The associated mask bits are TLSOOFM[3—1], 0x11.
bits indicate a change in state of the H4 multiframe pointer mismatch (TLSH4MIS[3—1], 0x1A) monitor on each AU-3 input. The associated mask bits are TLSH4MISM[3—1], 0x12.
Delta bits indicate a change in state of the pointer value monitor (H1, H2) (TLSPTRMIS[3—1], 0x1A) on each AU-3 input. The associated mask bits are TLSPTRMISM[3—1], 0x12.
indicates a parity error was detected on a nibble/ byte transfer on the STS-3/STM-1 (AU-4) input. Its mask bit is RHSPARM, 0x13.
High-Speed Signal Degrade Delta. Delta bits are set each time the signal fail and signal degrade state values change (RHSSF, 0x1B, RHSSD, 0x1B), respectively. The associated mask bits are RHSSFM, 0x13 and RHSSDM, 0x13.
bit indicates a change in state (RHSLOS, RHSLOSEXTI, 0x1B) when a loss of signal is detected. It clears on the incoming STS-3/STM-1 (AU-4) input. The RHSLOSEXTI is an external input from a device pin. RHSLOS is an internal indicator monitoring for a consecutive zero/ones pattern in the unscrambled data input. Its mask bit is RHSLOSM, 0x13.
Default
000
000
000
000
0
0
0
5656 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
Table 30. Registers 7—15: Delta/Event (COR-RO) (continued)
Address
Dec (Hex)
10 (0x0A) 2 RHSLOFD Receive High-Speed Loss-of-Frame. Delta bit
10 (0x0A) 1 RHSOOFD Receive High-Speed Out-of-Frame Delta. Delta
10 (0x0A) 0 RILOCD Receive Input Loss-of-Clock Delta. Delta bit indi-
11 (0x0B) 7 RAPSMOND Receive APS (K1, K2 bytes) Monitor Delta. Delta
11 (0x0B) 6 RK2MOND Receive K2 [2:0] Monitor Delta. This feature is not
11 (0x0B) 5—3 RPAISD[3—1] Receive Path AIS Delta. Delta bit indicates a
11 (0x0B) 2—0 RLOPD[3—1] Receive Loss-of-Pointer Delta. Delta bit indicates
(continued)
Bit Name Function Reset
(continued)
indicates a change in state (RHSLOF), 0x1B when a loss of frame is detected. It clears on the incoming STS-3/STM-1 (AU-4) input. Its mask bit is RHSLOFM, 0x13.
bit indicates a change in state (RHSOOF, 0x1B) when an out of frame is detected. It clears on the incoming STS-3/STM-1 (AU-4) input. Its mask bit is RHSOOFM, 0x13.
cates a change in state (RILOC, 0x1B) of the receive STS-3/STM-1 (AU-4) input clock. Its mask bit is RILOCM, 0x13.
bit indicates a change in state (RAPSMON[12:0], 0x23—24) when a new consistent value is detected (CNTDAPS[3:0], 0x5B) in the incoming K1 and K2[7:3] bits of the input STS-3/STM-1 (AU-4) frame. Its mask bit is RAPSMONM, 0x14.
supported in version 3 of the device.
change in state (RPAIS[3—1], 0x1C) when the pointer state machines declare Path AIS (all ones in the H1 and H2 bytes) on the receive STS-3/STM-1 (AU-4) signal. Its mask bit is RPAISM[3—1], 0x14. Only port 1 information is valid in AU-4 mode.
a change in state (RLOP[3—1], 0x1C) when the pointer state machines declare loss of pointer on the receive STS-3/STM-1 (AU-4) signal. Its mask bit is RLOPM[3—1], 0x14. Only port 1 information is valid in AU-4 mode.
Default
0
0
0
0
0
000
000
Agere Systems Inc. 57
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 30. Registers 7—15: Delta/Event (COR-RO) (continued)
Address
Dec (Hex)
12 (0x0C) 7 RAPSBABLEE Receive APS Babble Event. Event bit indicates
12 (0x0C) 6 RLRDIMOND Receive Line-RDI Monitor Delta. Delta bit indi-
12 (0x0C) 5 RLAISMOND Receive Line-AIS Monitor Delta. Delta bit indi-
12 (0x0C) 3 RJ1MISE Receive J1 Mismatch Event. Event bit indicates a
12 (0x0C) 2 RS1MOND Receive S1 (Sync Status) Byte Monitor Delta.
12 (0x0C) 1 RF1MOND Receive F1 Byte Monitor Delta. Delta bit indicates
(continued)
Bit Name Function Reset
(continued)
when an inconsistent APS value has been detected CNTDAPS[3:0], 0x5B times in the incoming CNTDAPSFRAME[3:0], 0x5C frames. Its mask bit is RAPSBABLEM, 0x15.
cates a change in state (RLRDIMON, 0x1D) when the pattern 110 is detected/not detected CNTDK2[2:0], 0x1B consecutive times in the incoming STS-3/STM-1 (AU-4) frame. Its mask bit is RLRDIMONM, 0x15.
cates a change in state (RLAISMON, 0x10) when the pattern 111 is detected/not detected CNTDK2[2:0], 0x5B consecutive times in the incoming STS-3/STM-1 (AU-4) frame. Its mask bit is RLAISMONM, 0x15.
change in state in the received J1 64-byte sequence (RJ1MON[64—1][7:0], 0xC0—0xFF). Its mask bit is RJ1MISM, 0x15.
Delta bit indicates a change in state (RS1MON[7:0], 0x25) when a consecutive and consistent new value (CNTDS1[3:0], 0x5C) is detected in the incoming S1 byte of the STS-3/STM-1 (AU-4) frame. Its mask bit is RS1MONM, 0x15.
a change in state (RF1MON1[7:0], 0x22, RF1MON0[7:0], 0x21) when a consecutive and consistent new value (CNTDF1[3:0], 0x5A) is detected in the incoming F1 byte of the STS-3/ STM-1 (AU-4) frame. State byte RF1MON0[7:0] is the current new value, RF1MON1[7:0] is the previ­ous F1 value. Its mask bit is RF1MONM, 0x15.
Default
0
0
0
0
0
0
5858 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
Table 30. Registers 7—15: Delta/Event (COR-RO) (continued)
Address
Dec (Hex)
12 (0x0C) 0 RJ0Z0MOND Receive Composite J0, Z0-2, Z0-3 Monitor Delta.
13 (0x0D) 7 RHSNPIMISD Receive High-Speed Null Pointer Indicator (NPI)
13 (0x0D) 6 RHSH4MISE Receive High-Speed H4 Mismatch Event. Event
13 (0x0D) 5—3 RRDIPD[3—1] Receive RDI-P (G1 Byte) Delta. Delta bit indicates
(continued)
Bit Name Function Reset
(continued)
Delta bit indicates a change in state (RJ0MON[7:0], 0x1E, RZ02MON[7:0], 0x1F, RZ03MON[7:0], 0x20) when a consecutive and consistent new value (CNTDJ0Z0[3:0], 0x5A) is detected in the incoming J0, Z0-2, Z0-3, bytes of the STS-3/STM-1 (AU-4) frame. Its mask bit is RJ0Z0MONM, 0x15.
Delta. Delta bit indicates a change in state (RHSNPIMIS, 0x1D): a mismatch is declared when five consecutive mismatches occur separated in time by 125 µs in the received NPI value, a match is declared when two consecutive valid NPI values (byte 1 = 10011011, byte 2 = 11100000) are received spaced 125 µs apart in the STM-1 (AU-4) frame. Its mask bit is RHSNPIMISM, 0x16.
bit indicates when the received H4 value does not agree with the expected value. The sequence 00, 01, 10, and 11 should repeat in consecutive frames. When a mismatch occurs, the device will accept that new value + 1 as the expected value for the next frame. Its mask bit is RHSH4MISM, 0x16.
a change in state (RRDIP[3—1][2:0], 0x32—0x33) when a consecutive and consistent new value (CNTDG1[3:0], 0x5D) is detected in the incoming G1[3:1] bits of the STS-3/STM-1 (AU-4) frame. Its mask bit is RRDIPM[3—1], 0x16. The device will either monitor G1 bit 3 as a path yellow (RRDI_MPYorEFC = 0) or G1 bits 3 down to 1 as an enhanced failure code (RRDI_MPYorEFC = 1) under software control. Only port 1 information is valid in AU-4 mode.
Default
0
0
0
000
Agere Systems Inc. 59
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 30. Registers 7—15: Delta/Event (COR-RO) (continued)
Address
Dec (Hex)
13 (0x0D) 2—0 RC2MOND[3—1] Receive C2 (Signal Label) Monitor Delta. Delta
14 (0x0E) 5—3 RZ3MOND[3—1] Receive Z3 (Growth) Monitor Delta. Delta bit indi-
14 (0x0E) 2—0 RF2MOND[3—1] Receive F2 (User Channel) Monitor Delta. Delta
15 (0x0F) 2—0 RZ5MOND[3—1] Receive Z5 (Tandem Connection) Monitor Delta.
(continued)
Bit Name Function Reset
(continued)
bit indicates a change in state (RC2MON [3—1][7:0], 0x26—28) when a consecutive and consistent new value (CNTDC2[3:0], 0x5D) is detected in the incoming C2 bytes of the STS-3/ STM-1 (AU-4) frame. Its mask bit is RC2MONM[3—1], 0x16. Only port 1 information is valid in AU-4 mode.
cates a change in state (RZ3MON[3—1][7:0], 0x2C—2E) when a consecutive and consistent new value (CNTDZ3[3:0], 0x5E) is detected in the incoming Z3 bytes of the STS-3/STM-1 (AU-4) frame. Its mask bit is RZ3MONM[3—1], 0x17. Only port 1 information is valid in AU-4 mode.
bit indicates a change in state (RF2MON[3—1][7:0], 0x29—2B) when a consecutive and consistent new value (CNTDF2[3:0], 0x5E) is detected in the incoming F2 bytes of the STS-3/STM-1 (AU-4) frame. Its mask bit is RF2MONM[3—1], 0x17. Only port 1 information is valid in AU-4 mode.
Delta bit indicates a change in state (RZ5MON [3—1][7:0], 0x31) when a consecutive and consis­tent new value (CNTDZ5[3:0], 0x5F) is detected in the incoming Z5 bytes of the STS-3/STM-1 (AU-4) frame. Its mask bit is RZ5MONM[3—1], 0x18. Only port 1 information is valid in AU-4 mode.
Default
000
000
000
000

Table 31. Registers 16—24: Mask Bits (R/W)

