Lucent Technologies Inc TDAT042G51A-3BLL1 Datasheet

Data Addendum
May 2001
TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces
Introduction
The TDAT data interface is available in three different configurations as summarized in Table 1.
TDAT04622
The TDAT04622 device contains a subset of the TDAT042G5 device. The TDAT04622 device functions as described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet (DS98-193SONT-4) with the following limitations:
Quad OC-3 operation only or single OC-12 operation only.
Single UTOPIA port.
TDAT021G2
The TDAT021G2 device contains a subset of the TDAT042G5 device. The TDAT021G2 device functions as described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet (DS98-193SONT-4) with the following limitations:
Quad OC-3 operation only or dual OC-12 operation only.
Two UTOPIA ports.
TDAT042G5
The TDAT042G5 device contains all functionality as described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet (DS98-193SONT-4).
Table 1. TDAT Device Product Line
Device Line Ports UTOPIA Ports
OC-3 OC-12 OC-48 Ports Present Modes
TDAT04622 4
(A, B, C, D)
TDAT021G2 4
(A, B, C, D)
TDAT042G5 4
(A, B, C, D)4(A, B, C, D)
1
(A)
2
(A, B)
NA 1
NA 2
1
(16-bit parallel
multiplexed/
demultiplexed)
(A)
(A, B)
4
(A, B, C, D)
U2, U2+, U3, U3+
8-bit
16-bit
U2, U2+, U3, U3+
8-bit
16-bit
32-bit
U2, U2+, U3, U3+
8-bit
16-bit
32-bit
TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces
Data Addendum
May 2001
For additional information, contact your Agere Systems Account Manager or the following: INTERNET: http://www.agere.com E-MAIL: docmaster@micro.lucent.com N. AMERICA: Agere Systems Inc ., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Sci ence Park Drive, #03-18 Cintech III, Singapore 118256 CHINA: Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC JAPAN: Agere Systems Japan Ltd., 7-18, Higashi- Gotanda 2-ch ome, Shinagawa-ku, Tokyo 141, Japan EUROPE: Data Requests: DATALINE: Te l. (44) 7000 582 368, FAX (44) 1189 328 148
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Copyright © 2001 Agere Systems Inc. All Rights Reserved Printed in U.S.A.
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) Tel. (65) 778 8833, FAX (65) 777 7495 Tel. (86) 21 50471212, FAX (86) 21 50472266 Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
Technical Inquiries:GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Sto ckholm), FINLAND: (358) 9 3507670 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
May 2001 DA01-010SONT (Replaces DA00-001SONT and must accompany DS98-193SONT-4)
Advisory
May 2001
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
System Programming (SP)
SP1. Required Provisioning Sequen ce and Clo cks
The core registers must be written prior to provisioning any other registers (1) to establish the internal clock rates for the device, and (2) because writing to certain core registers resets the remainder of the device. Cer­tain clocks must be present to read/write registers prior to provi sioning the device.
One of the following clocks must be present prior to provisioning to enable register access:
TxCKP and TxCKN
MPU clock (microprocessor interface sy nchronous mode only)
Provisioning must be implemented in the following sequence:
Core register 0x0010 (mode) must be provisioned first
Core register 0x0011 (channel [A—D] control) second
Remainder of the core registers must then be provisioned (order does not matter)
It is recommended, but not required, that the remainder of the device be provisioned in the following order:
OHP, PT, and DE blocks (order does not matter)
UT block to turn on the data source to the master and slave
Workaround
Provisioning must be implemented in the following sequence:
Apply either TxCKP and TxCKN or MPU clock.
Provision core: — Mode, register 0x0010 — Channel [A—D] control, register 0x0011 — Remainder of the core
Corrective Action
Not applicable. Use above procedure in provisioning the device.
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
System Programming (SP)
(continued)
SP2. Behavior During Loss of Receive Line Clock
All state and counter values will be held at their current values when Rx line clock has been lost. The device will not automatically multiplex in the Tx line clock when the Rx line clock is lost.
Workaround
System software should monitor loss of line clock bits in the receive/transmit state register (addresses 0x040A— 0x040D) and ignore all other alarms. This condition must be serviced as a major failure event.
Corrective Action
This is informational only. No corrective action is required for this condition.
SP3. PT Register Addressing
Addresses for the PT error counter registers are as follows:
Channel A: 0x09B3 to 0x09E3
Channel B: 0x09EF to 0x0A20
Channel C: 0x0A2C to 0x0A5C
Channel D: 0x0A68 to 0x0A98
The reserved address space between the error counter registers is not symmetric. (The reserved space
Note:
between channels B and C is 0x003D, and the reserved space between channels A and B and channels C and D is 0x003C.)
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
No corrective action is required for this condition.
2 Agere Systems Inc.
Advisory May 2001
Microprocessor Interface (MPU)
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
MPU1. In te rf a ce to
The interface between the the following incompatibilities in the specifications of these two devices. For a 33 MHz microprocessor clock rate,
Motorola
the without DT applied to TDAT042G5 must be held low until the address changes. Details are given below.
Chip Select Timing
The TDAT042G5 CS
x output signals. TDAT042G5 timing does not allow simultaneous deassertion of CS and ADS signals. Chip
CS select applied to TDAT042G5 must be held low for at least 5 ns after the MC68360 deasserts ADS
Workaround:
signals meeting the requirements of TDAT042G5.
DT
Timing
Motorola
If the does not satisfy the MC68360 processor DSACK high-impedance state. This causes the next MPU cycle to be terminated early.
Workaround:
MC68360 series processors can be interfaced to TDAT042G5 without intervening glue logic, if used
and if programmed for six wait-states. If a user wishes not to use the wait-states, then the chip select
Use external glue logic to decode the address to generate CS
MC68360 processor CS
Place a 1 kΩ resistor from DT
Motorola
Motoro la
input signal requirements are not compatible with the
*
MC68360 Processor Is Not Gl ueless
MC68360 processor and TDAT042G5 requires interven ing logic because of
Motorola
, or provide microprocessor interface
x signal is used to drive the TDAT042G5 CS, then TDAT042G5 DT output
timing requirement. DT is not pulled to 1 before it is placed in a
DDD
to V
.
MC68360 series processor
.
Corrective Action
Corrective action for MPU1 has not been determined.
MPU2. Synchronous Microprocessor Interface Mode Is Nonfunctional
The synchronous microprocessor interface mode, MPMODE = 1 (pin D8), functions as described in the advance data sheet, but causes data errors. Placing TDAT042G5 in the synchronous mode and placing a clock on MPCLK (pin C8) will cause the data passing through the device to be corrupted. Data errors are generated at a rate of 1% or less of corrupted packets.
Workaround
Use the TDAT 042G5 in the asynchronous microprocessor mode, MPMODE = 0, with no clock applied to MPCLK.
Corrective Action
This condition will be resolved in version 1A of the device.
Motorola
*
is a registered trademark of Motorola, Inc.
Agere Systems Inc. 3
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Core Registers (CR)
CR1. Clear on Read/Clear on Write Behavior
Bit 6 of line provisioning register 0x0010 sets the functionality of the COR/W registers.
Table 1. COR/W Settings of Register 0x0010, Bit 6
Bit 6 Mode Bit Clear Behavior of Accessed Registers
1 COR After COR has been set (address 0x0010, bit 6 = 1), all registers that are accessed
are cleared when read.
0 COW After COW has been set (address 0x0010, bit 6 = 0), a 1 must be written to a given bit
in a given register to clear that bit. Writing a 0 to a bit in a given register does not clear that bit.
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
Advisory
May 2001
This condition will be described in revision 4 of the advance data sheet.
Line Interface (LI)
LI1. STS-48/STM-16 Mode Lacks Facility Loopback
There is no facility loopback function (line input to line output) available in STS-48/STM-16 mode. Facility loopback is available only in STS-12/STM-4 and STS-3/STM-1 mo des as described in the advance data sheet.
Workaround
This function is not a feature of TDAT0 42G5.
Corrective Action
No corrective action is required for this condition.
4 Agere Systems Inc.
Advisory May 2001
for Version 1 and 1A of the Device
TDAT042G5 Device Advisory
Path Terminator (PT)
PT1. Signal Degrade (SD) and Signal Fail (SF) Bit Behavior
Receive signal degrade and receive signal fail bits in the PT state registers (addresses 0x0838, 0x088A, 0x08DC, and 0x092E, bits [1:0]) do not function as described. Until the signal degrade (SD) and signal fail (SF) thresholds are programmed, the SD and SF bits will toggle on a frame-by-frame basis.
Workaround
Program thresholds during system software initializati on.
Corrective Action
This functionality will be retained in its current state in future versions of the device. The advance data sheet will be corrected to reflect the actual function of the registers.
PT2. Clear-After-Write Behavior of Signal Degrade Clear Bits
Signal degrade clear (bits 15—12) of the PT one-shot control parameters register (address 0x0AA4) are described as one-shot, clear-after-write bits. Writing these bits should automatically set and then clear the bits. This one-shot behavior is not observed.
Workaround
The bits must be set to 1 and then explicitly set to 0 to clear these signal degrade bits.
Corrective Action
This functionality will be retained in its current state in future versions of the device. The advance data sheet will be corrected to reflect the actual function of the registers.
Agere Systems Inc. 5
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
Path Terminator (PT)
(continued)
PT3. Remote Defect Indicator (RDI) Behavior
The SONET standards require that when an RDI changes value, it should hold the value for a minimum of 20 frames. This applies to a
no error
However, it is also intended by the SONET standard that the occurrence of an immediately.
TDAT042G5 responds to error conditions within 100 ms ( erated or removed within 100 ms of detecting or terminating an incoming defect), in which case the two require­ments become functionally the same.
Single-bit and enhanced RDI behave differently under the following conditions:
Transition from
While in th e
error
state to
error
state, a subsequent error occurs.
The single-bit error RDI does not hold the no error st ate for 20 frames. Howev er, the enhan ced RDI does hold the no error state for 20 consecutive frames.
Workaround
No workaround is available for this condition.
Corrective Action
state, which should be maintained for at least 20 consecutive frames.
state should be reported
error
*
ANSI
T1.105 which states only that RDI-L must be gen-
no error
state.
The enhanced RDI indicator in future versions of the device will behave the same as the single-bit error i ndicator.
PT4. SS Pointer Interpretation Algorithm
The SDH standards do not require that the SS bits are set to binary 10 for SDH equipment. The SS bit values are not used in determining a valid pointer value. Because of this, the SS pointer interpretation algorithm is not imple­mented in the device. Bit 5 (RSSPTRNORM[A—D]) of PT control registers 0x0AA6, 0xAAE, 0x0AB6, and 0x0ABE is not used. Bi ts 1 and 0 (RSSEXP[1:0]) of PT provisioning register 0x0AC7 are not used.
Workaround
No workaround is available for this condition.
Corrective Action
These bits w ill be r emoved from the PT registers in future re v is ion s of the advanc e da ta sheet.
ANSI
*
is a registered trademark of American National Standards Institute, Inc.
6 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
Path Terminator (PT)
(continued)
PT5. Delta/Event Registers in COR Mode
Because there is a one-cycle delay before the PT delta event registers (0x802, 0x080F, 0x081C, 0x0829) are cleared after being read in COR mode, new interrupts may be lost.
Workaround
No workaround is available for this condition.
Corrective Action
This condition will be addressed in future versions of the device.
Data Engine (DE)
DE1. SDL Mode—Header Error Correction in LSB
In SDL mode, the header error correction process is susceptible to single-bit errors in the least significant bit (LSB) of the special payload.
Workaround
No workaround is available for this condition.
Corrective Action
This condition will be addressed in future versions of the device.
DE2. Incorrect ATM Loss of Cell Delineation (LCD) Implementation
Currently, the LCD is implemented in the same way that out of cell delineation (OCD) is implemented. This is not in accordance with the ITU-TI.432-2 February 1999 standard.
Workaround
No workaround is available for this condition.
Corrective Action
A software workaround will be available with version 1A of the device.
Agere Systems Inc. 7
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
Data Engine (DE)
(continued)
DE3. ATM Transmit Count of Idle Cells
For ATM mode in the transmit direction, all cells are currently counted, including the idle cells. Only the cells con­taining data should be counted.
Workaround
No workaround is available for this condition.
Corrective Action
This condition will be addressed in version 1A of the device.
DE4. Channel Provisioning
When using the device in STS-3/STM-1 and STS-12/STM-4 modes with either PPP, CRC, or HDLC, egress config­uration registers 0x1016, 0x1017, 0x1018, and sequencer cell state register 0x1036 of all four channels must be provisioned, even if a channel is not being used.
Workaround
Provision all four transmit DE channels. Set DE egress configuration registers and the sequencer cell state register as shown in Table 2.
Table 2. Tr ansmi t DE Egres s and Sequ enc er C ell State Registers
Address Value
STS-3/STM-1 STS-12/STM-4
0x1016 0x4567 0x4567 0x1017 0x4567 0x4567 0x1018 0x4567 0x4567
0x1019—0x1021 0x4567
0x1036 0x0000 0x0000
Corrective Action
This condition will be addressed in future versions of the device.
8 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
Data Engine (DE)
(continued)
DE5. Packet Be havi o r in P OS /S D L Mo d e—Dry Mode
When the device is configured in POS mode with dry mode enabled, the following conditions may persist:
PPP mode; STS-48/STS-12/STS-3. When running in PPP mode, the PPP header—0x FF03 0x 0021 (provisionable)—may be incorrectly inserted at any point in a packet within the outgoing data stream when the FIFO runs dry, thereby corrupting the packet. Packet s being sent are corrupted if the FIFO r uns dry.
PPP and CRC modes; STS-48/STS-12/STS-3. CRC, PPP, and HDLC modes; STS-48/STS-12/STS-3. In PPP, CRC, and HDLC dry modes, some of the packet data may be corrupted when the packet length is above a certain size where size is dependent upon UT clock rate and low watermark setting. Either sections of the packet may be lost or additional packets may be inserted.
Workaround
Several workarounds are possible:
Do not provision dry mode for this devic e.
If dry mode is provisioned: — Do not allow the FIFO to be emptied. — Run the UTOPIA clock fast enough, as shown in Table 3, so that the FIFO is never empty. — Use a larger external FIFO to buffer the data. — Do not allow the packet size to exceed the low watermark.
Table 3. Required UTOPIA Clock (TxCLK) Rates
Mode TxCLK and Rate
STS-48/STM-16 TxCLK > 77 MHz (U3+, 32-bit mode)
STS-12/STM-4 TxCLK > 40 MHz
STS-3/STM-1 TxCLK > 10 MHz
Corrective Action
This condition will be corrected in version 1A of the device.
Agere Systems Inc. 9
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
Data Engine (DE)
(continued)
DE6. Incorrect ATM Out of Cell Delineation (OCD) Implementation
In ATM mode, the OCD reporting for channels B, C, and D is incorrect. The OCD state of channel A is reported for channels B, C, and D. The OCD reporting is correct for channel A.
Workaround
No workaround is available for this condition.
Corrective Action
This condition will be corrected in version 1A of the device.
DE7. Incorrect Frame State of ATM Data Streams
When sending a single ATM data stream to channel A, the frame states of channels B, C, and D are incorrectly set to sync mode. This prevents LCD errors from being reported on channel A as well. In addition, when sending a sin­gle ATM data stream to channels B, C, or D, the frame states always remain in hunt mode. This results in LCD errors on those channels.
Workaround
No workaround is available for this condition.
Corrective Action
A software workaround will be available with version 1A of the device.
10 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
Data Engine (DE)
(continued)
DE8. Clearing DE Interrupt Register (0x1002)
DE interrupt register 0x1002 is incorrectly defined in the revision 3 of the data sheet as RO. DE interrupt register 0x1002 is correctly defined as a COR/W register. However, register 0x1002 must be used in the COR mode (regis­ter 0x0010 bit 6 set to 1). The bits of register 0x1002 are explained in detail in Table 4.
Table 4. Register 0x1002: DE Interrupt (COR/W)
Bits Mode Clear Behavior of Register 0x1002
15—12 RO To clear these SDL Rx frame state interrupt bits, read and
clear their associated interrupt source registers (addresses 0x14E0—0x 14E3).
11—0COR or COW
(address 0x0010, bit 6)
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
This behavior will be desc ribed in fu ture rev isions of the adv ance data sheet.
To properly clear these bits, device must be in COR m ode (address 0x0010, bit 6 = 1).
DE9. Single Packet Transmission in HDLC-CRC, SDL-CRC, and PPP Modes
When receiving in either PPP or CRC mode, a single packet may not pass through the device. This occurs when the end of packet (which contains the CRC) never reaches the UT FIFO. The ingress channel suspends transfer to the UT when there is no end of packet in the FIFO. These bytes are transferred to the UT when the next packet is received. This proble m will aff ect HDLC-CRC, SDL-CRC, and PPP modes.
Workaround
There are two possible workarounds:
Set ingress payload type and mode control registers (0x1040—0x1043) to CRC strip mode. However, i n CRC-16
mode, single packets may still get stuck if CRC ends on bytes A or B.
Send a minimum 4-byte dummy packet after each packet.
Corrective Action
This condition will be addressed in future versions of the device.
Agere Systems Inc. 11
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
Data Engine (DE)
(continued)
DE10. Excessive HDLC Flag Characters
The following three issues refer to HDLC flag character (0x7E) problems in the data engine:
An excessive number of HDLC fl ag characters (0x7Es) may be inserted between packets on the transmit side if the UTOPIA low watermark value is set above 2. This will have the effect of reducing the bandwidth of the device.
The data engine operates on 32-bit boundaries. Egress packets that are not multiples of four will be fil led with 0x7Es.
Egress packets consisting of all 0x7Es as data will be c orru pte d.
Workaround
Set the UTOPIA egress low watermark value in the UTOPIA egress provisioning registers (0x0212, 0x0216, 0x021A, 0x021E) to either 1 or 2 to prevent excessive 0x7Es from being inserted between packets.
Corrective Action
This condition will be addressed in future versions of the device.
UTOPIA (UT)
UT1. Polling in Multidevice MPHY Mode
When the TDAT042G5 is polled and respon ds, the data bus become s enabled. In a multidevice MPHY configura­tion, if the data bus is active from a different PHY device, response to a poll from the device will corrupt a data transfer already in progress. TDAT042G5 MPHY always functions without data corruption in a single-device (slave), multiple-channel configuration (point-to-point).
Workaround
No workaround is available for this condition.
Corrective Action
This condition will be addressed in future versions of the device.
12 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
UTOPIA (UT)
(continued)
UT2. UTOPIA Clock Limitations
The maximum spee d of the UTOPIA interface is 104 MHz. When operating at clock speeds greate r than 52 MHz, RxCLK[D:A] must be placed in source mode and will use the same external clock as the corresponding TxCLK[D:A] clock. RxCLK[D:A] source mode is set by provisioning bit 6 (CLOCK_MODE_Rx) for channel A of the UTOPIA receive provisioning registers (address 0x020F).
When operating at speeds less than 52 MHz, separate external clocks for RxCLK[D:A] and TxCLK[D:A] may be used.
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
This condition will be addressed in future versions of the device. Design modifications will be directed towards allowing a maximum interface speed of 104 MHz in all cases. Note that UTOPIA Level 3 clock architecture has changed in the A TM Forum’s UTOPIA Level 3 specification as of the July 1998 version.
UT3. PMRST Register Value Invalid After Reset
The value in PMRST_PECTx[A—D] (addresses 0x020B through 0x 020E) is invalid after reset until the second PMRST clock period is completed. After the second PMRST, the register value is valid.
Workaround
Always have the system software execute a read of PMRST_PECTx as part of the system initialization following a reset.
Corrective Action
This condition will be addressed in future versions of the device.
Agere Systems Inc. 13
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
UTOPIA (UT)
(continued)
UT4. FIFO Overflow and Error Reporting
If the RxFIFO overflows, RxEOP is not asserted as expected. Therefore, when errors occur, two packets will be corrupted instead of one because two start of packets (SOPs) occurred without an end of packet (EOP). RxERR is not asserted when the above overflow condition occurs. No effect is noticeable in the ATM mode. Channel A works as expected; this problem occurs in channels B, C, and D.
Workaround
This error is detectable in the status registers. No workaround is available for this c ondition .
Corrective Action
This condition will be addressed in future versions of the device.
UT5. Timing Difference Between Direct and Polled Status Modes
In the receive direction of the MPHY mode, RxPA[A] shows the polled packet (or ATM) available status for a ll four slices, while the RxPA[B], RxPA[C], and RxPA[D] show the direct status states of their respective FIFOs. In some cases, the status of RxPA[A] does not agree with the status of RxPA[D:B]. The direct status indication has one additional cycle of pipeline delay from that of the polled status.
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
No corrective action is required for this condition.
UT6. UTOPIA Interface D Nonfunctional in Some Mixed MPHY and Point-to-Point
Configurations
When TDAT042G5 is configured with slice D in a point-to-point mode, slice D is nonfunctional in one special case. If UTOPIA interfaces A and B are configured for 32-bit MPHY operation with slice C as part of the polled channels, interface D will be nonfunctional and cannot be independently configured in a UTOPIA Level 2 point-to-point mode. This condition does not occur in 16-bit MPHY operation.
Workaround
For mixed MPHY and point-to-point configuration, use UTOPIA slice D for MPHY mode instead of slice C. UTOPIA slice C will then be available for normal point-to point mode.
Corrective Action
This condition will be addressed in future versions of the device.
14 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
UTOPIA (UT)
(continued)
UT7. Response to 0x1F MPHY Address
TDAT042G5 MPHY currently generates a polled status response to the address 0x1F (the null address), which is not compliant with the UTOPIA Level 2 standard. The address 0x1F is valid for UTOPIA Level 3 operation.
Workaround
No workaround is available for this condition.
Corrective Action
This condition will be addressed in future versions of the device.
UT8. Far-End Loopback Bandwidth Limitations