Address
Dec (Hex)
16 (0x10) 7 TILOCFM Transmit Input Loss-of-Clock and Frame
16 (0x10) 3 TTOAC_PERRM Transmit TOAC Parity Error Mask. See (addr
16 (0x10) 2—0 TLSPARM[3—1] Transmit Low-Speed Parity Error Mask. See
6060 Agere Systems Inc.
Bit Name Function Reset
Default
0
Mask. See (addr 0x07) for description.
0
0x07) for description.
000
(addr 0x07) for description.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
Table 31. Registers 16—24: Mask Bits (R/W) (continued)
Address
Dec (Hex)
17 (0x11) 5—3 TLSLOFM[3—1] Transmit Low-Speed Loss-of-Frame Mask. See
17 (0x11) 2—0 TLSOOFM[3—1] Transmit Low-Speed Out-of-Frame Mask. See
18 (0x12) 5—3 TLSH4MISM[3—1] Transmit Low-Speed H4 Mismatch Mask. See
18 (0x12) 2—0 TLSPTRMISM[3—1] Transmit Low-Speed Pointer Mismatch Mask.
19 (0x13) 7 RHSPARM Receive High-Speed Parity Error Mask. See
19 (0x13) 6 RHSSFM Receive High-Speed Signal Fail Mask. See (addr
19 (0x13) 5 RHSSDM Receive High-Speed Signal Degrade Mask. See
19 (0x13) 3 RHSLOSM Receive High-Speed Loss-of-Signal Mask. See
19 (0x13) 2 RHSLOFM Receive High-Speed Loss-of-Frame Mask. See
19 (0x13) 1 RHSOOFM Receive High-Speed Out-of-Frame Mask. See
19 (0x13) 0 RILOCM Receive Input Loss-of-Clock Mask. See (addr
20 (0x14) 7 RAPSMONM Receive APS Monitor Mask. See (addr 0x0B) for
20 (0x14) 6 RK2MONM Receive K2 Monitor Mask. See (addr 0x0B) for
20 (0x14) 5—3 RPAISM[3—1] Receive Path AIS Mask. See (addr 0x0B) for
20 (0x14) 2—0 RLOPM[3—1] Receive Loss-of-Pointer Mask. See (addr 0x0B)
21 (0x15) 7 RAPSBABLEM Receive APS Babble Mask. See (addr 0x0C) for
21 (0x15) 6 RLRDIMONM Receive Line RDI Monitor Mask. See (addr 0x0C)
21 (0x15) 5 RLAISMONM Receive Line AIS Monitor Mask. See (addr 0x0C)
21 (0x15) 2 RS1MONM Receive S1 Monitor Mask. See (addr 0x0C) for
21 (0x15) 3 RJ1MISM Receive J1 Mismatch Mask. See (addr 0x0C) for
21 (0x15) 1 RF1MONM Receive F1 Monitor Mask. See (addr 0x0C) for
21 (0x15) 0 RJ0Z0MONM Receive J0, Z0-2, Z0-3 Monitor Mask. See (addr
Agere Systems Inc. 61
(continued)
Bit Name Function Reset
(continued)
Default
000
(addr 0x08) for description.
000
(addr 0x08) for description.
000
(addr 0x09) for description.
000
See (addr 0x09) for description.
0
(addr 0x0A) for description.
0
0x0A) for description.
0
(addr 0x0A) for description.
0
(addr 0x0A) for description.
0
(addr 0x0A) for description.
0
(addr 0x0A) for description.
0
0x0A) for description.
0
description.
0
description.
000
description.
000
for description.
0
description.
0
for description.
0
for description.
0
description.
0
description.
0
description.
0
0x0C) for description.
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 31. Registers 16—24: Mask Bits (R/W) (continued)
Address
Dec (Hex)
22 (0x16) 7 RHSNPIMISM Receive High-Speed NPI Mismatch Mask. See
22 (0x16) 6 RHSH4MISM Receive High-Speed H4 Mismatch Mask. See
22 (0x16) 5—3 RRDIPM[3—1] Receive RDI-P Mask. See (addr 0x0D) for descrip-
22 (0x16) 2—0 RC2MONM[3—1] Receive C2 Monitor Mask. See (addr 0x0D) for
23 (0x17) 5—3 RZ3MONM[3—1] Receive Z3 Monitor Mask. See (addr 0x0E) for
23 (0x17) 2—0 RF2MONM[3—1] Receive F2 Monitor Mask. See (addr 0x0E) for
24 (0x18) 2—0 RZ5MONM[3—1] Receive Z5 Monitor Mask. See (addr 0x0F) for
(continued)
Bit Name Function Reset
(continued)
(addr 0x0D) for description.
(addr 0x0D) for description.
tion.
description.
description.
description.
description.
Default
0
0
000
000
000
000
000

Table 32. Registers 25—51: State Bits (RO)

Address
Dec (Hex)
25 (0x19) 7 TILOC Transmit Input Loss-of-Clock (State). See (addr
25 (0x19) 6 TILOF Transmit Input Loss-of-Frame (State). See (addr
25 (0x19) 5—3 TLSLOF[3—1] Transmit Low-Speed Loss-of-Frame (State). See
25 (0x19) 2—0 TLSLOOF[3—1] Transmit Low-Speed Out-of-Frame (State). See
26 (0x1A) 7 TPRDIINT Transmit RDI-P Internal (State). State bit indicates
26 (0x1A) 6 TLRDIINT Transmit RDI-L Internal (State). State bit indicates
26 (0x1A) 5—3 TLSH4MIS[3—1] Transmit Low-Speed H4 Mismatch (State). See
26 (0x1A) 2—0 TLSPTRMIS[3—1] Transmit Low-Speed Pointer Mismatch (State).
27 (0x1B) 7 RCDRLOC Receive Clock Data Recovery Loss-of-Clock
27 (0x1B) 6 RHSSF Receive High-Speed Signal Fail (State). See
27 (0x1B) 5 RHSSD Receive High-Speed Signal Degrade (State). See
Bit Name Function Reset
0x07) for description.
0x07) for description.
Note: This feature is not supported in version 3 of
the device.
(addr 0x08) for description.
(addr 0x08) for description.
when Path RDI is active. (Valid only in AU-4 mode.)
when Line RDI is active.
(addr 0x09) for description.
See (addr 0x09) for description.
(State). State bit indicates when the internal CDR clock is missing. This is an active-high signal.
(addr 0x0A) for description.
(addr 0x0A) for description.
Default
Unde-
fined.
Unde-
fined.
111
111
1
1
000
000
Unde-
fined.
1
1
6262 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
Table 32. Registers 25—51: State Bits (RO) (continued)
Address
Dec (Hex)
27 (0x1B) 4 RHSLOSEXTI Receive High-Speed Loss-of-Signal (External).
27 (0x1B) 3 RHSLOS Receive High-Speed Loss-of-Signal (State). See
27 (0x1B) 2 RHSLOF Receive High-Speed Loss-of-Frame (State). See
27 (0x1B) 1 RHSOOF Receive High-Speed Out-of-Frame (State). See
27 (0x1B) 0 RILOC Receive Input Loss-of-Clock (State). See (addr
28 (0x1C) 5—3 RPAIS[3—1] Receive Path AIS (State). See (addr 0x0B) for
28 (0x1C) 2—0 RLOP[3—1] Receive Loss-of-Pointer (State). See (addr 0x0B)
29 (0x1D) 7 RHSNPIMIS Receive High-Speed NPI Mismatch (State). See
29 (0x1D) 6 RLRDIMON Receive RDI-L Monitor (State). See (addr 0x0C)
28 (0x1C) 29 (0x1D)
29 (0x1D) 5 RLAISMON Receive AIS-L Monitor (State). State bit indicates
29 (0x1D) 2—0 RLRDIINT[3—1] Receive RDI-L Internal (State). State bits indicate
30 (0x1E) 7—0 RJ0MON[7:0] Receive J0 Monitor Value. See (addr 0x0C) for
31 (0x1F) 7—0 RZ02MON[7:0] Receive Z0-2 Monitor Value. See (addr 0x0C) for
32 (0x20) 7—0 RZ03MON[7:0] Receive Z0-3 Monitor Value. See (addr 0x0C) for
33 (0x21) 7—0 RF1MON0[7:0] Receive F1 Current Monitor Value. See (addr
34 (0x22) 7—0 RF1MON1[7:0] Receive F1 Previous Monitor Value. See (addr
35 (0x23) 2—0 RK2MON[2:0] Receive K2 Monitor Value. See (addr 0x0B) for
(continued)
Bit Name Function Reset
7—6 4—3
CONCAT_STATE
(continued)
[2—3][1:0]
See (addr 0x0A) for description.
(addr 0x0A) for description.
(addr 0x0A) for description.
(addr 0x0A) for description.
0x0A) for description.
description.
for description.
(addr 0x0D) for description.
for description.
Concatenation Pointer State Machine State.
State bits indicate the state of the concatenation state machine (LOPC = 10, AISC = 01, CONC = 00). These values only have meaning in the AU-4 mode and the RCONCATMODE bit (addr 0x55) set to the concatenation mode (1).
a consistent consecutive K2[2:0] value of 111 has been detected (CNTDK1[3:0]) times.
when Line RDI conditions are active on a per STS­1/AU-3 basis in the device receive path.
description.
description.
description.
0x0C) for description.
0x0C) for description.
description.
Default
Input pin
value.
1
1
1
Unde-
fined.
111
111
1
0
10
0
111
0x00
0x00
0x00
0x00
0x00
000
Agere Systems Inc. 63
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 32. Registers 25—51: State Bits (RO) (continued)
Address
Dec (Hex)
35 (0x23) 36 (0x24)
37 (0x25) 7—0 RS1MON[7:0] Receive S1 Monitor Value. See (addr 0x0C) for
38 (0x26) 39 (0x27) 40 (0x28)
41 (0x29) 42 (0x2A) 43 (0x2B)
44 (0x2C) 45 (0x2D)
46 (0x2E) 47 (0x2F)
48 (0x30) 49 (0x31)
50 (0x32) 50 (0x32) 51 (0x33)
(continued)
Bit Name Function Reset
7—3 7—0
7—0 RC2MON[1—3][7:0] Receive C2 Monitor Path Values. See (addr
7—0 RF2MON[1—3][7:0] Receive F2 Monitor Path Values. See (addr 0x0E)
7—0 RZ3MON[1—3][7:0] Receive Z3 Monitor Path Values. See (addr 0x0E)
7—0 RZ5MON[1—3][7:0] Receive Z5 Monitor Path Values. See (addr 0x0F)
5—3 2—0 2—0
RAPSMON[12:8]
RAPSMON[7:0]
(continued)
RRDIP2[2:0] RRDIP1[2:0] RRDIP3[2:0]
Receive APS Monitor Value. See (addr 0x0B) for description.
description.
0x0D) for description.
for description.
for description.
for description.
Receive RDI-P Monitor Path Values (G1 Byte).
See (addr 0x0D) for description.
Default
0000000
000000
0x00
0x00
0x00
0x00
0x00
000

Table 33. Register 52: Mode Control (R/W)

Address
Dec (Hex)
52 (0x34) 7 RSONET_SDH Receive SONET or SDH Mode. Control bit, when
52 (0x34) 6 RSTS3_AU4 Receive STS3 or AU4 Mode. Control bit, when set
52 (0x34) 5—4 MODE [1:0] Mode Value from External Pins (RO). Read-only
Bit Name Function Reset
set to a logic 0, puts the device receive path into the SONET mode; otherwise, the device receive path remains in SDH mode. For STS-1 mode, set both RSONET_SDH and RSTS3_AU4 to a logic 0, and tie the external mode control pins low.
to a logic 0, puts the device receive path into the STS-3 mode (three STS-1 signals multiplexed into an STS-3 signal); otherwise, AU-4 mode (three AU­3 signals multiplexed into an STM-1 (AU-4) signal). For STS-1 mode, set both RSONET_SDH and RSTS3_AU4 to a logic 0, and tie the external mode control pins low.
status bits allow monitoring of the external mode control pins.
Default
0
0
Must be set to 10.
6464 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
Table 33. Register 52: Mode Control (R/W) (continued)
Address
Dec (Hex)
52 (0x34) 3 FEBEBITBLOCKCNT Far-End Block Error (FEBE) Bit or Block Count
52 (0x34) 2 BITBLOCKCNT Bit or Block Error Count (Control). Control bit,
52 (0x34) 1 TSONET_SDH Transmit SONET or SDH. Control bit, when set to a
52 (0x34) 0 TSTS3_AU4 Transmit STS3 or AU4 Mode. Control bit, when set
(continued)
Bit Name Function Reset
(continued)
(Control). Control bit, when set to a logic 0, causes the FEBE counters to count bit errors; otherwise, count block errors (a block equals one frame).
when set to a logic 0, causes the counters to count bit errors; otherwise, count block errors (a block equals one frame).
logic 0, puts the device transmit path into the SONET mode; otherwise, SDH mode.
to a logic 0, puts the device transmit path into the STS-3 mode (STS-3 signal demultiplexed into three STS-1 signals); otherwise, AU-4 mode (STM-1 (AU-4) signal demultiplexed into three AU-3 signals).
Default
0
0
0
0