In the STS-48/STM-16 mode (U3, U3+), looping back data at the far end (UTOPIA interface) can only be accom­plished without cell/packet corruption at rates below the following, as shown in Table 5.
Table 5. Cell/Packet Corruption Rates
Mode ATM Packet
STS-48/STM-16 300 Mbits/s Rate not ye t determined
STS-12/STM-4 70 Mbits/s Rate not yet determined
STS-3/STM-1 30 Mbits/s Rate not yet determined
When cell/packet corruption occurs, the device reports transmit FIFO underflow.
Workaround
No workaround is available for this condition.
Corrective Action
This condition will be addressed in future versions of the device.
Agere Systems Inc. 15
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
UTOPIA (UT)
(continued)
UT9. Clock Requirements for MPHY Modes
When using the TDAT042G5 in MPHY mode, receive and transmit clocks m ust be provided for all channels (A, B, C, and D). Also, the packet available (PA) signal for each channel must be provided on each channel’s associated PA pin.
Workaround
It is possible to place RxCLK[D:A] into source mode by provisioning bit 6 (CLOCK_MODE_Rx) of the UTOPIA receive provisioning registers (addresses 0x020F, 0x0213, 0x0217, 0x021B). This will eliminate the need to supply separate receive and transmit clocks.
Corrective Action
This is informational only. No corrective action is required for this condition.
UT10. Egress Packet Mode Overflows
In the UTOPIA modes listed below, the device will report transmit packet overflow errors when no overflows have occurred. This occurs when the egress high watermark is set for the UTOPIA modes as shown in Table 6.
Table 6. Settings at Which Overflows Reported in Error
UTOPIA Modes Egress High Watermark Thresholds
8-bit, U3+ 16-bit, U2+ 32-bit, U3+
Workaround
Set the egress high watermark threshold as shown in Table 7. If there is a delay bet ween TxPA dea ssertion and TxENB deassert ion, the additional cycl es should also be accounted for when setting the threshold.
Table 7. Settings to Prevent Overflows Reported in Error
UTOPIA Modes Egress High Watermark Thresholds
8-bit, U3+ 16-bit, U2+ 32-bit, U3+
Corrective Action
This condition will be addressed in future versions of the device.
0x3D
0x3B
0x37
<
0x3D
<
0x3B
<
0x37
16 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
UTOPIA (UT)
(continued)
UT11. Clearing UT Interrupt Re gis ter
When a UT interrupt event occurs and COW mode is enabled, writing to UT interrupt register 0x0201 does not clear the register (this register is read-only). The interrupt is cleared by writing to the UT delta and event registers (addresses 0x0202—0x0205).
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
No corrective action is required for this condition.
UT12. Incorrect Implementation of POS Multi-PHY Mode
Because the TDAT042G5 lacks a selected PA signal (SPA), the status of a channel that is transmitting data in POS MPHY mode is not known during polling. Therefore, the PA signal cannot be used as a data valid signal. If the channel transmitting data runs dry, the master side may receive invalid data.
Workaround
Use direct status polling mode only and ensure that the address of channel A is applied to the address bus at all times, except during the clock cycle when another channel is being selected.
Corrective Action
No corrective action is required for this condition.
UT13. Invalid Extra Cycle Between EOP and SOP in CRC-16/32 Mode
When using the device in CRC-16 or CRC-32 mode, there is always an extra cycle between the end of packet (EOP) of the previous packet and the start of packet (SOP) of the following packet.
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
This is condition will be addressed in the future version of the device.
Agere Systems Inc. 17
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
UTOPIA (UT)
(continued)
UT14. Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY Mode
When using MPHY direct status for all operational modes (8-bit, 16-bit, and 32-bit), the RxPA signal for channels B and D is not functional. The RxPA signal is functional only for channels A and C.
Workaround
The TDAT UTOPIA interface currently has nonfunctioning RxP A B and RxPAD output signals when used in four­channel Multi-PHY mode as shown in Figure 1. The result of this problem is the unavailability of direct status polling on the receive-side UTOPIA interface. To work around this problem, the following analysis is done to aid the user i n doing a round-robin data extraction procedure.
R
PAA
INGRESS CHANNEL A FIFO
256 byt es DEEP
INGRESS CHANNEL B FIFO
256 byt es DEEP
A
32-bit INTERFACE (A AND B)
B
X
X
RXPAB
INGRESS CHANNEL C FIFO
256 byt es DEEP
INGRESS CHANNEL D FIFO
256 byt es DEEP
C
D
X
RXPAC
RXPAD
Figure 1. Receive-Side UTOPIA Interface and Channel FIFOs
The rate at which data fills and drains the receive-side UTOPIA FIFOs is calculated as follows:
The data enters each UTOPIA FIFO from the data engin e bytewise running on a 77.76 MHz system clock.
If we assume each channel (worst case) is filled with an STS-12c rate signal, then the amount of data (excluding SONET overhead, both section/line, path, and three stuff columns) per second is (87 x12 x 9 x 8000) – (4 x 9 x 8000) = 74.88 Mbytes/STS-12c/s or 599.040 Mbits/STS-12c/s.
Since each FIFO contains a maximum of 256 bytes/FIFO, it takes on average (256/74,880,000) = 3.4188µs to fill a FIFO, and with a clock cycle of 77.76 MH z, it requires as a worst case,
3.2922 µs to fi ll th e FIFO.
Since there are four FIFOs all receiving data at 74.88 Mbytes/s, then the total bandwidth requirements of all four channels combined is (4 x 74,880,000) = 299.52 Mbytes/s.
1664 (F)
The servicing rate on each FIFO is based on the UTOPIA interface width and frequency. If we assume a 32-bit A/B UTOPIA interface operating at 100 MHz, then the service rate is 400 Mbytes/s to service all the channels.
18 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
UTOPIA (UT)
The interface can drain an entire FIFO at a rate of 400 Mbytes/s. To drain 256 bytes, it requires a maximum of (2 56 / 400,000,000) = 0.64µs to drain a FIFO that is completely full. To drain all four FIFOs, it requires (0.64 x 4) = 2.56 µs total
For data to be efficiently removed from each of the Rx FIFOs, a round-robin extraction method must be employed since the RxPAB and RxP AD signals are not avai lable f or direct status polling. Since it requires a worst case total of
3.2922µs to fill a FIFO, the master must serv ice all FIFOs in a manner such that it does not allow any particular FIFO to fill and hence overflow. Assuming equal servicing of each FIFO, the master must therefore not service any particular FIFO for longer than (3.2922 / 4) = 0.8231µs. This also must account for any dead cycles in a cycling between channels and any dead cycles on a particular channel (single dead cycle between EOP and SOP).
When servicing four FIFOs, there is a maximum clock cycle penalty for switching between channels. For two-cycle mode, this penalty is a maximum of four UTOPIA master clock cycles; so to switch between all four channels, a total of up to sixteen master clock cycles may be required to perform all the switching. The value of fou r is worst case, and in some cases this can be as low as one cycle. The value of four results from the case where the FIFO drains while servicing that channel, which will be common when draining at the 100 MHz frequency. In that case, the master must first see that the FIFO has drained by observing that RxPAA is invalid on the last cycle while drain­ing the FIFO (best case is one cycle lost). It must then deactivate RxENB and place a new channel address on the address bus on the following cycle (best case is one cycle lost). It must then activate RxEN B for the new channel on the following cycle and have TDAT sample RxENB low (best case is one cycle lost). The TDAT will then output data two cycles later when using a PA response mode of two cycles (o ne cycle lost with data output on second cycle). Any additional delays by the master must be added to these to calculate a worst-case condition. The best­case condition occurs when the master stops the data flow when there are still more than two data items contained within the FIFO. In th is case, the master deactivates RxENB at some predetermined max imum 32-bit word drain value, where the PA response on the cycle prior to deactivation had valid data. For two-cycle mode, two additional data items will be output from the FIFO for that particular channel, if available. The master deactivates RxENB, places the new channel address on the FIFO, and activates RxENB. On the cycle where RxENB is activated, the last valid data item from the previous channel may be output (best case), and one dead cycle will follow this before data for the following selected channel is output.
(continued)
.
Given the information above, as sume the worst case of four cycles between channel switching. Also assume the FIFOs are f illing at a worst-c as e rate, 3 .2922µs/FIFO. Assume the master is draining each FIFO using the 32-bit, 100 MHz, A/B, UTOPIA interface. Assume the master extracts a maximum of thirty 32-bit words (120 bytes) from each FIFO before switching to an alt ernate channel. This requires (30 x 10) = 300 ns/FIFO, and assume that it takes the worst-case four clock cycles to switch to alternate channels. Therefore, the total servicing time per FIFO is (300 + 4 x 10) = 340 ns/channel, and the total servicing time per four channels is (4 x 340) = 1.36 µs per round robin servicing of all four channels. At this round-robin rate, a maximum of 120 bytes are serviced per channel per
1.360µs interval; so to service the total bytes per channel (74.88 Mbytes/s), it requires a total of 0.849 seconds, which is sufficient bandwidth to service all channels.
Since the FIFOs fill at the maximum rate of 1 byte/13.355 ns, each FIFO w ill fill to a depth of 102 bytes in the
1.360µs interval between channel servicing. This is well below the overflow threshold, which is set by the user to a value near the top of the FIFO (high watermar k, 0x36 (216 bytes) default) and is below the number of byt es ser­viced by the master per channel per round-robin servicing (120 bytes). Each customer’s servicing characte r istics will depend on the master’s behavior and how fast it performs the channel switching. If it cannot switch in the worst­case, fo ur-cycle manner described above, performance will degrade.
One item not accounted for in the above analysis is the fact that TDAT may place a dead cycle between packets (in CRC and PPP modes, not in HDLC mode). In this case, there can be a maximum of three dead cycles per FIFO (assuming 40-byte packets worst c ase and 102 bytes in FIFO between round-robin cycle). This will be tak en up by the slack provided above , where (102 bytes + 4 bytes/dead cycle x 3 dead cycles) = 114 bytes, which still falls below the servicing rate of 120 bytes per round-robin servicing.
Agere Systems Inc. 19
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
UTOPIA (UT)
(continued)
The logical flow of the above proce dure is shown in Figure 2 below:
SELECT NEXT
CHANNEL
HOLD ADDRESS OF SELECTED CHANNEL ON ADDRESS BUS
PA = 1
YES
YES
<
COUNT
NO
DEACTIVATE
RXENB
30
NO
1665 (F)
Figure 2. Master Control Flow Chart
Select channel
If PA = 1 continue
If count = 30 words, then deactivat e RxENB and switch to new channel Else continue with current channel
Else deactivate RxENB and switch to next channel
Return to selection of new channel
Corrective Action
This is condition will be addressed in the future version of the device.
20 Agere Systems Inc.
Advisory May 2001
for Version 1 and 1A of the Device
TDAT042G5 Device Advisory
Overhead Processor (OHP)
OHP1. Maximum BER Count
The maximum number of errors the device can report is limited to 5.00E-04 in STS-12/STM-4 mode and 1.00E-04 in STS-48/STM-16 mode. This applies to the SDLSET, SDLCLEAR, SFLSE T, and SFLCLEA R bits of the signal degrade and signal fail BER algorithm OHP registers. These bits are shown in Table 8.
Table 8. Signal Degrade and Signal Fail Algorithm OHP Registers [6:3]
OHP Bits
OHP_SDLSET[A—D][3:0] 0x043B, 0x043D, 0x043F, 0x0441
OHP_SDLCLEAR[A—D][3:0] 0x0447, 0x0449, 0x044B, 0x044D
OHP_SFLSET[A—D][3:0] 0x0453, 0x0455, 0x0457, 0x0459
OHP_SFLCLEAR[A—D][3:0] 0x045F, 0x0461, 0x0463, 0x0465
* The OHP prefix shown here will be added to the current bit names in revision 4 of the advance data
sheet.
Workaround
This is informational only. No workaround is available for this condition.
Corrective Action
No corrective action is required for this condition.
*
Addresses
OHP2. RDI-L Reporting
When the device is initially powered up, it defaults to STS-48/STM-16 mode. This locks a counter value into trans­mit control registers for channels B, C, and D. When the device is configured for STS-3/STM-1 mode, the counter does not automatically clear.
Workaround
During STS-3/STM-1 OHP configuration in the system code, manually clear transmit control registers 0x0431, 0x0433, and 0x0435 for channels B, C, and D. In order to clear these transmit control registers, the bits must be toggled. The following pseudocode shows how to clear the bits on channels B, C, and D:
Set address 0x0431 to 0x007F # set bits on channel B Set address 0x0431 to 0x0000 # clear bits on channel B Set address 0x0433 to 0x007F # set bits on channel C Set address 0x0433 to 0x0000 # clear bits on channel C Set address 0x0435 to 0x007F # set bits on channel D Set address 0x0435 to 0x0000 # clear bits on channel D
Corrective Action
This is informational only. No corrective action is required for this condition.
Agere Systems Inc. 21
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
Overhead Processor (OHP)
(continued)
OHP3. M1 Error Counter in STS-48/STM-16 Mode
When the device receives REI-L errors in the STS-48/STM-16 mode, no M1 errors are reported.
Workaround
There are several workarounds for this problem:
Pass the B2 error count value to the far end through system sof tware.
Process the M1 byte from the receive TOAC with an external FPGA.
Pass the B2 error count from the receive to the transmit direction using transmit TOAC capability. The error count must be inserted into the eleventh Z2 byte in an STS-48/STM-16 transmit signal. The transmit TOAC signal is driven by an exter nal device with s o ftwar e in s ert capability.
Pass the B2 error count from the receive to the transmit direction in the section overhead byte. The device has F1 and S1 monitor capab ility ; the pro tocol for sending the error mess age to the far end with F1 or S1 bytes is user­defined.
Corrective Action
This condition will be addressed in future versions of the device.
Packaging and Pinouts (P)
P1. Pin F5 (Previously JTEST) Is No Connect (NC)
Item deleted. Corrected in the advance data sheet.
P2. Modified Pinout and Power Supply Configuration—F utur e Versions
Item deleted. No modifications to the power supply configuration will be made.
P3. Change to TDAT042G5 Version 1 Pinout
Item deleted. All devices conform to power pin assignments as listed in the advance data sheet.
22 Agere Systems Inc.
Advisory May 2001
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
Packaging and Pinouts (P)
(continued)
P4. Power Dissipation
The worst-case power dissipation of TDAT042G5 is currently estimated to be 7.5 W. The minimum and maximum power dissipation is listed in Table 9, as well as the relative package thermal characteristics.
Table 9. Power Dissipation and Relative Package Thermal Characteristics
Parameter Symbol Test Conditions Min Typ Ma x Unit
Power Dissipation:
Minimum Maximum
Thermal Performance
(JEDEC standard conditions)*
Correlation Factor
Between Die and Case Temperatures
*
= (TJ – TA)/PD: TJ = ju nction temperature, TA = ambien t tem pe ra tur e o f medi um sur rou nd in g t he pac k age, PD = electr ic al po wer dissi pa t ed
θ
JA
by the device.
= (TJ – TC)/PD: TJ = junction temperature, TC = package temperature (top, dead-center), PD = electrical power diss ipated by the device.
ψ
JC
D
P
STS-3/STM-1 line ra te STS-12/STM-4 and STS-48/
— —
3 6
— —
W W
STM-16 line rates
JA
θ
JC
ψ
Standard JEDEC 4-layer PWB:
Standard natural convection
200 LFPM airflow
800 LFPM airflow
Standard JEDEC 4-layer PWB:
Standard natural convection
200 LFPM airflow
800 LFPM airflow
— — —
— — —
9
6.5 5
0.3
0.4
0.5
— — —
— — —
°C/W °C/W °C/W
°C/W °C/W °C/W
Maximum junction temperature of TDAT042 G5 is 125 °C. Therefore, maximum cas e temperature under nat ural convection conditions must be less than approximately 50 °C, and in this case, an external heat sink is required.
References
Jeff Weiss,
HL250C 3.3 Volt 0.25
600 LBGA Thermal Test Report
m CMOS Standard-Cell Library
µ
, February 25, 1999.
(MN98-060ASIC-02), pages 2-2 and 2-3.
Workaround
An external heat sink is required.
Corrective Action
Power consumption will be addressed in future versions of the device.
Agere Systems Inc. 23
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Data Addenda
DA1. Incorrect PT Control Register Mapping
Advisory
May 2001
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
mapping for PT control registers 0x0AAA, 0x0AB2, 0x0ABA, and 0x0AC2: bit #9 TRDIP_PLMPINH[A—D]
bit #8 TRDIP_UNEQUIPINH[A—D] bit #7 TRDIP_LCDINH[A—D]
The correct bit mapping is the following: bit #9 TRDIP_LCDINH[A—D]
bit #8 TRDIP_PLMPINH[A—D] bit #7 TRDIP_UNEQUIPINH[A—D]
Workaround
No workaround is available for this condition.
Corrective Action
This correct bit mapping will be included in July 2000 of the advance data sheet.
Advance Data Sheet, Rev. 3 lists the following bit
D A2. Variable Change
TDAT042G5 SONET/SDH 155/622/2488 M bits/s Data Interface
TRD_LCDINH[A—D], which has been changed to TRD_LCD[A—D] in the January 2001 revision.
Advance Data Sheet, Rev. 3 lists the variable
Workaround
No workaround is available for this condition.
Corrective Action
This correction will be included in Janu ary 2001 of the advance data sh eet.
24 Agere Systems Inc.
Advisory May 2001
for Version 1 and 1A of the Device
TDAT042G5 Device Advisory
AY99-013SONT-2 Replaces AY99-013SONT to Incorporate the Following Updates
1. Pag e 1, SP1. Required Provisioning Sequenc e and Clocks, added new issue.
2. Pag e 8, DE4. Channe l Provisioning, added new issue.
3. Pag e 9, DE5. Packet Behavior in P OS/SDL M ode—Dry Mode, added new issue.
4. Page 15, UT8. Far-End Loopback Bandwidth Limitations, added new issue.
5. Page 16, advance data sheet document number corrected.
AY99-013SONT-3 Replaces AY99-013SONT-2 to Incorporate the Following Updates
1. Page 1, notice that the advisory issues still apply to the advance data sheet which has just been updated.
AY99-013SONT-4 Replaces AY99-013SONT-3 to Incorporate the Following Updates
1. Replaced OC- designation with STS- and STM- throughout advisory.
2. Page 2, SP2. Behavior During Loss of Receive Line Clock, added new issue.
3. Page 2, SP3. PT Register Addressing, added new issue.
4. Pag e 4, CR1. Clear on Read/Clear on Write Behavior, added new issue.
5. Pag e 5, PT2. Clear-After-Write B ehavior of Signal Degrade Clear Bits, corrected description.
6. Page 6, PT4. SS Pointer Interpretation Algorithm, added new issue.
7. Page 7, PT5. Delta/Event Registers in COR Mode, added new issue.
8. Page 7, DE2. Incorrect ATM Loss of Cell Delineation (LCD) Implementation, identified the specific ITU stan­dard with which the LCD implementation does not comply.
9. Page 8, DE4. Channel Provisioning, Table Transmit DE Egress and Sequencer Cell State Registers, corrected register 0x102D to 0x1021.
10. Page 9, DE5. Packet Behavior in POS/SDL Mode—Dry Mode , identified dry m ode issues.
11. Page 10, DE6. Incorrect ATM Out of Cell Delineation (OCD) Implementation, added new issue.
12. Page 10, DE7. Incorrect Frame State of ATM Data Streams, added new issue.
13. Page 11, DE8. Clearing DE Interrupt Register (0x1002), added new issue.
14. Page 11, DE9. Single Packet Transmission in HDLC-CRC, SDL-CRC, and PPP Modes, added new issue.
15. Page 12, DE10. Excessive HDLC Flag Characters, added new issue.
16. Page 13, UT2. UTOPIA Clock Limitations, clarified wording.
17. Page 14, UT4. FIFO Overf low and Error Reporting , clar ified wording.
18. Page 16, UT9. Clock Requirements for MPHY Modes, added new issue.
19. Page 16, UT10. Egress Packet Mode Overflows, added new issue.
20. Page 17, UT11. Clearing UT Interrupt Register, added new issue.
21. Page 17, UT12. Incorrect Implementation of POS Multi-PHY Mode, added new issue.
22. Page 21, OHP1. Maximum BER Count, added new issue. In addition, differentiated OHP bits from PT bits with
the same name; the names will be corrected in revision 4 of the advance data sheet.
Agere Systems Inc. 25
TDAT042G5 Device Advisory for Version 1 and 1A of the Device
Advisory
May 2001
AY99-013SONT-4 Replaces AY99-013SONT-3 to Incorporate the Following Updates
(continued)
23. Page 21, OHP2. RDI-L Reporting, added new issue.
24. Page 22, OHP3. M1 Error Counter in STS-48/STM-16 Mode, added new issue.
25. Page 22, remove d issue P1. Pin 5 (Previously JTEST accompanying advance data sheet, DS98-193SONT-3.
26. Page 22, remov ed issue P2. Modified Pinout and Power Supply Configuration—Future Vers ions. Plans for 2.5 V power ring implementation considered, but no schedule ava ilable at this time.
27. Page 22, removed issue P3. Change to TDAT042G5 Version 1 Pinout. Listed pins have been corrected to NC in the accompanying advance data sheet, DS98-193SONT-3.
28. Page 24, DA1. Incorrect PT Control Register Mapping, added new issue.
) Is No Co nnect (NC ) . Pin F5 wa s cor rected to NC in the
AY01-015SONT (Replaces AY99-013SONT-4 and Must Accompany DS98-193SONT-4) Replaces AY99-013SONT-4 to Incorporate the Following Updates
Change List
This change list summarizes changes across the various versions of thi s document starting with the version dated 1/25/01.
1/25/01
1. Page 6, PT3. Remote Defect Indicator (RDI) Behavior, clarified wording.
2. Page 12, DE 11. ATM Header Error Correction (HEC) Behavior, added entire section to document.
1/29/01
1. Page 24, DA1. Incorrect PT Control Register Mapping, changed corrective action description to include the July
2000 date.
2. Page 24, DA2. Variable Change, added entire section to document.
2/13/01
1. Page 12, updated issue on DE 11. ATM Header Error Correction (HEC) Behavior, to i nc lude more information.
2. Page 17, added issue UT13. Invalid Extra Cycle Between EOP and SOP in CRC-16/32 Mode.
3. Page 18, added issue UT14 . Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY Mode.
3/1/01
1. Page 12, removed DE 11 from document.
2. Page 18, UT14. Nonfunctional RxPA Signal for Channels B and D in Packe t Direct Status MPHY Mode, added
workaround to document.
26 Agere Systems Inc.
Advisory May 2001
Notes
TDAT042G5 Device Advisory
for Version 1 and 1A of the Device
Agere Systems Inc. 27
TDAT042G5 D evi ce Advisory for Version 1 and 1A of the Device
Advisory
May 2001
For additional information, contact your Agere Sys tems A ccount Manager or the following: INTERNET: E-MAIL: N. AMERICA: Agere Systems Inc ., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 CHINA: Agere System s (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC JAPAN: Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japa n EUROPE: Data Request s: DATALINE:
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Copyright © 2001 Agere Systems Inc. All Right s Reserv e d Printed in U.S.A.
http://www.agere.com docmaster@micro.lucent.com
1-800-372-2447 Tel. (65) 778 8833 Tel. (86) 21 50471212 Tel. (81) 3 5421 1600
Technical Inquiries:GERM A NY:
, FAX 610-712-4106 (In CANADA :
, FAX ( 65) 777 7495
, FAX (86) 21 50472266
, FAX ( 81) 3 5421 1700
Tel. (44) 7000 582 368
FRANCE: ITALY:
(39) 02 6608131
(49) 89 95086 0
(33) 1 40 83 68 00
(Milan), SPAIN:
1-800-553-2448
, FAX (44) 1189 328 148
(Munich), UNITED K ING DOM:
(Paris), SWEDEN:
, FAX 610-712-4106)
(46) 8 594 607 00
(34) 1 807 1441
(Madrid)
(44) 1344 865 900
(Stockholm), FINLAND:
(Ascot),
(358) 9 3507670
(Helsinki),
May 2001 AY01-015S O NT (Replaces AY99-013SONT-4 and Must Accompany DS98-193SONT-4)
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001

Features

Point-to-point path termination device for interface
termination. Versatile IC supports 155/622/2488 Mbits/s
SONET/SDH interface solutions for packet over SONET (POS), asynchronous transfer mode (ATM), or simplified data link (SDL) for data over fiber applicatio ns.
Suppor ts point-to-point and multi-P H Y UTOPIA.
Low-power 3.3 V operation, CMOS technology.
High-speed I/O is LVPE CL. Al l other logi c has 5 V
tolerant TTL-level inputs. –40 °C to +85 °C temperature range.
600 LBGA package.

SONET/SDH Interface

Termination of quad STS-3/STM-1, quad STS-12/
STM-4, or single STS-48/STM-16. Suppor ts overhead processing for transport and
path overhead bytes. Optional insertion and extraction of overhead bytes
via serial overhead interface. Full path termi nat ion and SPE extraction/insertion.
SONET/SDH compliant condition and alarm
reporting. Handles all concatenation levels of STS-3c
through STS-48c (in multiples of 3; i.e., 3c, 6c, 9c, etc.), STM-1 through STM-16.
Built-in diagnostic loopback modes.
— ITU-T G.707: Network Node Interface for the
Synchronous Digital Hier ar c hy .
— ITU-T G.803: Architecture of Transport Net-
works Based on the Synchronous Digital Hier­archy.
— T1.105: SONET-Basic Description including
Multiplex Structure, Rates, and Formats. — T1.105.02 SONET-Payload Mappings. — T1.105.03 SONET-Jitter at Network Interfaces. — T1.105.06 SONET Physical Layer Specifica-
tions. — T1.105.07 SONET-Sub-STS-1 Interface Rates
and Formats Specification. — ITU-T I.432: B-ISDN User-Network Interface-
Physical Layer Specification. — IETF RFC 2615 (June 1999): PPP over
SONET/SDH. — IETF RFC 1661: The Point-to-Point Protocol
(PPP). — IETF RFC 1662: PPP in HDLC-like Framing.

Data Processing

Provisionable data engine supports payload inser-
tion/extraction and CRC-16/-32 generation/verifica­tion for ATM cell or PPP, SDL, or HDLC streams.
Maintains counts for cell/packet traffic (e.g., total
number of cells, number of discarded cells). Integrated UTOPIA Level 2- and UTOPIA Level 3-
compatible ATM physical layer interface with packet extensions for all test and operations.
Insertion and extraction of up to four separate data
channels. Compliant with 1998: ATM Forum, ITU standards,
and IETF standards.
Compliant with the following Telcordia† (Bellcore),
ANSI*, and ITU standards: — GR-253 CORE: SONET Transport Systems:
Common Generic Criteria.
*ANSI is a registered trademark of American National Standards
Institute, Inc.
Telcordia is a registered trademark of Bell Communications
Research, Inc.