Table 34. Register 53: Low-Speed Transmit Common Signals (R/W)

Address
Dec (Hex)
53 (0x35) 2 TLSCLKINV Transmit Low-Speed Clock Invert Control. Con-
53 (0x35) 1 TLSV1DISABLE Transmit Low-Speed V1 Disable Control. Control
53 (0x35) 0 TLSVOEPAR Transmit Low-Speed Verify Odd or Even Parity.
Bit Name Function Reset
trol bit, when set to a logic 1, causes the output clock to be inverted; otherwise, do not invert the output clock before leaving the device.
bit, when set to a logic 1, disables the generation of V1 time signal on the transmit low-speed bus inter­face.
Control bit, when set to a logic 0, causes odd parity to be verified per byte transfer per STS-1/AU-3 input; otherwise, even parity is verified.
Default
0
0
0
Agere Systems Inc. 65
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 35. Register 54—59: Transmit Low-Speed Port Input Control (R/W)

Address
Dec (Hex)
54 (0x36) 56 (0x38) 58 (0x3A)
54 (0x36) 56 (0x38) 58 (0x3A)
55 (0x37) 57 (0x39) 59 (0x3B)
55 (0x37) 57 (0x39) 59 (0x3B)
55 (0x37) 57 (0x39) 59 (0x3B)
55 (0x37) 57 (0x39) 59 (0x3B)
55 (0x37) 57 (0x39) 59 (0x3B)
55 (0x37) 57 (0x39) 59 (0x3B)
(continued)
Bit Name Function Reset
7—5 TSEL[1—3][2:0] Transmit Select Control. Control bits allow input
0 TLSDSCR[1—3] Transmit Low-Speed Descramble Control. Con-
7 TLS_UNEQUIP[1—3] Transmit Low-Speed Unequipped Insert Con-
6 TLS_LAISINS[1—3] Transmit Low-Speed Line AIS Insert Control.
3
2 TLSH4MIS_AISINH
1 TLSLOF_AISINH[1—3] Transmit Low-Speed Loss-of-Frame AIS Inhibit
0 TLSOOF_AISINH[1—3] Transmit Low-Speed Out-of-Frame AIS Inhibit
TLSPTRMIS_AISINH
(continued)
[1—3]
[1—3]
selection and loopback operation to occur on a per STS-1/AU-3 input basis (see Table 5, Input Select Control, on page 17).
trol bit, when set to a logic 1, causes the selected STS-1/AU-3 input signal to be descrambled.
trol. Control bit, when set to a logic 1, causes an unequip signal to be generated in the selected STS-1/AU-3 time slot in the STS-3/STM-1 (AU-4) output signal; normal data is sent when set to a logic 0. Only TLS_UNEQUIP1 is used in AU-4 mode.
Control bit, when set to a logic 1, causes an AIS signal to be inserted into the selected STS-1/TUG-3 time slot in the STS-3/STM-1 (AU-4) output signal; normal data is sent when set to a logic 0. Only TLS_LAISINS1 is used in AU-4 mode.
Transmit Low-Speed Pointer Mismatch AIS Inhibit Control. Control bit, when set to a logic 1,
causes the associated failure not to contribute to the automatic insertion of AIS-L in the associated output time slot; otherwise, allow the associated alarm to contribute to the generation of AIS-L.
Transmit Low-Speed H4 Mismatch AIS Inhibit Control. Same as above.
Control. Same as above.
Control. Same as above.
Default
010 001 000
0
0
0
1
1
1
0
6666 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 36. Registers 60, 61: Transmit High-Speed Clock/Port Control (R/W)

Address
Dec (Hex)
60 (0x3C) 7 THSCLKSEL_DorS Transmit High-Speed Clock Select Differential
60 (0x3C) 6 THSPAROEG Transmit High-Speed Parity Odd or Even Gener-
60 (0x3C) 5 THSSA1orEnd Transmit High-Speed A1 or End Sync Align-
60 (0x3C) 4 THSCLKINV Transmit High-Speed Clock Invert. Control bit,
60 (0x3C) 3—2 THSPTYPE[1:0] Transmit High-Speed Port Type. Control bits con-
60 (0x3C) 1—0 THSCLKTYPE[1:0] Transmit High-Speed Clock Type. Control bits
(continued)
Bit Name Function Reset
(continued)
or Single-Ended Inputs. Control bit, when set to a logic 0, selects the differential clock and sync inputs (THSSCLKIT/C (pins 143, 142), THSSJ0J1V1IT/C (pins 140, 139)) for driving the transmit direction of the device; otherwise, the single-ended inputs (THSCLKI, THSJ0J1V1I) are selected.
ation. Control bit, when set to a logic 0, causes odd parity to be inserted in nibble/parallel mode per clock transfer on the STS-3/STM-1 (AU-4) output; a logic 1 causes even parity to be generated.
ment. Control bit, when set to a logic 0, causes the output sync to be coincident with the first bit, nibble, or byte of the outgoing frame; a logic 1 causes the sync to be coincident with the last bit, nibble, or byte of the frame.
when set to a logic 1, causes the output clock to be inverted, a logic 0 doesn’t effect the clock.
trol the type of output port (STS-3/STM-1 (AU-4): 00 = serial, 01 = nibble, 10 = byte mode).
control the type of transmit clock being provided to the device: 00 = serial clock (155.52 MHz), 01 = nibble clock (38.88 MHz), 10 = byte clock (19.44 MHz).
Default
0
0
0
0
00
00
Agere Systems Inc. 67
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 36. Registers 60, 61: Transmit High-Speed Clock/Port Control (R/W) (continued)
Address
Dec (Hex)
61 (0x3D) 7 THSSCR Transmit High-Speed Scramble Enable. Control
61 (0x3D) 6 RHS2THSLB Receive High-Speed to Transmit High-Speed
61 (0x3D) 2 THSCHIZ Transmit High-Speed Clock High-Impedance
61 (0x3D) 1 THSSHIZ Transmit High-Speed Sync High-Impedance
61 (0x3D) 0 THSDHIZ Transmit High-Speed Data High-Impedance
(continued)
Bit Name Function Reset
(continued)
bit, when set to a logic 1, causes the output STS-3/ STM-1 (AU-4) signal to be scrambled; the signal is not scrambled if set to a logic 0.
Loopback Control. Control bit, when set to a logic 1, causes the receive STS-3/STM-1 (AU-4) input signal to be looped back to the transmit high-speed output; loopback is disabled when set to a logic 0.
(Control). Control signal, when set to a logic 1, causes the output STS-3/STM-1 (AU-4) clock to be placed in a high-impedance state; a logic 0 enables the output driver.
(Control). Control signal, when set to a logic 1, causes the output STS-3/STM-1 (AU-4) sync signal to be placed in a high-impedance state; a logic 0 enables the output driver.
(Control). Control signal, when set to a logic 1, causes the output STS-3/STM-1 (AU-4) data sig­nals to be placed in a high-impedance state; a logic 0 enables the output drivers.
Default
0
0
0
0
0

Table 37. Register 62: Transmit High-Speed Control Signals (R/W)

Address
Dec (Hex)
62 (0x3E) 7—6 TSS[1:0] Transmit SS (Bits). These bits are used in the
62 (0x3E) 4 TPFEBEINH Transmit Path FEBE Inhibit. Control bit, when set
62 (0x3E) 3 TSFEBEINH Transmit Section FEBE Inhibit. Control bit, when
6868 Agere Systems Inc.
Bit Name Function Reset
Default
00 STS-1 mode to set the SS bits when an unequipped signal is being generated.
0 to a logic 1, disables hardware insertion of Path FEBE (B3 errors) in the outgoing STM-1 (AU-4) frame G1 byte; a logic 0 enables hardware insertion of PFEBE. Only valid in AU-4 mode.
0 set to a logic 1, disables hardware insertion of Sec­tion FEBE (B2 errors) in the outgoing STS-3/STM-1 frame M1 byte; a logic 0 enables hardware insertion of SFEBE.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 38. Register 62, and Page 0, Registers 128—191: Transmit High-Speed J1 Insert (R/W)

Address
Dec (Hex)
62 (0x3E) 2 TJ1INS Transmit J1 Insert (Control). Control bit, when set

Table 39. Register 62, 69: Transmit High-Speed Control Signals (R/W)

Address
Dec (Hex)
62 (0x3E) 1 TS1INS Transmit S1 Insert (Control). Control bit, when set
(continued)
Bit Name Function Reset
Bit Name Function Reset
(continued)
to a logic 1, inserts the 64-byte sequence TJ1DINS[64 —1][7:0], Page 0, 0x80—BF into the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 inserts an all-zeros pattern (0x00 for all 64 bytes of the J1DINS bytes). The TJ1DINS[64—1][7:0] val­ues are unchanged.
to a logic 1, inserts the value in TS1DINS[7:0], 0x45 into the outgoing S1 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 inserts the default value.
Default
0
Default
0

Table 40. Register 62, 66: Transmit High-Speed Control Signals (R/W)

Address
Dec (Hex)
62 (0x3E) 0 TF1INS Transmit F1 Insert (Control). Control bit, when set

Table 41. Registers 63—65: Trace/Growth Bytes (R/W)

Address
Dec (Hex)
63 (0x3F) 7—0 TJ0DINS[7:0] Transmit J0 Data Insert Value. Register value is
64 (0x40) 7—0 TZ02DINS[7:0] Transmit Z0-2 Data Insert Value. Register value is
65 (0x41) 7—0 TZ03DINS[7:0] Transmit Z0-3 Data Insert Value. Register value is
Bit Name Function Reset
to a logic 1, inserts the value in TF1DINS[7:0], 0x42 into the outgoing F1 byte in the STS-3/STM-1 (AU-4) frame; a logic 0 inserts the default value.
Bit Name Function Reset
inserted into the STS-3/STM-1 (AU-4) output J0 byte.
inserted into the STS-3/STM-1 (AU-4) output Z0-2 byte.
inserted into the STS-3/STM-1 (AU-4) output Z0-3 byte.
Default
0
Default
0x01
0x02
0x03
Agere Systems Inc. 69
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 42. Register 66: Transmit F1 Data Byte (R/W)

Address
Dec (Hex)
66 (0x42) 7—0 TF1DINS[7:0] Transmit F1 Data Insert Value. See (addr 0x3E)

Table 43. Registers 67 and 68: K1 and K2 Insert Bytes (R/W)

Address
Dec (Hex)
67 (0x43) 68 (0x44)
67 (0x43) 2—0 TK2INS[2:0] Transmit K2 Data Insert Value. Register value is

Table 44. Register 69: Transmit Sync Status Byte (R/W)

(continued)
Bit Name Function Reset
Bit Name Function Reset
7—3 7—0
TAPSINS[12:8]
(continued)
TAP SINS[7:0]
for description.
Transmit APS Data Insert Value. Register value is inserted into the STS-3/STM-1 (AU-4) output K1[7:0] and K2[7:3] bits.
inserted into the STS-3/STM-1 (AU-4) output K2[2:0] bits.
Default
0x00
Default
0000000
000000
000
Address
Dec (Hex)
79 (0x45) 7—0 TS1DINS [7:0] Transmit S1 Data Insert Value. See (addr 0x3E)

Table 45. Register 70: Path Signal Trace Byte (R/W)

Address
Dec (Hex)
70 (0x46) 7—0 TC2DINS [7:0] Transmit C2 Data Insert Value. Register value is