Microprocessor Interface

16-bit address and 16-bit data interface with up to
66 MHz read and write acces s. Compatible with most industry-standard proces-
sors.
Please see the Description section, page 11, for details.
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Table of Contents
Contents Page
Features ...................................................................................................................................................................3
SONET/SDH Interface ...........................................................................................................................................3
Data Processing .....................................................................................................................................................3
Microprocessor Interface .......................................................................................................................................3
Description ......................... ............. ............. ............. ............. ............. ............ ............. ...........................................11
Pin Information .......................................................................................................................................................11
Overview ...................... ...... ...... ....... ...... ....... ...... ....... ...... ....... ...................................... ...........................................45
ATM/HDLC/HDLC-CRC/PPP Support ...................................................................... ....... ....................................47
SDL Support ........................................................................................................................................................48
Over-Fiber Mode .............................................................................. ....................................................................49
Test and General-Purpose I/O Support ...............................................................................................................49
External Interfaces ................................................. ..............................................................................................49
Functional Description ............. ....................................... ........................................................................................50
Line Interface Block ..................................................... ....... ...... ....... ....................................................................51
SONET Framer ...................................................... ..............................................................................................53
Overhead Processor (OHP) Block .......................................................................................................................53
Path Terminator (PT) Block ......... ....................................... ...... ....... ...................................... . .............................62
Data Engine (DE) Block .......................................................................................................................................70
UTOPIA (UT) Interface Block ...............................................................................................................................84
JTAG (Boundary-Scan) Tes t B lock ....................................................................................................................100
Line Interface ........................................................................................................................................................100
LVPECL I/O Termination and Loa d Spec i ficati ons ................................................... ....... ...... ....... .....................100
Interface Description .............................................................................................................................................101
Microprocessor Interface ...................................................................................................................................101
General-Purpose I/O Bus (GPIO) ......................................................................................................................102
Interrupts ......................... .................................................... ...............................................................................103
Reset ............................... ................... ............. .................... ................... ................... .........................................104
Performance Monitor Reset (PMRST) ...............................................................................................................104
Loopback Operation ...........................................................................................................................................106
System Interfaces ........................................... ....... ...... ....... ...... ....... ..................................................................107
Register Access Description ..................................................................... ............................................................111
Register Maps ....................................................................................................... ...............................................112
Core Registers ............................................................. ....... ...... ....... ...... ............................................................112
UT Registers ................................................................................................ ......................................................113
OHP Registers ...................... ....................................... ....... ...................................... ....... ..................................116
PT Registers ............................................. .........................................................................................................126
DE Registers ............. ...... ....................................... ...... ....................................... ...... ..... ....................................138
Register Descriptions ...........................................................................................................................................147
Core Registers ............................................................. ....... ...... ....... ...... ............................................................147
UT Registers ................................................................................................ ......................................................154
OHP Registers ...................... ....................................... ....... ...................................... ....... ..................................165
PT Registers ............................................. .........................................................................................................192
DE Registers ............. ...... ....................................... ...... ....................................... ...... ..... ....................................211
Absolute Maximum Ratings ..................................................................................................................................253
Handling Precautions ..................... ...... ....... ...... ....................................... ...... ....... ...... ....... ..................................253
Operating Conditions ............... ....... ...... ....... ...... ....... ...................................... ....... ...... ....... ..................................254
Electrical Characterist ic s ................................................................................ ......................................................254
4 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Table of Contents
(continued)
Contents Page
Interface Timing Specifications .............................................................................................................................255
Microprocessor Interface Timing ........................................................................................................................255
Line Interface I/O Timing ........................... ...... ....... ...................................... ....... ...... ....... ..................................264
UTOPIA Interface Timing ...................................................................................................................................268
Transport Overhead Access Ch ann el (TOAC ) Interface Timing .................. ....... ....................................... ........271
Reference of SONET/SDH Terms and Comparisons ...........................................................................................273
Definitions of SONET/SDH Bytes .......................................................................................... ............................273
SONET/SDH Comparisons .......................................... ....................................... ...............................................274
SONET/SDH New Terminology .........................................................................................................................274
Outline Diagram ........................................... ...... ....... ...... ....... ...................................... .........................................275
600-Pin LBGA ....................................................................................................................................................275
Ordering Information ... ....... ...... ....... ...... ....... ...... ....... ...... ....... ...... .........................................................................276
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates ......................................276
Agere Systems Inc. 5
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
List of Figures
Contents Page
Figure 1. Pin Diagram of 600-Pin LBGA (Bottom View) .........................................................................................11
Figure 2. Overview Block Diagram .................... ....................................... ...... ....... ...... ....... ...... ..............................45
Figure 3. Interface Block Diagram ............................................................ ..............................................................46
Figure 4. External Interface Summary Di agram ............. ....... ...................................... ....... ....................................49
Figure 5. Functional Block Dia gram ................................................... ...... ..............................................................50
Figure 6. Signal Degrade and Failure Parameters for BER ........................................ ....... ....................................56
Figure 7. Pointer Interpreter State Diagram ................................................... ....... ...... ....... ...... ..............................62
Figure 8. STS-48 Signal Carrying One STS-48c Frame ........................................................................................65
Figure 9. STS-48 Signal Carrying Four STS-12c Frames ........... ....................................... ...... ..............................66
Figure 10. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-3c Frame ..........................66
Figure 11. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-12c Frame (Channel A), One
STS-9c Frame (Channel B), One STS -6 c Frame (Cha nne l C), and One STS-3c Fr ame ( Chan nel D) .67
Figure 12. Quad STS-3 Configuration With Each STS-3 Signal Carrying One STS-2c Frame ..............................67
Figure 13. Block Diagram of Date Engine (DE) ......................................................................................................70
Figure 14. State Diagram for the X31 Scram ble r Synchr oni zati on Proc ess ... ....... ...... ....... ...... ....... .......................72
Figure 15. General Structure of SDL Packets ........................................................................................................72
Figure 16. Uncompressed and Compressed PPP Packets ......... ............................................. ..............................75
Figure 17. Example of Tx/Rx Sequence r C onf igurat ion: STS-48c into Single OC-48 S ignal ............................. ....78
Figure 18. Example of Tx/Rx Sequencer Configuration: 4xSTS-12c into Four Independent OC-12 Signals .........79
Figure 19. SONET Multiplexing: 2-Stage Byte Interleaving Example .....................................................................80
Figure 20. Example of Tx/Rx Sequencer Configuration: 4xSTS-3c into Four Independent OC-3 Signals ............. 81
Figure 21. TDAT042G5 Over-Fiber Modes: SDL, ATM (X31) ................................................................................82
Figure 22. UT Block Diagram .. ....... ....................................... ...... ....................................... ....................................84
Figure 23. Receive-Side Interface Hand sh ak ing in Po int -to -Poi nt, Single Cyc le Mod e ........................ ....... ..........91
Figure 24. Receive-Side Interface Hand sh ak ing in Po int -to -Poi nt, Two-Cycle Mode ............................................92
Figure 25. Transmit-Side Interfac e Hand shak ing in Po int-to-Point, Single Cycle Mod e ........................................95
Figure 26. Multi-PHY Configuration of All Four Channels ......................................................................................96
Figure 27. TxPA Two-Cycle Responses of a Multi-PHY for All Four Channels ......................................................98
Figure 28. RxPA Responses of a Mult i-P HY for All Four Ch annels (PA Response Configured for One Cycle) ....99
Figure 29. GPIO Functionality ..................................................... ....... ...... ............................................................102
Figure 30. Interrupt Functionality ..........................................................................................................................103
Figure 31. Miscellaneous Functionality ....................................... ....................................... ...... .... ........................104
Figure 32. Loopback Opera tion ................................................... ....................................... ...... ............................106
Figure 33. Quad ATM UTOPIA 2 ....................... ....................................... ...... ....... ...............................................107
Figure 34. Single ATM UTOPIA 3 ............................ ...................................... ....... ...... .........................................108
Figure 35. Quad POS UTOPIA 2 ................. ...... ....................................... ...... ......................................................109
Figure 36. Single POS UTOPIA 3 ............................ ...... ....... ...................................... ....... ...... ............................110
Figure 37. 32-bit MPHY UTOPIA 3 .......................................................................................................................110
Figure 38. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin D8) = 1) ....................................256
Figure 39. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin D8) = 1) ...................................258
Figure 40. Microprocessor In terfac e As ynch ro nou s Write Cy cl e Descr iption (MPMODE (Pin D8) = 0) ....... ...... ..260
Figure 41. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin D8) = 0) ..................................262
Figure 42. Receive Line-Side Tim ing W ave form ...................................................................... ....... .....................264
Figure 43. Transmit Line-Side Timing WaveformSTS-48/STM-16 Contra cloc king .. ....... ...... ....... ...... ....... ...... ..265
Figure 44. Transmit Line-Side Timing WaveformFrame Synch ............................... ....... ...... ....... .....................26 5
Figure 45. Transmit Line-Side Timing WaveformSTS-48/STM-16 Forw ard Clocki ng ....................... ....... ...... ..265
Figure 46. Transmit UTOPIA Interface Timing .....................................................................................................268
Figure 47. Receive UTOPIA Interfac e Timing ....................................................... ...... .........................................269
Figure 48. Transmit TOAC Interface Timing .........................................................................................................271
Figure 49. STS-12/STM-4 and STS-48/STM-16 Receive TOAC Interface Timing ...............................................272
Figure 50. STS-3/STM-1 Receive TOAC Interface Timing ...................................................................................272
6 Agere Systems Inc.
Data Sheet May 2001
155/622/2488 Mbits/s Data Interface
TDAT042G5 SONET/SDH
List of Tables
Contents Page
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order .......................................................................12
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name ...............................................................................17
Table 3. Pin DescriptionsLine Interface Signals .................................................................................................22
Table 4. Pin DescriptionsTOH Interface Signals .................................................................................................27
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals ..........................................................................28
Table 6. Pin DescriptionsMicroprocessor Interface Signals ............................................................... .................40
Table 7. Pin DescriptionsGeneral-Purpose I/O Signals: Interface Signals .........................................................41
Table 8. Pin DescriptionsJTAG Int erf ac e Signals .......................... ....................................... ..............................42
Table 9. Pin DescriptionsPower Signals .................................. ....................................... ....................................43
Table 10. Pin DescriptionsNo Connect Pins ............................ ...... ....... ....................................... ...... ....... ...... ....44
Table 11. Optional Offset Field ...............................................................................................................................48
Table 12. Line Interface Modes ..............................................................................................................................51
Table 13. Clock Settings for CLKDIV Pin .......................................... ....... ...... ....... ...... ...........................................52
Table 14. R/T TOH Interface Rates ........................................................................................................................53
Table 15. TOAC Byte Insertion: An STS-3/STM-1 Example ..................................................................................53
Table 16. Ns, L, M, and B Values to Set the BER Indicator ...................................................................................57
Table 17. Ns, L, M, and B Values to Clear the BER Indicator ................................................................................58
Table 18. TOAC Channel I/O vs. STS Number/Time Slot ......................................................................................59
Table 19. Types of Signal Labels ...........................................................................................................................64
Table 20. 1-bit Mode ...............................................................................................................................................64
Table 21. 3-bit Mode (Enhanced RDI) ....................................................................................................................64
Table 22. Valid Concatenation Starting Locations: STS-Mc into an STS-48c ........................................................68
Table 23. Packet Length Field ................................................................................................................................73
Table 24. UTOPIA Traffic Types ............................................................................................................................85
Table 25. Standard 53-byte ATM Cell Structure .....................................................................................................86
Table 26. Bus Format for 16-bit Interface ...............................................................................................................86
Table 27. Bus Format for 8-bit Interface .................................................................................................................87
Table 28. Bus Format for 32-bit Interface ...............................................................................................................87
Table 29. Egress High Watermark Thresholds .......................................................................................................94
Table 30. Nominal dc Power for Suggested Terminations ...................................................................................100
Table 31. MPU Modes ..........................................................................................................................................101
Table 32. PMRST Provisioning ............................................................................................................................105
Table 33. Quad ATM UTOPIA 3 Interface ............................................................................................................107
Table 34. Quad POS UTOPIA 3 Interface ............................................................................................................109
Table 35. Register Address Space .......................................................................................................................111
Table 36. Map of Core Registers ..........................................................................................................................112
Table 37. Map of UT Registers .............................................................................................................................113
Table 38. Map of OHP Registers ..........................................................................................................................116
Table 39. Map of Path Terminator Registers ........................................................................................................126
Table 40. Map of DE Registers ............................................................................................................................138
Table 41. Register 0x0000: Device Version (RO) ................................................................................................147
Table 42. Registers 0x00010x0005: Device Name (RO) ..................................................................................147
Table 43. Register 0x0008: Composite Interrupts (RO or COR/W) ......................................................................148
Table 44. Register 0x000A: GPIO Input (RO) ......................................................................................................148
Table 45. Register 0x000C: Block Interrupt Masks (R/W) ........................................... .........................................149
Table 46. Register 0x000E: Core Resets (WO) ...................................................................................................149
Table 47. Register 0x000F: GPIO Output (R/W) ..................................................................................................150
Table 48. Register 0x0010: Line Provisioning/Mode (R/W) ..................................................................................150
Table 49. Register 0x0011: Channel (AD) Contr ol (R/W ) ........................... ......................................................151
Table 50. Register 0x0012: Loopback Control (R/W) ...........................................................................................151
Table 51. Register 0x0013: GPIO Mode (R/W) ....................................................................................................152
Agere Systems Inc. 7
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
List of Tables
(continued)
Contents Page
Table 52. Registers 0x0014, 0x0015: GPIO Output Configuration .......................................................................152
Table 53. Register 0x001F: Scratch (R/W) ...........................................................................................................153
Table 54. Register 0x0200: UT Macrocell Version Number (RO) ........................................................................154
Table 55. Register 0x0201: UT Interrupt (RO) .....................................................................................................154
Table 56. Registers 0x0202, 0x0203, 0x0204, 0x0205: Channel [AD] (COR) ..................................................155
Table 57. Register 0x0206: Interrupt Mask (R/W) ................................................................................................156
Table 58. Registers 0x0207, 0x0208, 0x0209, 0x020A: Interrupt MaskChannel [AD] (R/W) ......... ....... ........156
Table 59. Register 0x020B: Channel [AD] Error Count in PMRST Mode (RO) ................................................156
Table 60. Fields of the Provisioning Registers .....................................................................................................157
Table 61. Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [AD] Rec ei ve Prov is i oni ng Regi ste r (R /W) .158 Table 62. Registers 0x0210, 0x0214, 0x0218, 0x021C: Channel [AD] Tran smit Provisioning Regist er (R/W) 159 Table 63. Registers 0x0211, 0x0215, 0x0219, 0x021D: Channel [AD] Ingress Pro vi sioni ng Regi ster (R/W) ..161 Table 64. Registers 0x0212, 0x0216, 0x021A, 0x021E: Channel [AD] Egress Provisioning Register (R/W) ...161
Table 65. Register 0x021F: Reset Register (R/W) ...............................................................................................162
Table 66. Register 0x0220: Channel [AD] Error Count (RO) ...................... ....... ...... ....... ...... ....... .....................16 2
Table 67. Register 0x0224: UT_Scratch Register (R/W) ......................................................................................162
Table 68. Register 0x0225: PA Response Register (R/W) ...................................................................................163
Table 69. Register 0x0226: Size Mode Register (R/W) ........................................................................................164
Table 70. Register 0x0400: OHP Macrocell Version Number (RO) .....................................................................165
Table 71. Register 0x0401: OHP Interrupt (RO) ..................................................................................................165
Table 72. Registers 0x04020x0409: Delta/Event (COR/W) ..............................................................................165
Table 73. Registers 0x040A0x040D: Receive/Transmit State (RO) .................................................................168
Table 74. Registers 0x040E, 0x0410, 0x0412, 0x0414: Mask Bits (R/W) ............................................................169
Table 75. Registers 0x040F, 0x0411, 0x0413, 0x0415: Mask Bits (R/W) ............................................................170
Table 76. Registers 0x04160x0419: Toggles (R/W) .........................................................................................171
Table 77. Registers 0x041A, 0x041C, 0x041E, 0x0420: Continuous N Times Detect (CNTD) Values (R/W) .....171
Table 78. Registers 0x041B, 0x041D, 0x041F, 0x0421: Continuous N Times Detect (CNTD) Values (R/W) .....172
Table 79. Registers 0x04220x042D: Receive Contr ol (R/W) ... ....................................... ...... ....... ...... ...............173
Table 80. Registers 0x042E: Transmit Control Port A (R/W) ...............................................................................177
Table 81. Registers 0x042F, 0x0431, 0x0433, 0x0435: Transmit Control (R/W) .................................................180
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [B—D] (R/W) ............................................181
Table 83. Registers 0x0436—0x0439: Transmit Control (R/W) ...........................................................................184
Table 84. Registers 0x043A0x0451: OHP Signal Degrade BER Algorithm Parameters (R/W) ........................185
Table 85. Registers 0x04520x0469: OHP Signa l Fail BE R Algori thm Pa r ame ters (R/ W) ................................186
Table 86. Ns, L, M, and B Values to Set the BER Indicator .................................................................................187
Table 87. Ns, L, M, and B Values to Clear the BER Indicator ..............................................................................188
Table 88. Registers 0x046A—0x047D: B1, B2, M1 Error Count (RO) .................................................................189
Table 89. Registers 0x047E0x0485: Transmit F1, S1, K2, K1 OH Insert Value (R/W) ....................................189
Table 90. Registers 0x04860x0491: Receive F1, S1, K2, K1 Monitor Value (RO) ...........................................190
Table 91. Registers 0x04920x04F9: Receive J0 Monitor Value (R O) ............................................... ....... ...... ..190
Table 92. Registers 0x05120x0579: Transmit J0 Insert Value (R/W) ...............................................................190
Table 93. Registers 0x05AA0x05C1: Transmit Z0 Insert Value (R/W) .............................................................191
Table 94. Register 0x05C2: Scratch Register (R/W) ............................................................................................191
Table 95. Register 0x0800: PT Macrocell Version Number (RO) .........................................................................192
Table 96. Register 0x0801: PT Interrupt (RO) ......................................................................................................192
Table 97. Registers 0x0802, 0x080F, 0x081C, 0x0829 and 0x0803, 0x0810, 0x081D, 0x082A:
PT Delta/Event Parameters (COR/W) ......................................................... .........................................192
Table 98. Registers 0x08360x083B, 0x08680x0887, 0x08880x088D, 0x08BA—0x08D9,
0x08DA0x08DF, 0x09 0C0x092B, 0x092C0x0931, 0x095E—0x097D:
PT State Registers (RO) .......................................................... ....................................... .....................194
Table 99. Register 0x097E: PT Interrupt Mask Control (R/W) .............................................................................195
8 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
List of Tables
(continued)
Contents Page
Table 100. Registers 0x097F0x0980, 0x098C0x098D, 0x09990x099A, 0x09A60x09A7: PT Interrupt
Mask Control (R/W) ......................................................... ....................................... ............................196
Table 101. Registers (0x09B3, 0x09BF, 0x09CB, 0x09D7, 0x09E3), (0x09EF, 0x09FB, 0x0A07, 0x0A14, 0x0A20),
(0x0A2C, 0x0A38, 0x0A44, 0x0A50, 0x0A5C), (0x0A68, 0x0A74, 0x0A80, 0x0A8C, 0x0A98):
Error Counters (RO) ...........................................................................................................................198
Table 102. Register 0x0AA4: PT One-Shot Control Parameters (WO) ................................................................198
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE—0x0AC5:
PT Control Parameters (R/W) ......... ....................................... ............................................................199
Table 104. Registers 0x0AC60x0AF7: PT Provisioning (R/W) ...... ...................................................................205
Table 105. Registers 0x0ACC0x0AD1: PT Signal Fail BER Algorithm Parameters (R/W) ...............................206
Table 106. Registers 0x0AD20x0AD7: PT Signal Degrade BER Algorithm Parameters (R/W) .......................207
Table 107. Ns, L, M, and B Values to Set the BER Indicator ...............................................................................208
Table 108. Ns, L, M, and B Values to Clear the BER Indicator ............................................................................209
Table 109. Registers 0x0AD80x0AF7: Transmit J1 Data Insert (R/W) .............................................................210
Table 110. Register 0x0AF8: Scratch Register (R/W) ..........................................................................................210
Table 111. Register 0x1000: DE Macrocell Version Number (RO) ......................................................................211
Table 112. Register 0x1001, 0x1002: DE Inte rrup ts (0x1 001 is RO, 0x10 02 is RO and COR/W ) .......................211
Table 113. Register 0x1004: Dry Escape Marker (R/W) ......................................................................................213
Table 114. Registers 0x1010—0x1015: Sequencer Provisioning Registers (R/W) ..............................................214
Table 115. Registers 0x10160x1021: Egress Configuration (R/W) ..................................................................215
Table 116. Registers 0x10220x102D: Ingress Configuration (R/W) .................................................................219
Table 117. Registers 0x102E0x1031: Over-Fiber Mode (Packet-Over -Fiber or POF) Control (R/W) ..............223
Table 118. Registers 0x10320x1036: Sequencer Cell State Registers (R/W) ..................................................225
Table 119. Registers 0x10400x1043: Ingress Payload Type and Mode Control (R/W) ...................................225
Table 120. Receive Type and Mode Control Summary Table (Registers 0x10400x10 43) ............................. .. 226
Table 121. Registers 0x10800x1087: ATM Framer Idle Cell Match Mask (R/W) .............................................227
Table 122. Registers 0x10880x108F: ATM Idle Cell Registers (R/W) ..............................................................227
Table 123. Registers 0x10900x1097: ATM Unassigned Cell Match Mask (R/W) .............................................228
Table 124. Registers 0x10980x109F: ATM Unassigned Cell Registers (R/W) .................................................228
Table 125. Registers 0x10A00x10A3: ATM Framer State Registers (RO) .......................................................229
Table 126. Register 0x10A4: ATM X43 Frame Control (R/W) ..............................................................................229
Table 127. Register 0x10A5: ATM X31 Frame Control (R/W) ..............................................................................230
Table 128. Register 0x10A6: ATM X31 V/W Values (R/W) ..................................................................................230
Table 129. Register 0x10A7: ATM X31 X/Y Values (R/W) ...................................................................................231
Table 130. Register 0x10A8: ATM X31 Z Value (R/W) ........................................................................................231
Table 131. Register 0x10A9: Frame State Interrupt Mask (R/W) .........................................................................232
Table 132. Register 0x10AA: Scrambler State Interrupt Mask (R/W) ..................................................................232
Table 133. Register 0x10AB: ATM Receive Debug Register (R/W) .....................................................................233
Table 134. Registers 0x10B00x10B3: PPP Attach (R/W) .................................................................................234
Table 135. Registers 0x10E00x10E3: Egress Payload Type and Mode Control (R/W) ...................................234
Table 136. Transmit Type and Mo de Contr ol S umm ar y Table (Registers 0x10E00x10E3) ............................. 235
Table 137. Registers 0x10F010FB: PPP Header Value Detach (R/W) ............................................................235
Table 138. Registers 0x10FC0x10FF: PPP Header Detach Search (R/W) ......................................................236
Table 139. Registers 0x11000x1107: ATM/HDLC/SDL FramerCondition Counter 1
(PMRST Update) (RO) .......................................................................................................................238
Table 140. Registers 0x11080x110F: ATM/HDLC/SDL FramerCondition Counter 2
(PMRST Update) (RO) .......................................................................................................................239
Table 141. Registers 0x11100x1117: CRC CheckerBad Packet Counte r (PMRST Update) (RO) ...............240
Table 142. Registers 0x11180x111F: PPP DetachMismatched Header Counter (P MRST Update) (RO) ...241
Table 143. Registers 0x11200x1127: Receive Good Packet/Cell Counter (PMRST Update) (RO) .................242
Table 144. Registers 0x11280x112F: Transmit Good Packet/Cell Counter (PMRST Update) (RO) ................243
Agere Systems Inc. 9
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
List of Tables
(continued)
Contents Page
Table 145. Registers 0x11800x1186: Interrupt Masks for Packet Counters (R/W) ..........................................243
Table 146. Registers 0x11810x1187: Interrupts for Packet Counters (COR/W) ..............................................244
Table 147. Registers 0x12000x1213, 0x12F0: ATM Transmit Registers (R/W) ...............................................244
Table 148. Registers 0x14000x1403: SDL State Registers (RO) .....................................................................246
Table 149. Registers 0x14700x1473: A Me ss ag e M ail box Registers (RO) .................................................... ..247
Table 150. Registers 0x14800x1483: A Me ss ag e M ail box Registers (RO) .................................................... ..247
Table 151. Registers 0x14900x1493: A Me ss ag e M ail box Registers (RO) .................................................... ..247
Table 152. Registers 0x14A00x14A3 : B Mess age Mailb ox Regis ters (RO) ............ ....... ...... ....... ...... ....... ........247
Table 153. Registers 0x14B00x14B3 : B Mess age Mailb ox Regis ters (RO) ............ ....... ...... ....... ...... ....... ........248
Table 154. Registers 0x14C00x14C3: B Mess age Mailbox Registers (RO) ...... ....................................... ...... ..248
Table 155. Registers 0x14D00x14D3: SDL Interrupt Masks (R/W) ..................................................................248
Table 156. Registers 0x14E00x14E3: SDL Interrupts (COR/W) ......................................................................249
Table 157. Register 0x14F0: SDL Recei ve Con figuration Registers (R/W) .......... ...... ....... ...... ....... .....................249
Table 158. Registers 0x16000x1607: SDL Transmit Registers (R/W) ..............................................................250
Table 159. Recommended Operating Conditions ................................................................................................254
Table 160. 3.3 V Logic Interface Characteristics ..................................................................................................254
Table 161. LVPECL Interface Characteristics ......................................................................................................254
Table 162. LVPECL 3.3 V Logic Interface Characteristics ...................................................................................255
Table 163. Microprocessor Interface Synchronous Write Cycle Specifications ...................................................257
Table 164. Microprocessor Interface Synchronous Read Cycle Specifications ...................................................259
Table 165. Microprocessor Interface Asynchronous Write Cycle Specifications ..................................................261
Table 166. Microprocessor Interface Asynchronous Read Cycle Specifications .................................................263
Table 167. Receive Line-Side Timing Specifications ...........................................................................................266
Table 168. Transmit Line-Side Timing Specifications ..........................................................................................267
Table 169. Transmit UTOPIA Interface Timing Specifications .............................................................................268
Table 170. Receive UTOPIA Interface Timing Specifications ..............................................................................269
Table 171. UTOPIA Interface Clock Specifications ..............................................................................................270
Table 172. Transmit TOAC Interface Timing Specifications .................................................................................271
Table 173. Receive TOAC Interface Timing Specifications ..................................................................................272
Table 174. SONET/SDH Comparisons ................................................................................................................274
Table 175. SONET/SDH New Terminology ..........................................................................................................274
10 Agere Systems Inc.
Data Sheet May 2001
155/622/2488 Mbits/s Data Interface
TDAT042G5 SONET/SDH