Table 46. Register 71: Path User Channel Byte (R/W)

Address
Dec (Hex)
71 (0x47) 7—0 TF2DINS [7:0] Transmit F2 Data Insert Value. Register value is

Table 47. Register 72: Path Growth Byte (R/W)

Address
Dec (Hex)
72 (0x48) 7—0 TZ3DINS[7:0] Transmit Z3 Data Insert Value. Register value is
Bit Name Function Reset
for description.
Bit Name Function Reset
inserted into the STM-1(AU-4) output C2 byte.
Bit Name Function Reset
inserted into the STM-1(AU-4) output F2 byte.
Bit Name Function Reset
inserted into the STM-1(AU-4) output Z3 byte.
Default
0x00
Default
0x00
Default
0x00
Default
0x00
7070 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 48. Register 73: Tandem Connection Byte (R/W)

Address
Dec (Hex)
73 (0x49) 7—0 TZ5DINS[7:0] Transmit Z5 Data Insert Value. Register value is

Table 49. Register 74: Transmit High-Speed Line RDI Insertion Inhibit Bits (R/W)

Address
Dec (Hex)
74 (0x4A) 7 TLRDIINH Transmit RDI-L Inhibit Control. Control bit, when
74 (0x4A) 5 TRHSSF_LRDIINH Transmit Receive High-Speed Signal Fail L-RDI
74 (0x4A) 4 TRLAISMON_LRDIINH Transmit Receive Line AIS Path RDI Inhibit.
74 (0x4A) 3 TRHSLOF_LRDIINH Transmit Receive High-Speed Loss-of-Frame
74 (0x4A) 2 TRHSOOF_LRDIINH Transmit Receive High-Speed Out-of-Frame
74 (0x4A) 1 TRHSLOS_LRDIINH Transmit Receive High-Speed Loss-of-Signal
74 (0x4A) 0 TRILOC_LRDIINH Transmit Receive Input Loss-of-Clock Line RDI
(continued)
Bit Name Function Reset
Bit Name Function Reset
(continued)
inserted into the STM-1(AU-4) output Z5 byte.
set to a logic 0, allows software to insert the TK2INS[2:0] byte, 0x43 into the outgoing K2[2:0] bits; otherwise, Line RDI 110 is inserted if the appropriate alarms are active.
Inhibit. Control bits, when set to a logic 1, causes the associated failure not to contribute to the auto­matic insertion of RDI-L; otherwise, the associated alarm contributes to the generation of RDI-L.
Same as above.
Line RDI Inhibit. Same as above.
Line RDI Inhibit. Same as above.
Line RDI Inhibit. Same as above.
Inhibit. Same as above.
Default
0x00
Default
1
0
0
1
0
0
0

Table 50. Register 75: Transmit High-Speed Path RDI Insertion Inhibit Bits (R/W)

Address
Dec (Hex)
75 (0x4B) 7 TPRDIINS Transmit RDI-P Insert. Control bit, when set to a
75 (0x4B) 6 TRLOP1_PRDIINH Transmit Receive Loss-of-Pointer Path RDI
75 (0x4B) 5 TRPAIS1_PRDIINH Transmit Receive Path AIS Path RDI Inhibit.
Agere Systems Inc. 71
Bit Name Function Reset
Default
0 logic 1, allows software to insert P-RDI into the out­going G1[3] bit, AU-4 mode only; otherwise, insert Path RDI under hardware control.
0 Inhibit. Control bits, when set to a logic 1, causes the associated failure not to contribute to the auto­matic insertion of RDI-P; otherwise, the associated alarm contributes to the generation of RDI-P (port 1, AU-4 mode only).
0 Same as above.
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 50. Register 75: Transmit High-Speed Path RDI Insertion Inhibit Bits (R/W) (continued)
Address
Dec (Hex)
75 (0x4B) 4 TRLAISMON_PRDIINH Transmit Receive Line AIS Path RDI Inhibit.
75 (0x4B) 3 TRHSLOF_PRDIINH Transmit Receive High-Speed Loss-of-Frame
75 (0x4B) 2 TRHSOOF_PRDIINH Transmit Receive High-Speed Out-of-Frame
75 (0x4B) 1 TRHSLOS_PRDIINH Transmit Receive High-Speed Loss-of-
75 (0x4B) 0 TRILOC_PRDIINH Transmit Receive Input Loss-of-Clock Path RDI

Table 51. Register 76: Transmit High-Speed Error Insert Control Parameters (R/W)

Address
Dec (Hex)
76 (0x4C) 4 THSB3ERRINS Transmit High-Speed B3 Error Insert. Control bit,
76 (0x4C) 3—1 THSB2ERRINS[3—1] Transmit High-Speed B2 Error Insert. Control bit,
76 (0x4C) 0 THSB1ERRINS Transmit High-Speed B1 Error Insert. Control bit,
(continued)
Bit Name Function Reset
Bit Name Function Reset
(continued)
Same as above.
Path RDI Inhibit. Same as above.
Path RDI Inhibit. Same as above.
Signal Path RDI Inhibit. Same as above.
Inhibit. Same as above.
when set to a logic 1, causes the output B3 byte in the outgoing STM-1 (AU-4) signal to be inverted.
when set to a logic 1, causes the output B2 bytes in the outgoing STS-3/STM-1 (AU-4) signal to be inverted.
when set to a logic 1, causes the output B1 byte in the outgoing STS-3/STM-1 (AU-4) signal to be inverted.
Default
0
1
0
0
0
Default
0
000
0
7272 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 52. Register 77: Transmit High-Speed Error Insert Control Parameters (R/W)

Address
Dec (Hex)
77 (0x4D) 7 TPFEBEEINS Transmit Path FEBE Error Insert. Control bit,
77 (0x4D) 6 TSFEBEEINS Transmit Section FEBE Error Insert. Control bit,
77 (0x4D) 5 TAPSBABLEINS Transmit APS Babble Insert. Control bit, when set
77 (0x4D) 4—0 TA1A2ERRINS[4:0] Transmit Frame Error Insert Value. These bits
(continued)
Bit Name Function Reset
(continued)
when set to a logic 1, causes a continuous Path FEBE error in the outgoing STM-1 (AU-4) signal; otherwise, a normal Path FEBE value is sent.
when set to a logic 1, causes a continuous Section FEBE error in the outgoing STS-3/STM-1 (AU-4) signal; otherwise, the normal Section FEBE value is sent.
to a logic 1, causes an inconsistent APS byte (K1[7:0], K2[7:3]) to be inserted into the outgoing STS-3/STM-1 (AU-4) frame.
specify the number of consecutive frames to be inserted with a frame error (A1A2). This register is used in conjunction with control bit TA1A2ERREN, 0x04.
Default
0
0
0
0x0

Table 53. Register 78: Transmit High-Speed Error Insert (R/W)

Address
Dec (Hex)
78 (0x4E) 7—5 TH1H2CRUPEN[3—1] Transmit H1 H2 Corrupt Enable. Control bits,
78 (0x4E) 4 TH1H2CRUPPorNDF Transmit H1 H2 Corrupt or NDF. Control bit, when
78 (0x4E) 2 TPAT23or15 Transmit Test Pattern (2
78 (0x4E) 1—0 TSTGEN_PSEL[1:0] Transmit Test Generation Port Select. Control
Bit Name Function Reset
when set to a logic 1, cause the output H1 and H2 bytes of the STS-3/STM-1 (AU-4) signal to be cor­rupted on a per STS-1 basis. In the AU-4 mode, only control bit 1 is used.
set to a logic 0, causes an invalid pointer to be inserted into the output H1 and H2 bytes; otherwise, a continuous NDF condition (1001) is sent.
23
– 1) or (2
bit, when set to a logic 0, causes a Q23 + Q17 +1 pattern to be inserted; otherwise, generate a Q15 + Q14 + 1 pattern.
bits specify which TUG-3 the pseudorandom pat­tern is inserted into: 00 disable, 01 = TUG-3 #1, 10 = TUG-3 #2, 11 = TUG-3 #3.
15
– 1). Control
Default
000
0
0
00
Agere Systems Inc. 73
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 54. Register 79: Receive/Transmit TOAC Control (R/W)

Address
Dec (Hex)
79 (0x4F) 7 RTOAC_CLKINV Receive TOAC Clock Invert Control. Control bit,
79 (0x4F) 6 RTOACS_A1orEND Receive TOAC Sync A1 or Frame-End Align.
79 (0x4F) 5 RTOAC_OEPINS Receive TOAC Odd or Even Parity Insert. Control
79 (0x4F) 4 RTOACINH Receive TOAC Clock/Sync/Data Inhibit. Control
79 (0x4F) 3 TTOAC_CLKINV Transmit TOAC Clock Invert Control. Control bit,
79 (0x4F) 2 TTOACSA1orEND Transmit TOAC Sync A1 or Frame-End Align.
79 (0x4F) 1 TTOAC_OEPMON Transmit TOAC Odd or Even Parity Monitor.
79 (0x4F) 0 TTOACINH Transmit TOAC Clock and Sync Inhibit. Control
(continued)
Bit Name Function Reset
(continued)
when set to a logic 1, forces the receive TOAC clock to be inverted leaving the device; otherwise, the clock is not inverted.
Control bit, when set to a logic 0, forces the output 8 kHz frame sync signal to be aligned with the first bit of the frame; otherwise, align the output 8 kHz frame sync with the last bit of the previous frame.
bit, when set to a logic 1, forces the output TOAC parity bit to be even; otherwise, the parity is odd.
bit, when set to a logic 1, forces the receive TOAC clock, sync, and data outputs to be placed in a high­impedance state.
when set to a logic 1, forces the output clock to be inverted leaving the device; otherwise, the clock is not inverted.
Control bit, when set to a logic 0, forces the output 8 kHz frame sync signal to be aligned with the first bit of the frame; otherwise, align the output 8 kHz frame sync with the last bit of the previous frame.
Control bit, when set to a logic 1, forces the input TOAC parity checker to check for odd parity; other­wise, even parity is checked on the transmit TOAC channel.
bit, when set to a logic 1, forces the transmit TOAC clock and sync to be placed in a high-impedance state.
Default
0
0
0
0
0
0
0
0
7474 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 55. Registers 80, 81: Transmit TOAC Control (R/W)

Address
Dec (Hex)
80 (0x50) 7—6 TTOAC_E2[1:0] Transmit TOAC E2 Byte Control. Control bits,
80 (0x50) 5—4 TTOAC_E1[1:0] Transmit TOAC E1 Byte Control. Control bits,
80 (0x50) 3—2 TTOAC_D4TO12[1:0] Transmit TOAC D4 to D12 Byte Control. Control
80 (0x50) 1—0 TTOAC_D1TO3[1:0] Transmit TOAC D1 to D12 Byte Control. Control
(continued)
Bit Name Function Reset
(continued)
when set to a logic 00 or 11, cause the default value to be inserted into the E2 byte in the transmit STS­3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC value to be inserted into the E2 byte. Setting these control bits to a logic 10 causes the E2 value in the associated STS-1/ AU-3 to pass through unchanged.
when set to a logic 00 or 11, cause the default value to be inserted into the E1 byte in the transmit STS­3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC value to be inserted into the E1 byte. Setting these control bits to a logic 10 causes the E1 value in the associated STS-1/ AU-3 to pass through unchanged.
bits, when set to a logic 00 or 11, cause the default value to be inserted into the D4 to D12 bytes in the transmit STS-3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC values to be inserted into the D4 to D12 bytes, respec­tively. Setting these control bits to a logic 10 causes the D4 to D12 values in the associated STS-1/AU-3 to pass through unchanged.
bits, when set to a logic 00 or 11, cause the default value to be inserted into the D1 to D3 bytes in the transmit STS-3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC values to be inserted into the D1 to D3 bytes, respectively. Setting these control bits to a logic 10 causes the D1 to D3 values in the associated STS-1/AU-3 to pass through unchanged.
Default
00
00
00
00
Agere Systems Inc. 75
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 55. Registers 80, 81: Transmit TOAC Control (R/W) (continued)
Address
Dec (Hex)
81 (0x51) 7—6 TTOAC_INS[1:0] Transmit TOAC Byte Control. Control bits, when
81 (0x51) 5—4 TTOAC_Z2[1:0] Transmit TOAC Z2 Byte Control. Control bits,
81 (0x51) 3—2 TTOAC_Z1[1:0] Transmit TOAC Z1 Byte Control. Control bits,
81 (0x51) 1—0 TTOAC_F1[1:0] Transmit TOAC F1 Byte Control. Control bits,
(continued)
Bit Name Function Reset
(continued)
set to a logic 00 or 11, cause the default value to be inserted into all overhead bytes without specific insert control bits in the transmit STS-3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC value to be inserted into all overhead bytes without specific insert control bits. Setting these control bits to a logic 10 causes the associated STS-1/AU-3 values to pass through unchanged.
when set to a logic 00 or 11, cause the default value to be inserted into the Z2 byte in the transmit STS-3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC value to be inserted into the Z2 byte. Setting these control bits to a logic 10 causes the Z2 value in the associated STS-1/AU-3 to pass through unchanged.
when set to a logic 00 or 11, cause the default value to be inserted into the Z1 byte in the transmit STS-3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC value to be inserted into the Z1 byte. Setting these control bits to a logic 10 causes the Z1 value in the associated STS-1/AU-3 to pass through unchanged.
when set to a logic 00 or 11, cause the default value to be inserted into the F1 byte in the transmit STS-3/STM-1 (AU-4) frame. Setting these control bits to a logic 01 causes the TTOAC value to be inserted into the F1 byte. Setting these control bits to a logic 10 causes the F1 value in the associated STS-1/AU-3 to pass through unchanged.
Default
00
00
00
00
7676 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 56. Register 83, 84: Transmit High-Speed STS-3/STM-1 Output Frame Offset (R/W)

Address
Dec (Hex)
83 (0x53) 7—5 TLBITCNT[2:0] Transmit Load Bit Count. Allow the output STS-3/
83 (0x53) 84 (0x54)
83 (0x53) 4—3 TLSTS1CNT[1:0] Transmit Load STS1 Count. Same as above. 00 84 (0x54) 2—0 TLROWCNT[3:0] Transmit Load Row Count. Same as above. 0000
THS SYNC/DATA Alignment Equations and Tables
Equations for Sync Alignment:
x = Desired Row
(continued)
Bit Name Function Reset
3—0 7—4
TLCOLCNT[6:4] TLCOLCNT[3:0]
(continued)
STM-1 (AU-4) frame to have any relationship to the input J0 frame sync pulse (THSSJ0J1V1I (T/C)). The actual operation of these registers is listed below.
Transmit Load Column Count. Same as above. 0000000
Default
000
y = Desired Column
R, C, S, B, rmult, and cmult (See Table 57, A1-1 Alignment Parameters.)
Equation 1. (((x • rmult) + (y • cmult))/cmult) • 1/90 = rowsub + colsub/90
Equation 2. rparm = R – rowsub
Equation 3. cparm = C – colsub
Equation 4. If (x = 8) then
If (cparm = –2) then
TLROWCNT = 8
TLCOLCNT = 88
Else if (cparm = –1) then
TLROWCNT = 8
TLCOLCNT = 89
Else if (x ¦ 8) then
If (cparm = –2) then
TLROWCNT = rparm – 1
TLCOLCNT = 88
Else if (cparm = –1) then
TLROWCNT = rparm – 1
TLCOLCNT = 89
Agere Systems Inc. 77
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Equation 5. If (THSCLKTYPE = BIT and THSPTYPE = BIT)
Equation 6. If (THSCLKTYPE = BIT and THSPTYPE = BIT and B £ 7)
(continued)
Otherwise
TLROWCNT = rparm
TLCOLCNT = cparm
TLBITCNT = (selected bit from BITCNT Alignment Table, Table 58 on page 80.)
Otherwise
TLBITCNT = B
TLSTS1CNT = S – 1 (i.e., 0 2, 1 0, 2 1)
If (STS #2) then
TLCOLCNT = TLCOLCNT – 1
Else
TLCOLCNT = TLCOLCNT
If (y = 89 and STS #2 and TLROWCNT = 0) then
(continued)
TLROWCNT = 8
Else if (y = 89 and STS #2) then
TLROWCNT = TLROWCNT – 1
Else
TLROWCNT = TLROWCNT
Otherwise
TLSTS1CNT = S
Examples
1. Align sync with D3, STS #1, THSCLKTYPE = BYTE, THSPTYPE = BYTE
x = 2, y = 2
(from Table 57, A1-1 Alignment Parameters)
(((2 • 270) + (2 • 3))/3) • 1/90 = 2 + 2/90 (equation #1)
rparm = 8 – 2 = 6 (equation #2)
cparm = 87 – 2 = 85 (equation #3)
TLROWCNT = 6 (equation #4)
TLCOLCNT = 86 (equation #4)
TLBITCNT = 0 (equation #5)
TLSTS1CNT = 2 (equation #6)
7878 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
2. Align sync with row = 8, column = 89, STS #3
THSCLKTYPE = BYTE, THSPTYPE = BYTE
x = 8, y = 89
(from Table 57, A1-1 Alignment Parameters)
(((8 • 270) + (89 • 3))/3) • 1/90 = 8 + 89/90 (equation #1)
rparm = 8 – 8 = 0 (equation #2)
cparm = 87 – 89 = –2 (equation #3)
TLROWCNT = 8 (equation #4)
TLCOLCNT = 88 (equation #4)
TLBITCNT = 0 (equation #5)
TLSTS1CNT = 0 (equation #6)
3. Align sync with row = 5, column = 89, STS #3
THSCLKTYPE = NIBBLE, THSPTYPE = BYTE
x = 5, y = 89
(continued)
(continued)
(from Table 57, A1-1 Alignment Parameters)
(((5 • 540) + (89 • 6))/6) • 1/90 = 5 + 89/90 (equation #1)
rparm = 8 – 5 = 3 (equation #2)
cparm = 88 – 89 = –1 (equation #3)
TLROWCNT = 3 – 1 = 2 (equation #4)
TLCOLCNT = 89 (equation #4)
TLBITCNT = 0 (equation #5)
TLSTS1CNT = 1 (equation #6)
Agere Systems Inc. 79
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 57. A1-1 Alignment Parameters

THSCLKTYPE THSPTYPE STS # R C S B rmult cmult
BIT BIT BIT
BIT BIT BIT
BIT BIT BIT
NIBBLE NIBBLE NIBBLE
NIBBLE NIBBLE NIBBLE
BYTE BYTE BYTE
(continued)
BIT BIT BIT
NIBBLE NIBBLE NIBBLE
BYTE BYTE BYTE
NIBBLE NIBBLE NIBBLE
BYTE BYTE BYTE
BYTE BYTE BYTE
(continued)
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
8 8 8
8 8 8
8 8 8
8 8 8
8 8 8
8 8 8
89 89 88
89 89 88
89 89 88
88 88 88
88 88 88
87 87 87
1 0 2
1 0 2
1 0 2
2 1 0
2 1 0
2 1 0
6* 6* 6*
7 7 7
6 6 6
1 1 1
1 1 1
0 0 0
2160 2160 2160
2160 2160 2160
2160 2160 2160
540 540 540
540 540 540
270 270 270
24 24 24
24 24 24
24 24 24
6 6 6
6 6 6
3 3 3
* Aligns with MSN.

Table 58. BITCNT Alignment Table

Valid for THSCLKTYPE = THSPTYPE only.
MSB LSB
A1-1 BYTE A1 Bit 7 A1 Bit 6 A1 Bit 5 A1 Bit 4 A1 Bit 3 A1 Bit 2 A1 Bit 1 A1 Bit 0 BIT B = 7B = 0B = 1B = 2B = 3B = 4B = 5B = 6 NIBBLE (MSN) B = 1 (LSN) B = 0 BYTE B = 0
8080 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 59. Register 85: Receive High/Low-Speed Port Control (R/W)

Address
Dec (Hex)
85 (0x55) 7 THS2RHSLB Transmit High-Speed Receive High-Speed
85 (0x55) 6 RHSDSCR Receive High-Speed Descramble Enable. Control
85 (0x55) 5 RCONCATMODE Receive Concatenation Mode. Control bit, when
85 (0x55) 4 RRDI_MPYorEFC Receive RDI Monitor Path Yellow or Enhanced
85 (0x55) 3 RHSVOEPAR Receive High-Speed Verify Odd or Even Parity.
85 (0x55) 2 RHSEDGE Receive High-Speed Retime Edge Control. Con-
85 (0x55) 1—0 RHSPTYPE[1:0] Receive High-Speed Port Type. Control bits are
(continued)
Bit Name Function Reset
(continued)
Loopback Control. Control bit, when set to a logic 1, causes the transmit output STS-3/STM-1 (AU-4) signal to be looped back to the receive input; other­wise, the loopback is disabled.
bit, when set to a logic 1, causes the input STS-3/ STM-1 (AU-4) signal to be descrambled; otherwise, the signal is not descrambled.
set to a logic 1, causes the input pointer interpreter to operate in concatenation mode. This mode is most likely used in the AU-4 mode; otherwise, three independent pointers are expected.
Failure Code. Control bit, when set to a logic 0, causes the device to monitor path yellow in the incoming G1 byte bit 3; otherwise, the device moni­tors for an enhanced failure code in the G1 byte bits 3 down to 1.
Control bit when, set to a logic 0, causes odd parity to be verified in nibble/parallel mode per clock transfer on the STS-3/STM-1 (AU-4) input; other­wise, even parity is verified.
trol bit, when set to a logic 1, causes the STS-3/ STM-1 (AU-4) input data to be retimed on the posi­tive edge; otherwise, the input STS-3/STM-1 (AU-4) input data is retimed on the falling edge of the input clock.
used to control the type of output interface required: 00 = serial interface, 01 = nibble interface, 10 = byte-wide interface.
Default
0
0
0
0
0
0
00
Agere Systems Inc. 81
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 60. Register 86: Receive J1 and Receive Low-Speed Port Select Control (R/W)

Address
Dec (Hex)
86 (0x56) 7—6 J1PSELMON[1:0] J1 Port Select Monitor Control. Control bits are
86 (0x56) 5—4

Table 61. Register 87: STS-1/AU-3 Receive Control Bits (R/W)