Description

The TDAT042G5 SONET/SDH interface device provides a versatile solution for quad STS-3/STM-1, quad STS-12/STM-4, and for single STS-48/STM-16 point-to-point datacom/telecom applications. Constructed using Agere Systems Inc.s state-of-the-art CMOS technology, this device incorporates integrated SONET/SDH framing, section and line overhead insertion and extraction, path termination, and generation.
The integra ted circuit provides complete encapsulation and decapsulation for packet and ATM streams into and out of SONET/SDH payloads.
Communication with the device is accomplished through a generic microprocessor interface. The device supports separate address and data buses.
With the device, construction of all types of point-to-point STS-3/STS-12/STS-48 (STM-1/STM-4/ STM-16) data equipment is simplified and cost-reduced, allowing extremely efficient solutions.

Pin Information

TDAT042G5 is available in a 600-pin LBGA package. The pin diagram is shown in Figure 1. For convenience, pin assignments are listed by pi n o rd er in Table 1 and by signal name in Table 2. The pin descr i pti ons as well as the pin assignments are listed in Table 3—Table 10 and are grouped by interface type.
AR AP AN
AM
AL
AK
AJ
AH
AG
AF AE AD AC AB AA
Y
W
V
U
T
R
P
N
M
L K
J H G
F
E D C
B
A
523257312915 2132711 179131 3533
19
3026 2824 32222018468101214162 34
5-7175(F)

Figure 1. Pin Diagram of 600-Pin LBGA (Bottom View)

Agere Systems Inc. 11
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)

Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
A1 V A2 V
DDD DDD
A3 GND A4 GND A5 V A6 V
DDD DDD
A7 GND A8 GND
D D
D D
B1 V B2 V B3 GND B4 GND B5 NC C5 NC D5 NC B6 V B7 INT C7 RST D7 PMRST B8 CS C8 MPCLK D8 MPMODE
A9 DATA[1] B9 DATA[0] C9 DS
DDD DDD
DDA
DDD
D D
D1 GND D2 GND D3 GND
D
A
D4 V
D6 NC
C1 GND C2 GND
D D
C3 V C4 GND
C6 GND
D D D
DDD
D9 R/W A10 DATA[6] B10 DATA[5] C10 DATA[4 ] D10 DATA[3] A11 DATA[10] B11 DATA[9] C11 DATA[8] D11 DATA[7] A12 DATA[15] B12 DATA[14] C12 DATA[13] D12 DATA[12] A13 GND
D
B13 ADDR[3] C13 ADDR[2] D13 ADDR[1] A14 ADDR[8] B14 ADDR[7] C14 ADDR[6] D14 ADDR[5] A15 ADDR[12] B15 ADDR[11] C15 ADDR[10] D15 NC A16 GND A17 V A18 V
DDD DDD
D
B16 ADDR[15] C16 ADDR[14] D16 ADDR[13]
B17 NC C17 NC D17 NC
B18 NC C18 NC D18 NC A19 NC B19 NC C19 NC D19 NC A20 GND
D
B20 NC C20 NC D20 NC A21 NC B21 NC C21 NC D21 NC A22 NC B22 NC C22 NC D22 NC A23 GND
D
B23 NC C23 NC D23 NC A24 NC B24 NC C24 NC D24 NC A25 NC B25 NC C25 NC D25 NC A26 NC B26 NC C26 NC D26 NC A27 GND A28 GND A29 GND A30 V A31 V A32 GND A33 GND A34 V A35 V
Note: NC refers to no connect. Do not connect pins so designated.
DDD DDD
DDD DDD
D D D
B27 NC C27 NC D27 V
B28 NC C28 NC D28 NC
B29 NC C29 NC D29 NC
DDD
B30 NC C30 NC D30 NC
B31 NC C31 NC D31 NC
D D
B32 GND
B33 GND
B34 V
B35 V
DDD DDD
D D
C32 GND C33 V C34 GND C35 GND
DDD
D
D32 V D33 GND
D D
D34 GND D35 GND
DDD
D D D
12 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
(continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
E1 V
DDD
F1 V
DDD
J31 TxEOP[A] N1 GND
D
E2 NC F2 TCK J32 TxSOP/C[A] N2 TxD[6]N E3 V E4 GND E5 V
DDD
PLL F3 GND
D
PLL F4 TMS J34 TxDATA[A][15] N4 TxD[7]N
DDD
F5 NC J35 TxDATA[A][14] N5 TxD[7]P
D
J33 TxPRTY[A] N3 TxD[6]P
E6 NC F31 NC K1 TxD[12]N N31 RxDATA[A][15] E7 ICT E8 DT
E9 ADS E10 DATA[2] F35 V E11 V
DDD
F32 NC K2 TxD[12]P N32 RxDATA[A][14] F33 NC K3 TxD[13]N N33 RxDATA[A][13] F34 NC K4 TxD[13]P N34 RxDATA[A][12]
DDD
G1 GND
K5 V
D
K31 TxDATA[A][13] P1 TxD[4]N
DDD
N35 GND
D
E12 DATA[11] G2 TDO K32 TxDATA[A][12] P2 TxD[4]P E13 ADDR[ 0] G3 TRST E14 ADDR[4] G4 NC K34 TxDATA[A][10] P4 V
K33 TxDATA[A][11] P3 TxD[5]N
DDD
E15 ADDR[9] G5 TDI K35 TxDATA[A][9] P5 TxD[5]P E16 V
DDD
G31 NC L1 TxD[10]N P31 RxDATA[A][11] E17 NC G32 TxADDR[0] L2 TxD[10]P P32 RxDATA[A][10] E18 NC G33 TxADDR[1] L3 TxD[11]N P33 RxDATA[A][9] E19 NC G34 TxCLK[A] L4 TxD[11]P P34 RxDATA[A][8] E20 V E21 NC H1 GND
DDD
G35 GND
D D
L5 V
L31 V
DDD DDD
P35 RxDATA[A][7]
R1 V
DDD
E22 NC H2 TxCKQP L32 TxDATA[A][8] R2 TxD[2]N/TxD[B]N E23 NC H3 GND
D
L33 TxDATA[A][7] R3 TxD[2]P/TxD[B]P E24 NC H4 CLKDIV L34 TxDATA[A][6] R4 TxD[3]P/TxD[A]P E25 V
DDD
H5 GND
D
L35 TxDATA[A][5] R5 TxD[3]N/TxD[A]N E26 NC H31 TxSZ[A] M1 TxD[8]N R31 RxDATA[A][6] E27 NC H32 TxERR[A] M2 TxD[8]P R32 RxDATA[A][5] E28 NC H33 TxPA[A] M3 TxD[9]N R33 RxDATA[A][4] E29 NC H34 TxENB[A] M4 TxD[9]P R34 RxDATA[A][3] E30 NC H35 GND E31 V
DDD
J1 TxD[14]N M31 TxDATA[A][4] T1 GND
D
M5 V
DDD
R35 RxDATA[A][2]
D
E32 NC J2 TxD[14]P M32 TxDATA[A][3] T2 TxD[0]P/TxD[D]P E33 NC J3 TxD[15]N M33 TxDATA[A][2] T3 TxD[1]N/TxD[C]N E34 NC J4 TxD[15]P M34 TxDATA[A][1] T4 TxD[1]P/TxD[C]P E35 V
Note: NC refers to no connect. Do not connect pins so designated.
DDD
J5 TxCKQN M35 TxDATA[A][0] T5 V
DDD
Agere Systems Inc. 13
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
T31 V
DDD
Y1 GND
T32 RxDATA[A][1] Y2
T33 RxDATA[A][0] Y3
T34 RxPRTY[A] Y4 GND T35 GND
D
Y5 V U1 TxFSYNCN Y31 V U2 TxD[0]N/
Y32 TxSZ[B] AD2 RxD[5]P AG32 RxDATA[B][6]
D
RxD[13]N/ RxCLK[B]N
RxD[13]P/ RxCLK[B]P
D DDD DDD
AC31 TxDATA[B][8] AG1 RxD[0]N AC32 TxDATA[B][9] AG2 RxD[0]P
AC33 TxDATA[B][10] AG3 ECLREFLO
AC34 TxDATA[B][11 ] AG4 ECLREFHI AC35 GND
D
AG5 GPIO[3]
AD1 RxD[5]N A G31 RxDATA[B][5]
TxD[D]N U3 TxFSYNCP Y33 TxCLK[B] AD3 RxD[6]N AG33 RxDATA[B][7] U4 TxCKP Y34 TxADDR[3] AD4 RxD[6]P AG34 RxDATA[B][8] U5 TxCKN Y35 GND
U31 RxSOP/C[A] AA1 U32 RxEOP[A] AA2
U33 NC AA3 U34 RxENB[A] AA4 U35 V
V1 V V2 V V3 GND V4 V5
V31 GND
DDD DDD DDD
D
RxCKN/RxD
RxCKP/RxD
D
[A] [A]
AA5 GND AA31 TxEOP[B] AE1 RxD[3]N AH31 RxDATA[B][1] AA32 TxSOP/C[B] AE2 RxD[3]P AH32 RxDATA[B][2] AA33 TxENB[B] AE3 RxD[4]N AH33 RxDATA[B][3]
N
AA34 TxPA[B] AE4 RxD[4]P AH34 RxDATA[B][4]
P
AA35 TxERR[B] AE5 V
AB1
V32 RxERR[A] AB2 V33 RxPA[A] AB3 V34 NC AB4 V35 V
W1 V
DDD DDD
W2 RxD[14]N
/
AB5 V AB31 TxDATA[B][13] AF1 RxD[1]N AJ31 RxEOP[B] AB32 TxDATA[B][12] AF2 RxD[1]P AJ32 RxSOP/C[B]
D
RxD[11]N/ RxCLK[C]N
RxD[11]P/RxCLK[C]P RxD[12]N/RxD[C]N RxD[12]P/RxD[C]P
D
RxD[9]N/RxCLK[D]N RxD[9]P/RxCLK[D]P RxD[10]N/RxD[D]N RxD[10]P/RxD[D]P
DDD
AD5 V
AD31 TxDATA[B][3] AH1 GND
DDD
AG35 RxDATA[B][9]
D
AD32 TxDATA[B][4] AH2 GPIO[2] AD33 TxDATA[B][5] AH3 GPIO[1] AD34 TxDATA[B][6] AH4 GPIO[0] AD35 TxDATA[B][7] AH5 TxTOHF
AE31 V
DDD DDD
AH35 GND
AJ1 GND
D D
AE32 RxDATA[B][15] AJ2 TxTOHCK AE33 TxDATA[B][0] AJ3 TxTOHD[A] AE34 TxDATA[B][1] AJ4 TxTOHD[B] AE35 TxDATA[B][2] AJ5 TxTOHD[C]
RxCLK[A]N
W3 RxD[14]P
/
AB33 TxDATA[B][14] AF3 RxD[2]N AJ33 RxPRTY[B]
RxCLK[A]P
W4 RxD[15]N/
AB34 TxDATA[B][15] AF4 RxD[2]P AJ34 RxDATA[B][0]
RxD[B]N
W5 RxD[15]P/
AB35 TxPRTY[B] AF5 V
DDD
AJ35 GND
D
RxD[B]P
W31 RxADDR[0] AC1 GND
D
W32 RxADDR[1] AC2 RxD[7]N AF32 W33 RxCLK[A] AC3 RxD[7]P AF33 W34 TxADDR[2] AC4 RxD[8]N AF34 W35 RxSZ[A] AC5 RxD[8]P AF35
Note: NC refers to no connect. Do not connect pins so designated.
AF31
RxDATA[B][10] RxDATA[B][11] RxDATA[B][12] RxDATA[B][13] RxDATA[B][14]
AK1 V
DDD
AK2 TxTOHD[D] AK3 RxREF AK4 RxTOHF[A] AK5 RxTOHCK[A]
14 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
(continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
AK31 RxSZ[B] AL31 V
DDD
AK32 RxERR[B] AL32 RxADDR[3] AM32 V AK33 RxPA[B] AL33 RxADDR[2] AM33 GND AK34 RxENB[B] AL34 RxCLK[B] AM34 GND AK35 V
AL1 V
DDD DDD
AL35 V
AM1 GND AL2 RxTOHD[A] AM2 GND AL3 RxTOHF[B] AM3 GND AL4 RxTOHCK[B] AM4 V AL5 V
DDD
AM5 RxTOHD[B] AN5 RxTOHF[C] AP5 NC
DDD
D D D
DDD
AL6 RxTOHCK[C] AM6 RxTOHD[C] AN6 GND
AM31 TxADDR[4] AN31 NC
DDD
AM35 GND
AN1 GND AN2 GND AN3 V
DDD
AN4 GND
D D D D D
D
D
AN32 GND AN33 V AN34 GND AN35 GND
AP1 V AP2 V AP3 GND AP4 GND
AP6 RxTOHF[D]
D
DDD
D
D DDD DDD
D
D
AL7 RxTOHCK[D] AM7 NC AN7 RxTOHD[D] AP7 NC AL8 NC AM8 RxCLK[D] AN8 RxSZ[D] AP8 RxERR[D]
AL9 RxPA[D] AM9 RxENB[D] AN9 RxEOP[D] AP9 RxSOP/C[D] AL10 RxDATA[D][0] AM10 RxDATA[D][1] AN10 RxDATA[D][2] AP10 RxDATA[D][3] AL11 V
DDD
AM11 RxDATA[D][5] AN11 RxDATA[D][6] AP11 RxDATA[D][7] AL12 RxDATA[D][9] AM12 RxDATA[D][10] AN12 RxDATA[D][11] AP12 RxDATA[D][12] AL13 RxDATA[D][14] AM13 RxDATA[D][15] AN13 TxDATA[D][0] AP13 TxDATA[D][1] AL14 TxDATA[D][3] AM14 TxDATA[D][2] AN14 TxDATA[D][4] AP14 TxDATA[D][5] AL15 TxDATA[D][8] AM15 TxDAT A[D][7] AN15 TxDATA[D][9] AP15 TxDATA[D][10] AL16 V
DDD
AM16 TxDATA[D][12] AN16 TxDATA[D][13] AP16 TxDATA[D][14] AL17 TxSOP/C[D] AM17 TxPRTY[D ] AN17 TxEOP[D] AP17 TxDATA[D][15] AL18 V
DDD
AM18 TxERR[D] AN18 TxSZ[D] AP18 TxPA[D] AL19 NC AM19 NC AN19 NC AP19 TxCLK[D] AL20 V
DDD
AM20 RxSZ[C] AN20 RxCLK[C] AP20 RxADDR[4] AL21 RxSOP/C[C] AM21 RxEOP[C] AN21 RxENB[C] AP21 RxPA[C] AL22 RxDATA[C][3] AM22 RxDATA[C][2] AN22 RxDATA[C][1] AP22 RxDATA[C][0] AL23 RxDATA[C][7] AM23 RxDATA[C][6] AN23 RxDATA[C][5] AP23 RxDATA[C][4] AL24 RxDATA[C][12] AM24 RxDATA[C][11] AN24 RxDATA[C][10] AP24 RxDATA[C][9] AL25 V
DDD
AM25 TxDATA[C][0] AN25 RxDATA[C][15] AP25 RxDATA[C][14] AL26 TxDATA[C][5] AM26 TxDATA[C][4] AN26 TxDATA[C][3] AP26 TxDATA[C][2] AL27 TxDATA[C][10] AM27 TxDATA[C][9] AN27 TxDATA[C][8] AP27 TxDATA[C][7] AL28 TxDATA[C][14] AM28 TxDATA[C][13] AN28 TxDATA[C][12] AP28 TxDATA[C][11] AL29 TxEOP[C] AM29 TxSOP/C[C] AN29 TxPRTY[C ] AP29 TxDATA[C][15] AL30 TxSZ[C] AM30 TxERR[C] AN30 TxPA[C] AP30 TxENB[C]
Note: NC refers to no connect. Do not connect pins so designated.
Agere Systems Inc. 15
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
AP31 TxCLK[C] AR6 V AP32 GND AP33 GND AP34 V AP35 V
AR1 V AR2 V AR3 GND AR4 GND AR5 V
Note: NC refers to no connect. Do not connect pins so designated.
D
D DDD DDD DDD DDD
D
D DDD
AR7 GND AR8 GND
AR9 RxPRTY[D] AR19 V AR10 RxDATA[D][4] AR20 GND AR11 RxDATA[D][8] AR21 RxERR[C] AR31 V AR12 RxDATA[D][13] AR22 RxPRTY[C] AR32 GND AR13 GND AR14 TxDATA[D][6] AR24 RxDATA[C][8] AR34 V AR15 TxDATA[D][11] AR25 RxDATA[C][13] AR35 V
DDD
D D
D
AR16 GND AR17 TxENB[D] AR27 TxDATA[C][6] AR18 V
AR23 GND
DDD DDD
D
D
D
AR26 TxDATA[C][1]
AR28 GND AR29 GND AR30 V
AR33 GND
D
D DDD DDD
D
D DDD DDD
16 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
(continued)

Table 2. Pin Assignments for 600-Pin LBGA by Signal Name

Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
ADDR[0] E13 DS ADDR[1] D13 DT
C9 GND
E8 GND ADDR[2] C13 ECLREFHI AG4 GND ADDR[3] B13 ECLREFLO AG3 GND ADDR[4] E14 GND ADDR[5] D14 GND ADDR[6] C14 GND ADDR[7] B14 GND ADDR[8] A14 GND ADDR[9] E15 GND ADDR[10] C15 GND ADDR[11] B15 GND ADDR[12] A15 GND ADDR[13] D16 GND ADDR[14] C16 GND ADDR[15] B16 GND ADS
E9 GND CLKDIV H4 GND CS
B8 GND DA TA[0] B9 GND DA TA[1] A9 GND DA TA[2] E10 GND DA TA[3] D10 GND DA TA[4] C10 GND DA TA[5] B10 GND DA TA[6] A10 GND DA TA[7] D11 GND DA TA[8] C11 GND DA TA[9] B11 GND DATA[10] A11 GND DATA[11] E12 GND DATA[12] D12 GND DATA[13] C12 GND DATA[14] B12 GND DATA[15] A12 GND
Note: NC refers to no connect. Do not connect pins so designated.
A D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D
C6 GND A3 GND A4 GND A7 GND
A8 GND A13 GND A16 GND A20 GND A23 GND A27 GND A28 GND A29 GND A32 GND A33 GND
B3 GND
B4 GND B32 GND B33 GND
C1 GND
C2 GND
C4 GND C32 GND C34 GND C35 GND
D1 GND
D2 GND
D3 GND D33 GND D34 GND D35 GND
F3 GND
D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D
G1 GND
G35 GND
H1 GND H3 GND H5 GND
H35 GND
N1 GND
N35 GND
T1 GND
T35 GND
V3 GND
V31 GND
Y1 GND
Y4 GND Y35 GND AA5 GND AC1 GNDD PLL E4
AC35 GPIO[0] AH4
AH1 GPIO[1] AH3
AH35 GPIO[2] AH2
AJ1 GPIO[3] AG5
AJ35 ICT E7
AM1 INT B7 AM2 MPCLK C8
AM3 MPMODE D8 AM33 NC A19 AM34 NC A21 AM35 NC A22
AN1 NC A24
AN2 NC A25
AN4 NC A26
AN6 NC B5 AN32 NC B17 AN34 NC B18 AN35 NC B19
D D D D D D D D D D D D D D D D
AP3 AP32 AP33
AP4
AR3
AR4
AR7
AR8 AR13 AR16 AR20 AR23 AR28 AR29 AR32 AR33
Agere Systems Inc. 17
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
NC B20 NC D21 NC V34 RxD[6]N AD3 NC B21 NC D22 NC AL8 RxD[6]P AD4 NC B22 NC D23 NC AL19 RxD[7]N AC2 NC B23 NC D24 NC AM7 RxD[7]P AC3 NC B24 NC D25 NC AM19 RxD[8]N AC4 NC B25 NC D26 NC AN19 RxD[8]P AC5 NC B26 NC D28 NC AN31 NC B27 NC D29 NC AP5 NC B28 NC D30 NC AP7 NC B29 NC D31 PMRST D7 NC B30 NC E2 R/W NC B31 NC E6 RST
D9
C7 NC C5 NC E17 RxADDR[0] W31 NC C17 NC E18 RxADDR[1] W32 NC C18 NC E19 RxADDR[2] AL33 NC C19 NC E21 RxADDR[3] AL32 NC C20 NC E22 RxADDR[4] AP20 NC C21 NC E23 NC C22 NC E24
RxCKN/RxD RxCKP/RxD
[A] [A]
N
V4
P
V5 RxD[15]N/RxD[B]N W4
RxD[9]N/RxCLK[D]N RxD[9]P/RxCLK[D]P RxD[10]N/RxD[D]N RxD[10]P/RxD[D]P RxD[11]N/RxCLK[C]N RxD[11]P/RxCLK[C]P RxD[12]N/RxD[C]N RxD[12]P/RxD[C]P
RxD[13]N/RxCLK[B]N RxD[13]P/RxCLK[B]P
RxD[14]N/RxCLK[A]N RxD[14]P/RxCLK[A]P
AB1 AB2 AB3 AB4 AA1 AA2 AA3 AA4
W2 W3
NC C23 NC E26 RxCLK[A] W33 RxD[15]P/RxD[B]P W5 NC C24 NC E27 RxCLK[B] AL34 RxDATA[A][0] T33 NC C25 NC E28 RxCLK[C] AN20 RxDATA[A][1] T32 NC C26 NC E29 RxCLK[D] AM8 RxDATA[A][2] R35 NC C27 NC E30 RxD[0]N AG1 RxDATA[A][3] R34 NC C28 NC E32 RxD[0]P AG2 RxDATA[A][4] R33 NC C29 NC E33 RxD[1]N AF1 RxDATA[A][5] R32 NC C30 NC E34 RxD[1]P AF2 RxDATA[A][6] R31 NC C31 NC F5 RxD[2]N AF3 RxDATA[A][7] P35 NC D5 NC F31 RxD[2]P AF4 RxDATA[A][8] P34 NC D6 NC F32 RxD[3]N AE1 RxDATA[A][9] P33 NC D15 NC F33 RxD[3]P AE2 RxDATA[A][10] P32 NC D17 NC F34 RxD[4]N AE3 RxDATA[A][11] P31 NC D18 NC G4 RxD[4]P AE4 RxDATA[A][12] N34 NC D19 NC G31 RxD[5]N AD1 RxDATA[A][13] N33 NC D20 NC U33 RxD[5]P AD2 RxDATA[A][14] N32
Note: NC refers to no connect. Do not connect pins so designated.
Y2 Y3
18 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
RxDATA[A][15] N31 RxDATA[D][2] AN10 RxSOP/C[A] U31 TxCLK[B] Y33 RxDATA[B][0] AJ34 RxDATA[D][3] AP10 RxSOP/C[B] AJ32 TxCLK[C] AP31 RxDATA[B][1] AH31 RxDATA[D][4] AR10 RxSOP/C[C] AL21 TxCLK[D] AP19 RxDATA[B][2] AH32 RxDATA[D][5] AM11 RxSOP/C[D] AP9 TxD[0]N/TxD[D]N U2 RxDATA[B][3] AH33 RxDATA[D][6] AN11 RxSZ[A] W35 TxD[0]P/TxD[D]P T2 RxDATA[B][4] AH34 RxDATA[D][7] AP11 RxSZ[B] AK31 TxD[1]N/TxD[C]N T3 RxDATA[B][5] AG31 RxDATA[D][8] AR11 RxSZ[C] AM20 TxD[1]P/TxD[C]P T4 RxDATA[B][6] AG32 RxDATA[D][9] AL12 RxSZ[D] AN8 TxD[2]N/TxD[B]N R2 RxDATA[B][7] AG33 RxDATA[D][10] AM12 RxTOHCK[A] AK5 TxD[2]P/TxD[B]P R3 RxDATA[B][8] AG34 RxDATA[D][11] AN12 RxTOHCK[B] AL4 TxD[3]N/TxD[A]N R5 RxDATA[B][9] AG35 RxDATA[D][12] AP12 RxTOHCK[C] AL6 TxD[3]P/TxD[A]P R4
RxDATA[B][10] RxDATA[B][11] RxDATA[B][12] RxDATA[B][13] RxDATA[B][14]
RxDATA[B][15] AE32 RxENB[C] AN21 RxTOHF[A] AK4 TxD[6]P N3 RxDATA[C][0] AP22 RxENB[D] AM9 RxTOHF[B] AL3 TxD[7]N N4 RxDATA[C][1] AN22 RxEOP[A] U32 RxTOHF[C] AN5 TxD[7]P N5 RxDATA[C][2] AM22 RxEOP[B] AJ31 RxTOHF[D] AP6 TxD[8]N M1 RxDATA[C][3] AL22 RxEOP[C] AM21 TCK F2 TxD[8]P M2 RxDATA[C][4] AP23 RxEOP[D] AN9 TDI G5 TxD[9]N M3 RxDATA[C][5] AN23 RxERR[A] V32 TDO G2 TxD[9]P M4 RxDATA[C][6] AM23 RxERR[B] AK32 TMS F4 TxD[10]N L1 RxDATA[C][7] AL23 RxERR[C] AR21 TRST RxDATA[C][8] AR24 RxERR[D] AP8 TxADDR[0] G32 TxD[11]N L3 RxDATA[C][9] AP24 RxPA[A] V33 TxADDR[1] G33 TxD[11]P L4 RxDATA[C][10] AN24 RxPA[B] AK33 TxADDR[2] W34 TxD[12]N K1 RxDATA[C][11] AM24 RxPA[C] AP21 TxADDR[3] Y34 TxD[12]P K2 RxDATA[C][12] AL24 RxPA[D] AL9 TxADDR[4] AM31 TxD[13]N K3 RxDATA[C][13] AR25 RxPRTY[A] T34 TxCKN U5 TxD[13]P K4 RxDATA[C][14] AP25 RxPRTY[B] AJ33 TxCKP U4 TxD[14]N J1 RxDATA[C][15] AN25 RxPRTY[C] AR22 TxCKQN J5 TxD[14]P J2 RxDATA[D][0] AL10 RxPRTY[D] AR9 TxCKQP H2 TxD[15]N J3 RxDATA[D][1] AM10 RxREF AK3 TxCLK[A] G34 TxD[15]P J4
Note: NC refers to no connect. Do not connect pins so designated.
(continued)
AF31 RxDATA[D][13] AR12 RxTOHCK[D] AL7 TxD[4]N P1 AF32 RxDATA[D][14] AL13 RxTOHD[A] AL2 TxD[4]P P2 AF33 RxDATA[D][15] AM13 RxTOHD[B] AM5 TxD[5]N P3 AF34 RxENB[A] U34 RxTOHD[C] AM6 TxD[5]P P5 AF35 RxENB[B] AK34 RxTOHD[D] AN7 TxD[6]N N2
G3 TxD[10]P L2
Agere Systems Inc. 19
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
TxDATA[A][0] M35 TxDATA[C][3] AN26 TxEOP[C] AL29 V TxDATA[A][1] M34 TxDATA[C][4] AM26 TxEOP[D] AN17 V TxDATA[A][2] M33 TxDATA[C][5] AL26 TxERR[A] H32 V TxDATA[A][3] M32 TxDATA[C][6] AR27 TxERR[B] AA35 V TxDATA[A][4] M31 TxDATA[C][7] AP27 TxERR[C] AM30 V TxDATA[A][5] L35 TxDATA[C][8] AN27 TxERR[D] AM18 V TxDATA[A][6] L34 TxDATA[C][9] AM27 TxFSYNCN U1 V TxDATA[A][7] L33 TxDATA[C][10] AL27 TxFSYNCP U3 V TxDATA[A][8] L32 TxDATA[C][11] AP28 TxPA[A] H33 V TxDATA[A][9] K35 TxDATA[C][12] AN28 TxPA[B] AA34 V TxDATA[A][10] K34 TxDATA[C][13] AM28 TxPA[C] AN30 V TxDATA[A][11] K33 TxDATA[C][14] AL28 TxPA[D] AP18 V TxDATA[A][12] K32 TxDATA[C][15] AP29 TxPRTY[A] J33 V TxDATA[A][13] K31 TxDATA[D][0] AN13 TxPRTY[B] AB35 V TxDATA[A][14] J35 TxDATA[D][1] AP13 TxPRTY[C] AN29 V TxDATA[A][15] J34 TxDATA[D][2] AM14 TxPRTY[D] AM17 V TxDATA[B][0] AE33 TxDATA[D][3] AL14 TxSOP/C[A] J32 V TxDATA[B][1] AE34 TxDATA[D][4] AN14 TxSOP/C[B] AA32 V TxDATA[B][2] AE35 TxDATA[D][5] AP14 TxSOP/C[C] AM29 V TxDATA[B][3] AD31 TxDATA[D][6] AR14 TxSOP/C[D] AL17 V TxDATA[B][4] AD32 TxDATA[D][7] AM15 TxSZ[A] H31 V TxDATA[B][5] AD33 TxDATA[D][8] AL15 TxSZ[B] Y32 V TxDATA[B][6] AD34 TxDATA[D][9] AN15 TxSZ[C] AL30 V TxDATA[B][7] AD35 TxDATA[D][10] AP15 TxSZ[D] AN18 V TxDATA[B][8] AC31 TxDATA[D][11] AR15 TxTOHCK AJ2 V TxDATA[B][9] AC32 TxDATA[D][12] AM16 TxTOHD[A] AJ3 V TxDATA[B][10] AC33 TxDATA[D][13] AN16 TxTOHD[B] AJ4 V TxDATA[B][11] AC34 TxDATA[D][14] AP16 TxTOHD[C] AJ5 V TxDATA[B][12] AB32 TxDATA[D][15] AP17 TxTOHD[D] AK2 V TxDATA[B][13] AB31 TxENB[A] H34 TxTOHF AH5 V TxDATA[B][14] AB33 TxENB[B] AA33 V TxDATA[B][15] AB34 TxENB[C] AP30 V TxDATA[C][0] AM25 TxENB[D] AR17 V TxDATA[C][1] AR26 TxEOP[A] J31 V TxDATA[C][2] AP26 TxEOP[B] AA31 V
Note: NC refers to no connect. Do not connect pins so designated.
DDA DDD DDD DDD DDD
B6 V A1 V A2 V A5 V A6 V
DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD
A17 A18 A30 A31 A34 A35
B1
B2 B34 B35
C3 C33
D4 D27 D32
E1
E5 E11 E16 E20 E25 E31 E35
F1 F35
K5
L5 L31
M5
P4
R1
T5 T31 U35
V1
20 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
(continued)
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
DDD
V
DDD
V V
DDD
V
DDD DDD
V V
DDD
V
DDD DDD
V V
DDD
V
DDD
Note: NC refers to no connect. Do not connect pins so designated.
V2 V
V35 V
W1 V
Y5 V Y31 V AB5 V AD5 V AE5 V
AE31 V
AF5 V
DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD
AK1 V
AK35 V
AL1 V
AL5 V AL11 V AL16 V AL18 V AL20 V AL25 V AL31 V
DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD
AL35 V
AM4 V
AM32 V
AN3 V
AN33 V
AP1 V
AP2 V AP34 V AP35 V
AR1 V
DDD DDD DDD DDD DDD DDD DDD DDD DDD DDD
PLL E3
AR2 AR5
AR6 AR18 AR19 AR30 AR31 AR34 AR35
Agere Systems Inc. 21
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
Note:3.3 V CMOS logic inputs are 5 V tolerant. Logic inputs can be driven from standard TTL levels, and logic out-
puts can drive standard TTL in puts . All LVPECL buffers are differential. LVPECL is compliant with low-volt­age (3.3 V) pseudo-emitter-coupled logic interface levels. All PECL outputs, including ECLREFHI and ECLREFLO require terminating resistors. The required termination for the PECL buffers is 50 to a termi­nating voltage of V
D
). Other termination styles are not recommended. LVPECL inputs with a / in the name indicate multiple
GND functionality. The name preceding the / is the function in STS-48/STM-16 mode. The name after the / is the function in STS-3/STM-1 or S TS- 12/ STM- 4 mod e.

Table 3. Pin Descriptions—Line Interface Signals

Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid­ered to be NC (no connect).
Pin Symbol Type I/O Name/Description
V5 RxCKP/
RxD[A]P
V4 RxCKN/
RxD[A]N
AG2 RxD[0]P LVPECL I Receive Line Data Inputs (STS-48/STM-16). In STS-48/STM-16 mode, AG1 RxD[0]N
AF2 RxD[1]P LVPECL AF1 RxD[1]N AF4 RxD[2]P LVPECL AF3 RxD[2]N AE2 RxD[3]P LVPECL AE1 RxD[3]N AE4 RxD[4]P LVPECL
AE3 RxD[4]N AD2 RxD[5]P LVPECL AD1 RxD[5]N AD4 RxD[6]P LVPECL AD3 RxD[6]N AC3 RxD[7]P LVPECL AC2 RxD[7]N AC5 RxD[8]P LVPECL AC4 RxD[8]N
AB2 RxD[9]P/
RxCLK[D]P
AB1 RxD[9]N/
RxCLK[D]N
(continued)
DDD
– 2 V. The Theven in equivalent is also ac ce ptab le (1 30 to V
LVPECL I Receive Line Clock (S TS-48/STM-16)/Receive Line Data Input Channel
A. In STS-48/STM-16 mode, these pins function as receive line clock. This
155.52 MHz clock comes from an external clock data recovery circuit. This clock is used to clock in the RxD[15:0] receive line data inputs.
In STS-3/STM-1 or STS-12/ST M-4 mode, these pins function as rece iv e data input channel A at 155.52 Mbi ts /s or 622.08 Mbits/s, respectively.
This buffer is internally disabled when not in STS-48/STM-16 mode and channel A is disabled. This buffer is internally disa bled throug h proper pr o­visioning when the input is not active.
these pins function as receive line data inputs [0:8]. The remaining receive line data inputs [9:15] are listed below and are multiplexed for use in the STS-3/STM-1 or STS-12/STM-4 modes.
The 2.488 Gbits/s STS-48/STM-16 serial data stream is converted to a
155.52 Mbits/s parallel 16-bit word externa l to TDAT042G5 by a demulti­plexer.
All 32 differential data input pins, RxD[ 15:0]P/N, are used as the parallel data input bus in the STS-48/STM-16 mode. These pins constitute a
155.52 Mbits/s parallel 16-bit word-align ed to the RxCKP/N 155.52 MH z receive line clock. RxD[15] is the most significant bit and is the first bit received. RxD[0] is the least significant bit and is the last bit received.
This buffer is internally disabled through proper provisioning when the input is not active.
LVPECL I Receive Line Data Input [9]/Receive Line Clock Channel D. In STS-48/
STM-16 mode, these pins function as receive line data input [9] at
155.52 Mbits/s. In STS-3/STM-1 or STS-12/ST M-4 mode, these pins function as rece iv e
line clock channel D at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4).
This buffer is internally disabled when not in STS-48/STM-16 mode and channel D is disabled. This buffer is intern all y disabled thro ugh pr ope r pro­visioning when the input is not active.
DDD
and 82 to
22 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
Table 3. Pin DescriptionsLine Interface Signals (continued)
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever co re r egi ste r s 0x0010 and 0x0011 are properly provisi oned. The unused inputs can be consid­ered to be NC (no connect).
Pin Symbol Type I/O Name/Description
AB4 RxD[10]P/
RxD[D]P
AB3 RxD[10]N/
RxD[D]N
AA2 RxD[11]P/
RxCLK[C]P
AA1 RxD[11]N/
RxCLK[C]N
AA4 RxD[12]P/
RxD[C]P
AA3 RxD[12]N/
RxD[C]N
Y3 RxD[13]P/
RxCLK[B]P
Y2 RxD[13]N/
RxCLK[B]N
W3 RxD[14]P/
RxCLK[A]P
W2 RxD[14]N/
RxCLK[A]N
(continued)
LVPECL I Receive Line Data Input [10]/Receive Line Data Input
Channel D. In STS-48/STM-16 mode, the se pin s functi on as receive line data input [10] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 m ode, the se pins func ti on as receive line data input channel D at either 155.52 Mbits/s (STS-3/ STM-1) or 622.08 Mbi ts/s (STS-12/STM-4).
This bu ffer is internally disabled when not in STS-48/STM-16 mode and channel D is disabled. This buffer is internally disabled through proper provisioning when the input is not active.
LVPECL I Receive Line Data Input [11]/Receive Line Clock Channel C.
In STS-48/STM-16 mode, these pins function as receive line data input [11] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 m ode, the se pins func ti on as receive line clock channel C at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4).
This bu ffer is internally disabled when not in STS-48/STM-16 mode and channel C is disabled. This buffer is internally disabled through proper provisioning when the input is not active.
LVPECL I Receive Line Data Input [12]/Receive Line Data Input
Channel C. In STS-48/STM-16 mode, the se pin s functi on as receive line data input [12] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 m ode, the se pins func ti on as receive line data input channel C at either 155.52 Mbits/s (STS-3/ STM-1) or 622.08 Mbi ts/s (STS-12/STM-4).
This bu ffer is internally disabled when not in STS-48/STM-16 mode and channel C is disabled. This buffer is internally disabled through proper provisioning when the input is not active.
LVPECL I Receive Line Data Input [13]/Receive Line Clock Channel B.
In STS-48/STM-16 mode, these pins function as receive line data input [13] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 m ode, the se pins func ti on as receive line clock channel B at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4).
This bu ffer is internally disabled when not in STS-48/STM-16 mode and channel B is disabled. This buffer is internally disabled through proper provisioning when the input is not active.
LVPECL I Receive Line Data Input [14]/Receive Line Clock Channel A.
In STS-48/STM-16 mode, these pins function as receive line data input [14] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 m ode, the se pins func ti on as receive line clock channel A at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz (STS-12/STM-4).
This bu ffer is internally disabled when not in STS-48/STM-16 mode and channel A is disabled. This buffer is internally disabled through proper provisioning when the input is not active.
Agere Systems Inc. 23
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)
Table 3. Pin DescriptionsLine Interface Signals (continued) Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally
disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid­ered to be NC (no connect).
Pin Symbol Type I/O* Name/Description
W5 RxD[15]P/
RxD[B]P
W4 RxD[15]N/
RxD[B]N
LVPECL I Receive Line Data Input [15]/Receive Line Data Input
Channel B. In STS-48/STM-16 mode, these pins function as receive line data input [15] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive line data in put channe l B at either 155.52 Mbits/s (STS-3/STM-1) or 622.08 Mbits/s (STS-12/STM-4).
This buffer is internally disabled when not in STS-48/STM-16 mode and channel B is disabled. This buffer is internal ly disabled through proper provisioning when the input is not active.
u
H4 CLKDIV 3.3 V
(5 V tolerant)
Clock Division. This pin controls a divider in the line transmit
I
block to create a 77.76 MHz clock from either the 155.52 MHz STS-3/STM-1 or STS-48/STM-16 tra n smit line clock, or the
622.08 MHz STS-12/STM-4 transmit line clock, TxCKP/N. CLKDIV = 1 for STS-12/STM-4 (divide by 8).
CLKDIV = 0 for STS-3/STM-1 and STS-48 /STM-16 (divide by 2). AG3 ECLREFLO O Reference Voltage for LVPECL I/O Buffers. ECLREFLO and AG4 ECLREFHI O
ECLREFHI are buffer outputs which provide the reference for the
output level of the LVPECL output buffers. ECLREFLO and ECL-
REFHI must be connected to a 50 source of V
DDD
– 2 V.† No
user-accessible signal is present on these pin s.
*Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance. This may be obtained from a passive voltage divider of a 130 Ω resistor connected from V
which is connected to GND
D.
to one end of an 82 Ω resistor, the other end of
DDD
Note: The TDAT042G5 has internal ci rcu itry that is ass oc iat ed with the buffer section of the chip. This section
monitors the voltage levels of REFLO and REFHI. A very low frequency calibration process, during which the values at the ECLREFLO and ECLREFH I pins ar e con tinuous l y monitored, is performed to allow the drive capactity of remaining buffers to be adjusted within true PECL levels. Therefore, it is important to ter­minate the ECLREFLO and ECLREFHI outputs in exactly the same way as you would terminate LVPECL outputs.
24 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
Table 3. Pin DescriptionsLine Interface Signals (continued)
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever co re r egi ste r s 0x0010 and 0x0011 are properly provisi oned. The unused inputs can be consid­ered to be NC (no connect).
Pin Symbol Type I/O* Name/Description
U4 TxCKP LVPECL I Transmit Line Clock. When in STS-48/STM-16 mode, this clock U5 TxCKN
U3 TxFSYNCP LVPECL I U1 TxFSYNCN I
T2 TxD[0]P/
TxD[D]P
U2 TxD[0]N/
TxD[D]N
T4 TxD[1]P/
TxD[C]P
T3 TxD[1]N/
TxD[C]N
R3 TxD[2]P/
TxD[B]P
R2 TxD[2]N/
TxD[B]N
R4 TxD[3]P/
TxD[A]P
R5 TxD[3]N/
TxD[A]N
(continued)
is a 155.52 MHz input and clocks out TxD[15:0]P/N or TxD[D:A]. When in STS-12/STM-4 mode, this clock is a 622.08 MHz input
and clocks out TxD[D:A]P/N. When in STS-3/STM-1 mode, this clock is a 155.52 MHz input
and clocks out TxD[D:A]P/N.
d
Transmit Line Frame Sync. This input is the exter n a l 8 kHz transmit line frame sync. Driving this input is optional. If undriven
u
from an external source, these pins must be no connects. When this input is used, it must be (1) synchronized to TxCKP/N, and (2) at least one TxCKP/N cycle wide, up to a maximum of 1 frame period minus 2 TxCKP/N cycles wide.
LVPECL O Transmit Line Data Output [0]/Transmit Line Data Output
Channel D. In STS-48/STM-16 mode, the pins function as trans­mit line data output [0] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 mode, the pin s functi on as transmit data output channel D at either 155.52 Mbits/s or
622.08 Mbits/s. This buffer is internally disabled through proper provisioning when
the input is not active.
LVPECL O Transmit Line Data Output [1]/Transmit Line Data Output
Channel C. In STS-48/STM-16 mode, the pins function as trans­mit line data output [1] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 mode, the pin s functi on as transmit data output channel C at either 155.52 Mbits/s or
622.08 Mbits/s. This buffer is internally disabled through proper provisioning when
the input is not active.
LVPECL O Transmit Line Data Output [2]/Transmit Line Data Output
Channel B. In STS-48/STM-16 mode, the pins function as trans­mit line data output [2] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 mode, the pin s functi on as transmit data output channel B at either 155.52 Mbits/s or
622.08 Mbits/s. This buffer is internally disabled through proper provisioning when
the input is not active.
LVPECL O Transmit Line Data Output [3]/Transmit Line Data Output
Channel A. In STS-48/STM-16 mode, the pins function as trans­mit line data output [3] at 155.52 Mbits/s.
In STS-3/STM-1 or STS-12/STM-4 mode, the pin s functi on as transmit data output channel A at either 155.52 Mbits/s or
622.08 Mbits/s. This buffer is internally disabled through proper provisioning when
the input is not active.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Agere Systems Inc. 25
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
Table 3. Pin DescriptionsLine Interface Signals (continued)
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid­ered to be NC (no connect).
Pin Symbol Type I/O Name/Description
H2 TxCKQP LVPECL O Tr ansmit Line Clock Q. This 155.52 MHz cl ock is used t o clock
J5 TxCKQN
P2 TxD[4]P LVPECL O Transmit Line Data Outputs (STS-48/STM-16). In STS-48/ P1 TxD[4]N P5 TxD[5]P LVPECL P3 TxD[5]N N3 TxD[6]P LVPECL N2 TxD[6]N N5 TxD[7]P LVPECL
N4 TxD[7]N M2 TxD[8]P LVPECL M1 TxD[8]N M4 TxD[9]P LVPECL M3 TxD[9]N
L2 TxD[10]P LVPECL
L1 TxD[10]N
L4 TxD[11]P LVPECL
L3 TxD[11]N
K2 TxD[12]P LVPECL
K1 TxD[12]N
K4 TxD[13]P LVPECL
K3 TxD[13]N
J2 TxD[14]P LVPECL J1 TxD[14]N J4 TxD[15]P LVPECL J3 TxD[15]N
(continued)
out the data in the STS-48/STM-16 mode for forward-directional timing with the 155 Mbits/s 16- bi t parall el -to -2.5 Gb its /s serial MUX.
For an STS-48/STM-16 contra-clocking interface with the 155 Mbits/s parall el -to-2.5 Gbits/s serial MUX, this clock is not used. In the contra-clocking mode, a phase-locked version of TxCKP/N is used to clock out the data. In the contra-clocking mode, the transmit line clock PLL must be active (see core regis­ter map 0x0010, bit 5 (PLL_ MODE) on pag e 112).
This clock is not used in the STS-3/STM -1 or STS-12/STM- 4 modes.
STM-16 mode, these pins function as transmit line data out puts [4:15]. The remaining transmit li ne data outp uts [0 :3] are li st ed below and are multiplexed for use in the STS-3/STM-1 or STS-12/ STM-4 modes.
The 155.52 Mbits/s 16- bi t word paral le l bus is conve rted to a
2.488 Gbits/s serial data stream external to TDAT042G5 by a mul­tiplexer.
All 32 differential data output pins, TxD[15:0]P/N, are used as the parallel data output bus in the STS-48/STM-16 mode. These pins constitute a 155.52 Mbyte/s parallel 16-bit word-aligned to the TxCKP/N and TxCKQP/N 155.52 MHz transmit line clock. TxD[15] is the most significant bit and is the first bit transmitted. TxD[0] is the least significant bit and is the last bit transmitted.
This buffer is internally disabled through proper provisioning when the input is not active.
26 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information