Address
Dec (Hex)
87 (0x57) 7—5 RLSSCR[3—1] Receive Low-Speed Scrambler Enable. Control
87 (0x57) 4 RHSPorCDRSEL Receive High-Speed Port or CDR Clock and
87 (0x57) 3 PAISLOP_AISINH Path AIS or LOP AIS Inhibit. Control bit, when set
87 (0x57) 2 TLS2RLSLB Transmit Low-Speed to Receive Low-Speed
87 (0x57) 1 RLSCLKINV Receive Low-Speed Clock Invert Control. Con-
87 (0x57) 0 RLSPAROEG Receive Low-Speed Parity Odd or Even Genera-
(continued)
Bit Name Function Reset
RSEL[3—1][1:0] Receive Port Select Control. Control bits allow 3—2 1—0
Bit Name Function Reset
(continued)
used to select which J1 byte will be monitored in the received STS-3/STM-1 (AU-4) signal: 00 = port 1, 01 = port 2, 10 = port 3, 11 = undefined operation.
receive output selection: 00 or 11 = port 1 selected, 01 = port 2 selected, 10 = port 3 selected.
bit, when set to a logic 1, causes the selected STS-1/AU-3 output signal to be scrambled; other­wise, the output signal is not scrambled.
Data Select. Control bit, when set to a logic 0, causes the differential receive clock and data inputs (RHSSCLKIT/C, RHSSDATAIT/C) to be used in the device receive path; otherwise, the outputs of the CDR clock recovery block are used.
to a logic 0, causes state bits PAIS and LOP to con­tribute to the generation of Path AIS; otherwise, the state bits are inhibited from contributing to Path AIS generation.
Loopback. Control bit, when set to a logic 1, causes the transmit STS-1/AU-3 input signals to be looped back to the receive STS-1/AU-3 outputs; otherwise, loopback is disabled.
trol bit, when set to a logic 1, causes the output clock to be inverted; otherwise, the output STS-1/ AU-3 receive clock is not inverted.
tion. Control bit, when set to a logic 1, forces the output parity bit to be even; otherwise, the parity is odd.
Default
00
10 01 00
Default
000
0
0
0
0
0
8282 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 62. Register 88: STS-1/AU-3 Receive Low-Speed AIS Inhibit Control Bits (R/W)

Address
Dec (Hex)
88 (0x58) 7 RRLAISMON_AISINH Receive Line AIS Monitor AIS Inhibit. Control
88 (0x58) 6 RRHSLOS_AISINH Receive High-Speed Loss-of-Signal AIS Inhibit.
88 (0x58) 5 RRHSLOF_AISINH Receive High-Speed Loss-of-Frame AIS Inhibit.
88 (0x58) 4 RRHSOOF_AISINH Receive High-Speed Out-of-Frame AIS Inhibit.
88 (0x58) 3 RRILOC_AISINH Receive Input Loss-of-Clock AIS Inhibit. Same

Table 63. Registers 88, 89: STS-1/AU-3 Loss of Signal Detector (R/W)

(continued)
Bit Name Function Reset
(continued)
bits, when set to a logic 1, inhibit the associated alarm from causing AIS generation; otherwise, these allow the associated failure to cause AIS gen­eration on all STS-1/AU-3 outputs.
Same as above.
Same as above.
Same as above.
as above.
Default
0
0
1
0
0
Address
Dec (Hex)
88 (0x58) 89 (0x59)

Table 64. Register 90—95: Continuous N Times Detect (CNTD) Values (R/W)

Address
Dec (Hex)
90 (0x5A) 7—4 CNTDF1[3:0] Continuous N Times Detect for F1 Byte. Register
90 (0x5A) 3—0 CNTDJ0Z0[3:0] Continuous N Times Detect for J0Z0 Bytes. Reg-
Bit Name Function Reset
2—0 7—0
Bit Name Function Reset
LOSDETCNT[10:8]
LOSDETCNT[7:0]
Loss-of-Signal Detection Count. Control bits are the number of consecutive all-zeros/-ones pattern detected to declare LOS state in the unscrambled STS-3/STM-1 (AU-4) input frame. A value of 0x02D equals 2.3 µs while a value of 0x798 equals 100 µs.
sets the number of CNTD occurrences of a consis­tent F1 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
ister sets the number of CNTD occurrences of a consistent J0, Z0-2, and Z0-3 values in the incom­ing STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
Default
0x02D =
2.3 µs
Default
0x3
0x3
Agere Systems Inc. 83
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Table 64. Register 90—95: Continuous N Times Detect (CNTD) Values (R/W) (continued)
Address
Dec (Hex)
91 (0x5B) 7—4 CNTDAPS[3:0] Continuous N Times Detect for APS (K1,
91 (0x5B) 3—0 CNTDK2[3:0] Continuous N Times Detect for K2[2:0] Byte.
92 (0x5C) 7—4 CNTDAPSFRAME[3:0] Continuous N Times Detect for APS Frame Byte.
92 (0x5C) 3—0 CNTDS1[3:0] Continuous N Times Detect for S1 Byte. Register
93 (0x5D) 7—4 CNTDG1[3:0] Continuous N Times Detect for G1 Byte. Register
93 (0x5D) 3—0 CNTDC2[3:0] Continuous N Times Detect for C2 Byte. Register
94 (0x5E) 7—4 CNTDF2[3:0] Continuous N Times Detect for F2 Byte. Register
(continued)
Bit Name Function Reset
(continued)
K2[7:3]) Byte. Register sets the number of CNTD occurrences of a consistent APS value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
Register sets the number of CNTD occurrences of a consistent K2[2:0] value in the incoming STS-3/ STM-1 (AU-4) frame. The valid range for this regis­ter is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
Register sets the number of CNTD frames that an inconsistent APS value in the incoming STS-3/ STM-1 (AU-4) frame detects. This value is used in the APS Babble algorithm. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
sets the number of CNTD occurrences of a consis­tent S1 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
sets the number of CNTD occurrences of a consis­tent G1 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
sets the number of CNTD occurrences of a consis­tent C2 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
sets the number of CNTD occurrences of a consis­tent F2 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
Default
0x3
0x3
0xC
0x3
0x3
0x3
0x3
8484 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
Table 64. Register 90—95: Continuous N Times Detect (CNTD) Values (R/W) (continued)
Address
Dec (Hex)
94 (0x5E) 3—0 CNTDZ3[3:0] Continuous N Times Detect for Z3 Byte. Register
95 (0x5F) 3—0 CNTDZ5[3:0] Continuous N Times Detect for Z5 Byte. Register

Table 65. Register 95: Continuous N Times Detect (CNTD) B1 Control Bit (R/W)

Address
Dec (Hex)
95 (0x5F) 7 CNTDB1SEL Continuous N Times Detect B1 Select. Control bit,
95 (0x5F) 6 RLOCINH Receive Loss-of-Clock Inhibit. Control bit, when set
95 (0x5F) 5—4 CNTCIP_ICI[1:0] Continuous N Times Detect Invalid Pointer and
(continued)
Bit Name Function Reset
Bit Name Function Reset
(continued)
sets the number of CNTD occurrences of a consistent Z3 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
sets the number of CNTD occurrences of a consistent Z5 value in the incoming STS-3/STM-1 (AU-4) frame. The valid range for this register is 0x3—0xF. Invalid values will be mapped to a value of 0x3.
when set to a logic 1, causes the K2 byte CNTD mon­itors to be reset whenever a B1 error occurs; other­wise, B1 errors are ignored.
to a logic 1, inhibits the device receive path from using the transmit high-speed clock during an RILOC, 0x1B condition (AIS generation); otherwise, automati­cally switch to the transmit clock during a RILOC con­dition.
Invalid Concatenation Indication. Control bits are the number of consecutive conditions for invalid pointer and invalid concatenation indication (pointer interpretation). Valid values are the following: 00 = 8\D, 01 = 9\D, 10 = 10\D, and 11 = 8\D.
Default
0x3
0x3
Default
0
0
00
Agere Systems Inc. 85
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
(continued)
(continued)

Table 66. Register 96: Test Pattern Drop Control and Status

Address
Bit Name Function Reset
Dec (Hex)
96 (0x60) 7 RTSTDRP_OOS Receive Test Drop Out-of-Sync Indication (RO).
State bit, when at a logic 1, indicates the test pat­tern is out of sync (OOS); a logic 0 indicates the test pattern monitor is in sync and able to count bit errors in the pseudorandom test pattern.
23
96 (0x60) 2 RPAT23or15 Receive Test Drop Pattern Detect (2
15
(2
– 1) (R/W). Control bit, when set to a logic 0,
– 1) or
causes a Q23 + Q17 + 1 pattern to be monitored; otherwise, a Q15 + Q14 + 1 pattern is monitored.
96 (0x60) 1—0 RTSTDRP_PSEL[1:0] Receive Test Drop Port Select Control (R/W).
Control bits specify which TUG-3 the pseudoran­dom pattern is to be monitored: 00 disable, 01 = TUG-3 #1, 10 = TUG-3 #2, 11 = TUG-3 #3.

Table 67. Register 97: Test Pattern Drop Error Counter (RO)

Default
1
0
00
Address
Bit Name Function Reset
Dec (Hex)
97 (0x61) 7—0 RTSTDRP_ECNT[7:0] Receive Test Drop Error Count. Value counts the
number of errors received on the monitored pseu­dorandom signal. This counter will hold at its maxi­mum value.

Table 68. Register 98: Receive Low-Speed Overhead Control Bits (R/W)

Address
Bit Name Function Reset
Dec (Hex)
98 (0x62) 7—5 RA1A2ERRPEN[3—1] Receive A1A2 Error Insert Port Enables. Port
into which framing errors will be injected. The num­ber of consecutive frames that contain errors is con­trolled by RA1A2ERRINS[4:0] in the same register in which the action takes place when RA1A2ERREN, 0x04 transitions from a logic 0 to logic 1.
98 (0x62) 4—0 RA1A2ERRINS[4:0] Receive A1A2 Frame Error Insert. Same as
above.
Default
0x00
Default
000
0x1
8686 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 69. Register 99: Receive Low-Speed BIP Error Insert (R/W)

Address
Dec (Hex)
99 (0x63) 5—3 RB2ERRINS[3—1] Receive B2 Error Insert Control. Control bit, when
99 (0x63) 2—0 RB1ERRINS[3—1] Receive B1 Error Insert Control. Control bit, when

Table 70. Registers 100—102: Receive Low-Speed Overhead Control Bits (R/W)

Address
Dec (Hex)
100 (0x64) 6 RH1H2CRUPPorNDF Receive H1 H2 Corrupt or NDF. Control bit, when
100 (0x64) 5—3 RH1H2CRUPEN[3—1] Receive H1 H2 Corrupt Enable. Control bits, when
100 (0x64) 2—0 RF1INS[3—1] Receive F1 Data Insert. Control bits, when set to a
101 (0x65) 5—3 RSFEBEERRINS[3—1] Receive Section FEBE Error Insert. Control bit,
101 (0x65) 2—0 RSFEBEINH[3—1] Receive Section FEBE Hardware Inhibit. Control
102 (0x66) 5—3 RLAISINS[3—1] Receive Line AIS Insert. Control bit, when set to a
102 (0x66) 2—0 RAPSBABLEINS[3—1] Receive APS Babble Insert. Control bit, when set
(continued)
Bit Name Function Reset
Bit Name Function Reset
(continued)
set to a logic 1, causes the respective B2 byte in the outgoing STS-1/AU-3 signal to be inverted.
set to a logic 1, causes the respective B1 byte in the outgoing STS-1/AU-3 signal to be inverted.
set to a logic 0, causes an invalid pointer to be inserted into the output H1 and H2 bytes; otherwise, a continuous NDF condition (1001) is forced in the STS-1/AU-3 signal.
set to a logic 1, causes the output H1 and H2 bytes of the STS-1/AU-3 signal to be corrupted as con­trolled by register bit RH1H2CRUPPorNDF in the same register.
logic 1, causes the RF1DINS[3—1][7:0], 0x6B—6D values to be inserted into the respective output F1 bytes in the STS-1/AU-3 signals; otherwise, insert the value set by the R_F1_PASS[3—1] control bit, 0x74.
when set to a logic 1, causes a Section FEBE (B2 Error value of 0x3) to be inserted into the STS-1/ AU-3 output signal; otherwise, an error is not inserted.
bit, when set to a logic 1, inhibits the hardware insert of Section FEBE in the STS-1/AU-3 output signal; otherwise, the default value is inserted.
logic 1, forces L-AIS to be inserted into the outgoing STS-1/AU-3 frame.
to a logic 1, causes an inconsistent APS byte (K1[7:0], K2[7:3]) to be inserted into the outgoing STS-1/AU-3 frame.
Default
000
000
Default
0
000
000
000
000
000
000
Agere Systems Inc. 87
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 71. Register 103: Receive Low-Speed L-RDI Inhibit Control (R/W)

Address
Dec (Hex)
103 (0x67) 6
103 (0x67) 5—3
103 (0x67) 2—0

Table 72. Registers 104—106: Receive Low-Speed C1 Byte (R/W)

Address
Dec (Hex)
104 (0x68) 105 (0x69)
106 (0x6A)
(continued)
Bit Name Function Reset
RTILOC_LRDIINH
RTLSLOF_LRDIINH[3—1]
RTLSOOF_LRDIINH[3—1]
Bit Name Function Reset
7—0 RC1DINS[1—3][7:0] Receive C1 Data Insert. Register value is
(continued)
Receive Transmit Input Loss-of-Clock RDI-L Inhibit. Control bits, when set to a logic 1, inhibit
the associated alarm from contributing to RDI-L generation per STS-1/AU-3 frame.
Receive Transmit Low-Speed Loss-of-Frame RDI-L Inhibit. Same as above.
Receive Transmit Low-Speed Out-of-Frame RDI-L Inhibit. Same as above.
inserted into the respective STS-1/AU-3 output C1 byte.
Default
0
111
000
Default
0x00

Table 73. Registers 107—109: Receive Low-Speed F1 Byte (R/W)

Address
Dec (Hex)
107 (0x6B) 108 (0x6C) 109 (0x6D)

Table 74. Registers 110—115: Receive Low-Speed K1, K2 Byte Insert (R/W)

Address
Dec (Hex)
110 (0x6E)
111 (0x6F) 112 (0x70)
113 (0x71) 114 (0x72)
115 (0x73)
110 (0x6E)
112 (0x70) 114 (0x72)
Bit Name Function Reset
7—0 RF1DINS[1—3][7:0] Receive F1 Software Insert. Register value is
inserted into the respective STS-1/AU-3 output F1 byte.
Bit Name Function Reset
7—3 7—0
7—3 7—0
7—3 7—0
2—0 RK2DINS[3—1][2:0] Receive K2 Data Insert. Register value is
RAPSINS1[12:8]
RAPSINS1[7:0]
RAPSINS2[12:8]
RAPSINS2[7:0]
RAPSINS3[12:8]
RAPSINS3[7:0]
Receive APS Insert. Register value is inserted into the respective STS-1/AU-3 output K1 and K2[7:3] bytes.
inserted into the respective STS-1/AU-3 output K2[2:0] bits.
Default
0x00
Default
0x0000
000
8888 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 75. Registers 116—118: Receive Low-Speed Pass Control (R/W)

Address
Dec (Hex)
116 (0x74) 5—3 R_F1_PASS[3—1] Receive F1 Pass. Control bit, when set to a logic
116 (0x74) 2—0 R_E1_PASS[3—1] Receive E1 Pass. Control bit, when set to a logic
117 (0x75) 5—3 R_D4TOD12_PASS[3—1] Receive D4 to D12 Pass. Control bit, when set
117 (0x75) 2—0 R_D1TOD3_PASS[3—1] Receive D1 to D3 Pass. Control bit, when set to
118 (0x76) 5—3 R_E2_PASS[3—1] Receive E2 Pass. Control bit, when set to a logic
118 (0x76) 2—0 R_S1_PASS[3—1] Receive S1 Pass. Control bit, when set to a logic
(continued)
Bit Name Function Reset
(continued)
1, allows the associated STS-3/STM-1 (AU-4) F1 byte to pass unchanged to the STS-1/AU-3 out­put signal; otherwise, the default value is inserted.
1, allows the associated STS-3/STM-1 (AU-4) E1 byte to pass unchanged to the STS-1/AU-3 out­put signal; otherwise, the default value is inserted.
to a logic 1, allows the associated STS-3/STM-1 (AU-4) D4 to D12 bytes to pass unchanged to the STS-1/AU-3 output signal; otherwise, the default value is inserted.
a logic 1, allows the associated STS-3/ STM-1(AU-4) D1 to D3 bytes to pass unchanged to the STS-1/AU-3 output signal; otherwise, the default value is inserted.
1, allows the associated STS-3/STM-1 (AU-4) E2 byte to pass unchanged to the STS-1/AU-3 out­put signal; otherwise, the default value is inserted.
1, allows the associated STS-3/STM-1 (AU-4) S1 byte to pass unchanged to the STS-1/AU-3 out­put signal; otherwise, the default value is inserted.
Default
000
000
000
000
000
000
Agere Systems Inc. 89
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 76. Register 127: Page Control Register (R/W)

Address
Dec (Hex)
127 (0x7F) 1—0 PAGE[1:0] Page Number. Control bits select the page

Table 77. Page 0 - Registers 128—191: J1 Insert Parameters (R/W)

Address
Dec (Hex)
128 (0x80)—
191 (0xBF)

Table 78. Page 0 - Registers 192—255: J1 Monitor Bytes (RO)

(continued)
Bit Name Function Reset
Bit Name Function Reset
7—0 TJ1DINS[64—1][7:0] Transmit J1 Data Insert. Registers allow a
(continued)
accessed when an address greater than 128 is accessed: 00 = Page 0 (J1 Byte Insert/Monitor), 01 = Page 1 (Error Counters), 10 = Page 2 (BER Algorithm Parameters), 11 = Illegal Value.
64-byte sequence to be inserted into the J1 byte of the STM-1(AU-4) output signal.
Default
00
Default
0x00
Address
Dec (Hex)
192 (0xC0)—
255 (0xFF)

Table 79. Page 1 - Registers 128—133: STS-1/AU-3 B1 BIP Error Counters (RO)

Address
Dec (Hex)
128 (0x80)—
133 (0x85)
Bit Name Function Reset
7—0 RJ1MON[64—1][7:0] Receive J1 Monitor Data. Registers capture a
64-byte sequence from the selected (J1PSELMON[1:0], 0x56) J1 byte of the STS-3/ STM-1 (AU-4) input signal.
Bit Name Function Reset
7—0 TLSB1ECNT[1—3][15:8]
TLSB1ECNT[1—3][7:0]
Transmit Low-Speed B1 Error Count. These are the B1 BIP error rate counters. These counters can either count actual BIP errors or block errors (BITBLOCKCNT, 0x34). These counters hold at their maximum values and trans­fer their internal counts to a holding register when LATCH_CNT, 0x04 transitions from a logic 0 to 1.
Default
0x00
Default
0x0000
9090 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 80. Page 1 - Registers 134—140: STS-1/AU-3 B2 BIP Error Counters (RO)

Address
Dec (Hex)
137 (0x89)—
140 (0x8C)
134 (0x86) 135 (0x87) 136 (0x88)

Table 81. Page 1 - Registers 141—142: STS-3/STM-1 (AU-4) B1 Error Count (RO)

Address
Dec (Hex)
141 (0x8D) 142 (0x8E)
(continued)
Bit Name Function Reset
7—0 TLSB2ECNT[2—3][15:8]
TLSB2ECNT[2—3][7:0]
1—0 7—0 7—0
Bit Name Function Reset
7—0 RHSB1ECNT[15:8]
TLSB2ECNT[1][17:16]
TLSB2ECNT[1][15:8]
TLSB2ECNT[1][7:0]
RHSB1ECNT[7:0]
(continued)
Transmit Low-Speed B2 Error Count Ports 2 and 3. These are the B2 BIP error rate counters.
These counters can either count actual BIP errors or block errors (BITBLOCKCNT, 0x34). These counters hold at their maximum values and trans­fer their internal counts to a holding register when LATCH_CNT, 0x04 transitions from a logic 0 to 1.
Transmit Low-Speed B2 Error Count Port 1.
Same as above.
Receive High-Speed B1 Error Count. Counts the number of B1 errors in the received STS-3/ STM-1 (AU-4) frame. This counter can either count actual BIP errors or block errors (BITBLOCKCNT, 0x34). This counter holds at its maximum value and transfers its internal count to a holding register when LATCH_CNT, 0x04 tran- sitions from a logic 0 to 1.
Default
0x0000
0x00000
Default
0x0000

Table 82. Page 1 - Registers 143—145: STS-3/STM-1 (AU-4) B2 Error Count (RO)

Address
Dec (Hex)
143 (0x8F)
144 (0x90) 145 (0x91)
Agere Systems Inc. 91
Bit Name Function Reset
Default
1—0 7—0 7—0
RHSB2ECNT[17:16]
RHSB2ECNT[15:8]
RHSB2ECNT[7:0]
Receive High-Speed B2 Error Count. Counts the number of B2 errors in the received STS-3/ STM-1 (AU-4) frame. This counter can either count actual BIP errors or block errors (BITBLOCKCNT, 0x34). This counter holds at its maximum value and transfers its internal count to a holding register when LATCH_CNT, 0x04 tran- sitions from a logic 0 to 1.
0x00000
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 83. Page 1 - Registers 146—151: STS-3/STM-1 (AU-4) B3 Error Count (RO)

Address
Dec (Hex)
146 (0x92)—
151 (0x97)

Table 84. Page 1 - Registers 152—163: STS-3/STM-1 (AU-4) Pointer Increment/Decrement Counter (RO)

Address
Dec (Hex)
152 (0x98) 153 (0x99)
154 (0x9A) 155 (0x9B)
156 (0x9C) 157 (0x9D)
158 (0x9E) 159 (0x9F)
160 (0xA0) 161 (0xA1)
162 (0xA2) 163 (0xA3)
(continued)
Bit Name Function Reset
7—0 RHSB3ECNT[1—3][15:8]
RHSB3ECNT[1—3][7:0]
Bit Name Function Reset
2—0 7—0
2—0 7—0
2—0 7—0
2—0 7—0
2—0 7—0
2—0 7—0
RPTR_INC1[10:8]
RPTR_INC1[7:0]
RPTR_INC2[10:8]
RPTR_INC2[7:0]
RPTR_INC3[10:8]
RPTR_INC3[7:0]
RPTR_DEC1[10:8]
RPTR_DEC1[7:0]
RPTR_DEC2[10:8]
RPTR_DEC2[7:0]
RPTR_DEC3[10:8]
RPTR_DEC3[7:0]
(continued)
Receive High-Speed B3 Error Count. Counts the number of B3 errors in the receive STS-3/ STM-1 (AU-4) frame. Only counter value 1 is valid in AU-4 mode. This counter can either count actual BIP errors or block errors (BITBLOCKCNT, 0x34). This counter holds at its maximum value and transfers its internal count to a holding regis­ter when LATCH_CNT, 0x04 transitions from a logic 0 to 1.
Receive Pointer Increment Count. Counts the number of increments in the incoming pointer val­ues. This counter holds at its maximum value and transfers its internal count to a holding register when LATCH_CNT, 0x04 transitions from a logic 0 to 1.
Receive Pointer Decrement Count. Counts the number of decrements in the incoming pointer values. This counter holds at its maximum value and transfers its internal count to a holding regis­ter when LATCH_CNT, 0x04 transitions from a logic 0 to 1.
Default
0x0000
Default
0x000
0x000

Table 85. Page 1 - Registers 164—166: Receive High-Speed SFEBE Count (RO)

Address
Dec (Hex)
164 (0xA4) 165 (0xA5) 166 (0xA6)
9292 Agere Systems Inc.
Bit Name Function Reset
Default
1—0 7—0 7—0
RSFEBECNT[17:16]
RSFEBECNT[15:8]
RSFEBECNT[7:0]
Receive Section FEBE Count. Counts the num­ber of B2 errors received in the M1 byte of the receive STS-3/STM-1 (AU-4) frame. This counter can either count actual SFEBE errors or block errors (FEBEBITBLOCKCNT, 0x34). This counter holds at its maximum value and transfers its inter­nal count to a holding register when LATCH_CNT, 0x04 transitions from a logic 0 to 1.
0x00000
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 86. Page 1 - Registers 167—172: Receive High-Speed Path FEBE Count (RO)

Address
Dec (Hex)
167 (0xA7)—
172 (0xAC)

Table 87. Page 2 - Register 131 (R/W)

Address
Dec (Hex)
131 (0x83) 7 SDB1B2SEL Signal Degrade B1/B2 Error Count Select.
(continued)
Bit Name Function Reset
7—0 RPFEBECNT[1—3][15:8]
RPFEBECNT[1—3][7:0]
Bit Name Function Reset
(continued)
Receive Path FEBE Count. Counts the number of B3 errors received in the G1[7:4] bits of the received STS-3/STM-1 (AU-4) frame. This counter can either count actual PFEBE errors or block errors (FEBEBITBLOCKCNT, 0x34). This counter holds at its maximum value and transfers its internal count to a holding register when LATCH_CNT, 0x04 transitions from a logic 0 to 1.
Control bit, when set to a logic 0, causes the sig­nal degrade bit error rate algorithm to use B1 errors; otherwise, B2 errors are used to calculate the error rate.
Default
0x0000
Default
0
Agere Systems Inc. 93
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map

Table 88. Page 2 - Registers 128—141 (R/W)

Set parameters are used when RHSSD = 0, and the clear parameters are used when RHSSD = 1.
Address
Dec (Hex)
128 (0x80) 129 (0x81) 130 (0x82)
131 (0x83) 3—0 SDLSet[3:0] Signal Degrade L Set. Error threshold for deter-
132 (0x84) 7—0 SDMSet[7:0] Signal Degrade M Set. Threshold of the number of
133 (0x85) 134 (0x86)
135 (0x87) 136 (0x88) 137 (0x89)
138 (0x8A) 3—0 SDLClear[3:0] Signal Degrade L Clear. Error threshold for deter-
139 (0x8B) 7—0 SDMClear[7:0] Signal Degrade M Clear. Threshold of the number
140 (0x8C) 141 (0x8D)
(continued)
Bit Name Function Reset
2—0 7—0 7—0
7—0 SDBSet[15:8]
2—0 7—0 7—0
7—0 SDBClear[15:8]
SDNsSet[18:16]
SDNsSet[15:8]
SDNsClear[18:16]
SDNsClear[15:8]
SDNsClear[7:0]
SDBClear[7:0]
(continued)
SDNsSet[7:0]
SDBSet[7:0]
Signal Degrade Ns Set. Number of frames in a monitoring block for RHSSD, 0x1B.
mining if a monitoring block is bad.
bad monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then RHSSD, 0x1B is set.
Signal Degrade B Set. Number of monitoring blocks.
Signal Degrade Ns Clear. Number of frames in a monitoring block for RHSSD, 0x1B.
mining if a monitoring block is bad.
of good monitoring blocks in an observation inter­val. If the number of good blocks is above this threshold, then RHSSD, 0x1B is cleared.
Signal Degrade B Clear. Number of monitoring blocks.
Default
0x00000
0x0
0x00
0x0000
0x00000
0x0
0x00
0x0000
Note: The thresholds written by the control system shall be one less than the desired number, except for the
SDLSet/Clear[3:0] parameter.
Timing requirements:
When SDSET (0x04) is set to a 1, the device sets RHSSD = 1, clears all remaining internal variables and counters of the RHSSD algorithm, and initializes the algorithm to enable recovery declaration.
When SDCLEAR (0x04) is set to a 1, the device sets RHSSD = 0, clears all remaining internal variables and counters of the RHSSD algorithm and initializes the algorithm to enable failure declaration.
If SDSET OR SDCLEAR is cleared to 0, do nothing.
If SDSET AND SDCLEAR are simultaneously set to 1, do nothing.
BER algorithm:
while (SDL = 0) then
disable algorithm and set RHSSD, RHSSDD = 0.
9494 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
If (SDB1B2SEL = 0) then use B1 BIP errors in BERR algorithm else
use B2 BIP errors in BERR algorithm end if;
if (NEWFRAME) then
{
INCR (FRAMECNTR) BIPERR = BIPERR + NEWERR if (BIPERR > SDL) then
if (FRAMECNTR = SDNs) then -- Number of frames in monitoring block {
(continued)
BIPERR = SDL
RESET (FRAMECNTR) if (BIPERR SDL) then
BLOCK = 1 /* indicates bad monitoring period. */
else
BLOCK = 0 /* indicates good monitoring period. */
INCR (BTOTCNTR)
(continued)
RESET (BIPERR)
If (RHSSD = 0) then
{
if (BLOCK = 1) then
{
INCR (BMONCNTR) if (BMONCNTR SDM) then
{
}
}
else if (BTOTCNTR = SDB) then
}
RESET (BMONCNTR); RESET (BTOTCNTR)
}
}
RHSSD = 1; RHSSDD = 1
RESET (BMONCNTR); RESET (BTOTCNTR)
Agere Systems Inc. 95
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
(continued)
if (RHSSD = 1) then
{
if (BLOCK = 0) then
{
INCR (BMONCNTR) if (BMONCNTR SDM) then
{
}
}
else if (BTOTCNTR = SDB) then
{
RESET (BMONCNTR); RESET (BTOTCNTR)
}
(continued)
RHSSD = 0; RHSSDD = 1
RESET (BMONCNTR); RESET (BTOTCNTR)
}
}
}
WHERE:
NEWFRAME = checks for frame sync signal (internal) to reinitiate BER calculation.
FRAMECNTR = count of number of frames since the start of the latest monitoring period.
BIPERR = number of composite B1 or B2 errors so far in latest monitoring period.
NEWERR = number of composite B1 or B2 errors calculated in latest frame.
BLOCK = indication of good (0) or bad (1) latest monitoring period.
BTOTCNTR = count of current total number of monitoring periods (good or bad) in latest observation interval.
BMONCNTR = count of current number of:
bad monitoring periods in latest observation interval if RHSSD = 0,
good monitoring periods in latest observation interval if RHSSD = 1.
9696 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map

Table 89. Page 2 - Register 145 (R/W)

Address
Dec (Hex)
145 (0x91) 7 SFB1B2SEL Signal Fail B1/B2 Error Count Select. Control bit,

Table 90. Page 2 - Registers 142—155 (R/W)

The set parameters are used when RHSSF = 0, and the clear parameters are used when RHSSF = 1.
Address
Dec (Hex)
142 (0x8E) 143 (0x8F)
144 (0x90) 145 (0x91) 3—0 SFLSet[3:0] Signal Fail L Set. Error threshold for determining if
146 (0x92) 7—0 SFMSet[7:0] Signal Fail M Set. Threshold of the number of bad
147 (0x93) 148 (0x94)
150 (0x96) 151 (0x97) 152 (0x98)
152 (0x98) 3—0 SFLClear[3:0] Signal Fail L Clear. Error threshold for determining
153 (0x99) 7—0 SFMClear[7:0] Signal Fail M Clear. Threshold of the number of
154 (0x9A) 155 (0x9B)
(continued)
Bit Name Function Reset
Bit Name Function Reset
2—0 7—0 7—0
7—0 SFBSet[15:8]
2—0 7—0 7—0
7—0 SFBClear[15:8]
SFNsSet[18:16]
SFNsSet[15:8]
SFNsClear[18:16]
SFNsClear[15:8]
SFNsClear[7:0]
SFBClear[7:0]
(continued)
when set to a logic 0, causes the signal fail bit error rate algorithm to use B1 errors; otherwise, B2 errors are used to calculate the error rate.
Signal Fail Ns Set. Number of frames in a monitor­ing block for RHSSF, 0x1B.
SFNsSet[7:0]
a monitoring block is bad.
monitoring blocks in an observation interval. If the number of bad blocks is above this threshold, then RHSSF, 0x1B is set.
Signal Fail B Set. Number of monitoring blocks. 0x0000
SFBSet[7:0]
Signal Fail Ns Clear. Number of frames in a moni­toring block for RHSSF, 0x1B.
if a monitoring block is bad.
good monitoring blocks in an observation interval. If the number of good blocks is above this threshold, then RHSSF, 0x1B is cleared.
Signal Fail B Clear. Number of monitoring blocks. 0x0000
Default
0
Default
0x00000
0x0
0x00
0x00000
0x0
0x00
Note: The thresholds written by the control system shall be one less than the desired number, except for the
SFLSet/Clear[3:0] parameter.
Agere Systems Inc. 97
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
Timing requirements:
When SFSET is set to a 1, the device sets RHSSF = 1, clears all remaining internal variables and counters of the RHSSF algorithm and initializes the algorithm to enable recovery declaration.
When SFCLEAR is set to a 1, set RHSSF = 0, clears all remaining internal variables and counters of the RHSSF algorithm, and initializes the algorithm to enable failure declaration.
If SFSET OR SFCLEAR is cleared to a 0, do nothing.
If SFSET AND SFCLEAR are simultaneously set to a 1, do nothing.
BER algorithm:
While (SFL = 0) then
disable algorithm and set RHSSF, RHSSFD = 0.
(continued)
(continued)
9898 Agere Systems Inc.
Data Sheet April 2001
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Microprocessor Interface
Register Map
if (SFB1B2SEL = 0) then use B1 BIP errors in BER algorithm else use B2 BIP errors. if (NEWFRAME) then
{
INCR (FRAMECNTR) BIPERR = BIPERR + NEWERR if (BIPERR > SFL) then
if (FRAMECNTR = SFNs) then {
(continued)
BIPERR = SFL
RESET (FRAMECNTR) if (BIPERR SFL) then
BLOCK = 1 /* indicates bad monitoring period. */
else
BLOCK = 0 /* indicates good monitoring period. */
(continued)
INCR (BTOTCNTR)
RESET (BIPERR)
If (RHSSF = 0) then
{
if (BLOCK = 1) then
{
INCR (BMONCNTR) if (BMONCNTR SFM) then
{
}
}
else if (BTOTCNTR = SFB3) then
}
RESET (BMONCNTR); RESET (BTOTCNTR)
}
RHSSF = 1; RHSSFD = 1
RESET (BMONCNTR); RESET (BTOTCNTR)
}
Agere Systems Inc. 99
TMUX03155 STS-3/STM-1 (AU-4) Multiplexer/Demultiplexer
Data Sheet
April 2001
Microprocessor Interface
Register Map
(continued)
if (RHSSF = 1) then
{
if (BLOCK = 0) then
{
INCR (BMONCNTR) if (BMONCNTR MSF) then
{
}
}
else if (BTOTCNTR = BSF) then
{
RESET (BMONCNTR); RESET (BTOTCNTR)
}
(continued)
RHSSF = 0; RHSSFD = 1
RESET (BMONCNTR); RESET (BTOTCNTR)
}
}
}
Where:
NEWFRAME = checks for frame sync signal (internal) to reinitiate BER calculation.
FRAMECNTR = count of number of frames since the start of the latest monitoring period.
BIPERR = number of composite B2 errors so far in latest monitoring period.
NEWERR = number of composite B2 errors calculated in latest frame.
BLOCK = indication of good(0) or bad(1) latest monitoring period.
BTOTCNTR = count of current total number of monitoring periods (good or bad) in latest observation interval.
BMONCNTR = count of current number of:
bad monitoring periods in latest observation interval if RHSSF = 0,
good monitoring periods in latest observation interval if RHSSF = 1.
100100 Agere Systems Inc.
Loading...