Table 4. Pin Descriptio nsTOH Interface Signals

Pin Symbol Type I/O* Name/Description
AK3 RxREF 3.3 V O Receive Line Frame. This output provides the receive 8 kHz
AL7 AL6 AL4
AK5
AN7 AM6 AM5
AL2
AP6
AN5
AL3
AK4
AJ2 TxTOHCK 3.3 V O Transmit TOH Interface Clock. This clock is nominally a
AK2
AJ5 AJ4 AJ3
AH5 TxTOHF 3.3 V O Transmit TOH Interface Frame. This 8 kHz fram ing signal is
RxTOHCK[D] RxTOHCK[C] RxTOHCK[B] RxTOHCK[A]
RxTOHD[D] RxTOHD[C] RxTOHD[B] RxTOHD[A]
RxTOHF[D] RxTOHF[C] RxTOHF[B] RxTOHF[A]
TxTOHD[D] TxTOHD[C] TxTOHD[B] TxTOHD[A]
(continued)
frame reference for external timing needs. RxREF is derived from one of the received line clocks (user-selectable). It is a 50% duty cycle clock when TDAT042G5 is in frame. This signal may be used to implement line tim ing on a SON ET r i ng. When not provi­sioned, this signal must not be used. RxREF is valid only when the SONET framer is in frame. Upon LOC or LOF, RxREF is present but is free running. Because jitter may be present on this signal when th e d evice goes into and o ut of an LOC or LOF stat e, it should not be used as a reference for TxFSYNCP/N.
3.3 V O Receive TOH Interface Clock. This clock is nominally a
5.184 MHz (STS-3/S TM - 1) or 20.736 MHz (STS-12/ST M- 4, STS-48/STM-16) clock which provides timing for circuitry that receives and externally processes the receive transport overhead bytes. The duty cycle of the clock is not 50% (see Figure 49 and Figure 50, page 272). In STS-48/STM-16 mode, all four of these clocks are active.
3.3 V O Receive TOH Interface Data. This 5.184 Mbits/s or
20.736 Mbits/s signal contains all the receive transport overhead bytes (A1, A2, J0/Z0, B1, E1, F1, D1D3, H1H3, K1, K2, D4D12, S1/Z1, M0, and E2) for all 3/12/48 STS-1s. This signal can be used by external circuitry to process the TOH bytes. RxTOHD is updated on the falling edge of RxTOHCK. In STS-48/ STM-16 mode, RxTOHD[A] contains all current ly defined TOH bits except for M1, which is located in RxTOHD[C].
3.3 V O Receive TOH Interface Frame. This 8 kHz framing signal is used to locate the individual receive transport overhead bits in the RxTOHD bit stream. RxTOHF is only high while bit 1 (MSB) of the first framing byte (A1 during parity time in first byte) is present on the RxTOHD output. RxTOHF is updated on the falling edge of RxTOHCK.
5.184 MHz (STS-3/STM -1) , 20.736 MHz (STS-12/STM-4, STS-48/STM-16) clock which provides timing for circuitry that externally generates and transmi ts the transmit transpor t over­head bytes for inclusion in the transmit data stream. The duty cycle of the clock is not 50% (see Figure 48, pag e271).
3.3 V
(5 V tolerant)
u
I
Transmit TOH Interface Data. This 5.184 Mbits/s or
20.736 Mbits/s signal contains all the transmit transport overhead bytes (A1, A2, J0/Z0, B1, E1, F1, D1D3, H1H3, K1, K2, D4D12, S1/Z1, M0, and E2) for all 3/12/48 STS-1s. This signal is generat ed b y external circuitry for c us tom TOH byte definitions. TxTOHD is sampled on the rising edge of TxTOHCK.
used to align the individual transmit transport overhead bits in the TxTOHD bit stream. TxTOHF is only high while bit 1 (MSB) of the first framing byte (A1 during parity time in first byte) is expected on the TxTOHD input. TxTOHF is updated on the falling edge of TxTOHCK.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Agere Systems Inc. 27
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
Note:An external pull-up resi sto r of 50 k100 k is required on all input pins of a disabled UTOPIA port. Either
an external pull-up resistor of 50 k100 k or an external pull-down resistor of 0 1 k is required on all unused inputs of an enabled UTOPIA port. Use of either a pull-up or pull-down resistor is selected to place the unused input pin into the inactive state.

Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals

Pin Symbol Type I/O Name/Description
AM31
Y34
W34
G33 G32
J34
J35 K31 K32 K33 K34 K35
L32
L33
L34
L35
M31 M32 M33 M34 M35
AB34 AB33 AB31 AB32 AC34 AC33 AC32 AC31 AD35 AD34 AD33 AD32 AD31 AE35 AE34 AE33
TxADDR[4] TxADDR[3] TxADDR[2] TxADDR[1] TxADDR[0]
TxDATA[A][15] TxDATA[A][14] TxDATA[A][13] TxDATA[A][12] TxDATA[A][11] TxDATA[A][10]
TxDATA[A][9] TxDATA[A][8] TxDATA[A][7] TxDATA[A][6] TxDATA[A][5] TxDATA[A][4] TxDATA[A][3] TxDATA[A][2] TxDATA[A][1] TxDATA[A][0]
TxDATA[B][15] TxDATA[B][14] TxDATA[B][13] TxDATA[B][12] TxDATA[B][11] TxDATA[B][10]
TxDATA[B][9] TxDATA[B][8] TxDATA[B][7] TxDATA[B][6] TxDATA[B][5] TxDATA[B][4] TxDATA[B][3] TxDATA[B][2] TxDATA[B][1] TxDATA[B][0]
(continued)
3.3 V
(5 V tolerant)
3.3 V
(5 V tolerant)
3.3 V
(5 V tolerant)
I Transmit Ad dr e ss . The TxADDR is driven by the UTOPIA mas-
ter to poll and select the approp r ia t e PHY ch anne l of TDAT042G5 to transmit data.
Note:The PHY address (0x00 to 0x1E) for each of the four
channels in TD AT042G5 is configured vi a software provisioning.
I Transmit Data Channel A. Used to transport data into the
UTOPIA PHY Tx block. TxDATA[A] is only valid when TxENB[A] is asserted, and is sampled on the rising edge of TxCLK[A]. Note that TxDATA[A] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid.
In U3 or U3+ (32-bit mode), TxDATA[A][15:0] forms the most significant 16 bits of the combined data bus (bits 31 to 16), and TxDATA[B][15:0] forms the least significant 16 bits of the com­bined data bus (bits 15 to 0).
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
I Transmit Data Channel B. Used to transport data into the
UTOPIA PHY Tx block. TxDATA[B] is only valid when TxENB[B] is asserted (TxENB[A] for U3 or U3+ (32-bit mode)), and is sam­pled on the rising edge of TxCLK[B] (TxCLK[A] for U3 or U3+ (32-bit mode). Note that TxDATA[B] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid.
In U3 or U3+ (32-bit mode), TxDATA[B][15:0] forms the least sig­nificant 16 bits of the combined data bus (bits 15 to 0), and TxDATA[A][15:0] forms the most significant 16 bits of the com­bined data bus (bits 31 to 16). In this mode, channel B port must be provisioned to the idle (default) state.
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
28 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals
Pin Symbol Type I/O Name/Description
AP29
AL28 AM28 AN28
AP28
AL27 AM27 AN27
AP27 AR27
AL26 AM26 AN26
AP26 AR26 AM25
AP17
AP16 AN16 AM16 AR15
AP15 AN15
AL15 AM15 AR14
AP14 AN14
AL14 AM14
AP13 AN13
AM17 AN29
AB35
J33
TxDATA[C][15] TxDATA[C][14] TxDATA[C][13] TxDATA[C][12] TxDATA[C][11] TxDATA[C][10]
TxDATA[C][9] TxDATA[C][8] TxDATA[C][7] TxDATA[C][6] TxDATA[C][5] TxDATA[C][4] TxDATA[C][3] TxDATA[C][2] TxDATA[C][1] TxDATA[C][0]
TxDATA[D][15] TxDATA[D][14] TxDATA[D][13] TxDATA[D][12] TxDATA[D][11] TxDATA[D][10]
TxDATA[D][9] TxDATA[D][8] TxDATA[D][7] TxDATA[D][6] TxDATA[D][5] TxDATA[D][4] TxDATA[D][3] TxDATA[D][2] TxDATA[D][1] TxDATA[D][0]
TxPRTY[D] TxPRTY[C]
TxPRTY[B] TxPRTY[A]
(continued)
3.3 V
(5 V tolerant)
3.3 V
(5 V tolerant)
3.3 V
(5 V tolerant)
(continued)
I Transmit Data Channel C. Used to transport data into the
UTOPIA PHY Tx blo ck. TxDATA[C] is only valid w hen Tx ENB[C ] is asserted, and is sampled on the rising edge of TxCLK[C]. Note that TxDATA[C] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid.
In U3 or U3+ (32-bit mode), channel C port is considered dis­abled, and must be provisioned to the idle (default) state.
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
I Transmit Data Channel D. Used to transport data into the UTO-
PIA PHY Tx block. TxDATA[D] is only valid w hen TxENB[D] is asserted, and is sampled on the rising edge of TxCLK[D] (TxCLK[A] for U3+, 32-bit mode). Note that TxDA TA[D] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15 to 8 are valid.
In U3 or U3+ (32-bit mode), channel D port is considered dis­abled, and must be provisioned to the idle (default) state.
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
I Transmit Parity. This signal indicates the parity on the
TxDATA[D:A][15:0] bus. A parity error raises an alarm but does not cause the cell/packet to be dropped. Odd or even parity may be provisioned through a software register. TxPRTY[D:A] is con­sidered valid only when TxENB[D:A] is ass erted, and is sam­pled on the rising edge of TxCLK[D:A].
In U3 or U3+ (32-bit mode), the TxPRTY[A] parity pin of port A indicates the parity for the entire 32-bit data input.
Agere Systems Inc. 29
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
.
Table 5
Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)
(continued)
Pin Symbol Type I/O Name/Description
AL17
AM29
AA32
J32
TxSOP/C[D] TxSOP/C[C] TxSOP/C[B] TxSOP/C[A]
3.3 V
(5 V tolerant)
I Transmit Start o f Packet/Cell. In ATM mode, the TxSOP/C[D:A]
signal marks the start of a ce ll on the TxDATA[D:A][15:0] bus. When TxSOP/C[D:A] is active, the first word of the cell is present on the TxDATA[D:A][1 5:0 ] bus.
In packet modes, the TxSOP/C[D:A] signal marks the start of a packet on the TxDATA[D:A][15:0] bus. When TxSOP/C[D:A] is active, the first word of the packet is present on the TxDATA[D:A][15:0] bus.
TxSOP/C[D:A] is considered valid only when TxENB[D:A] is asserted, and is sampled on the rising edge of TxCLK[D:A].
In U3 or U3+ (32-bit mode), only the TxSOP/C[A] pin of port A is used to indicate a start of packet/cell for the 32-bit data input.
AP18 AN30 AA34
H33
TxPA[D] TxPA[C] TxPA[B] TxPA[A]
3.3 V O Transmit Cell/Packet Available. This signal indicates when the TDAT042G5 transmit FIFO can accept data from the master device. If the FIFO is empty or more than the provisioned space is available in the FIFO, TxPA[D:A] is set active.
One-Cycle Delay Mode. This mode follows the UTOPIA Level
2 Standard. The TxP A response occurs one cycle after the address is polled .
Two-Cycle Delay Mode. This mode follows the UTOPIA Level
3 baselined text*. The TxPA response occurs two cycles after the address is polled.
TxPA[D:A] Assertion. The TxPA[D:A] signal behavior relies on
the UTOPIA provisionab le wate rmar ks . In pa ck et mode , TxPA[D:A] goes high when the amount of data in the FIFO is less than the high watermark setting. In ATM mod e, TxPA[D:A] goes high when the FIFO has space to receive a complete ATM cell from the master. (This requires the high threshold to be set appropriately by the user, i.e., set so that an entire cell can be received once TxPA[D:A] goes ac ti ve. )
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July
1999.
(See further description on nex t page.)
30 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
.
Table 5
Pin Symbol Type I/O Name/Description
AP18
AN30
AA34
H33
AP19 AP31
Y33
G34
AR17
AP30 AA33
H34
Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)
TxPA[D] TxPA[C] TxPA[B] TxPA[A]
TxCLK[D] TxCLK[C] TxCLK[B] TxCLK[A]
TxENB[D] TxENB[C] TxENB[B] TxENB[A]
(continued)
3.3 V O Transmit Cell/Packet Available. (continued) TxPA[D:A] Deassertion. In packet mode, TxPA[D:A] goes low
when the amount of data in the FIFO reaches or exceeds the high watermark. In ATM mode, TxPA[D:A] goes low when there is not enough space in the FIFO to receive an entire ATM cell. (This requires th e thre sh old values to be provisioned proper l y, i.e., set low enough such that when the high watermark is reached, the transmission of the current cell can be completed without overflowing the FIFO). In ATM mode, TxPA[D:A] will be deasser ted four cycles before the end of the current cell trans­fer if the FIFO cannot accept a complete ATM cell on the follow­ing transmission.
TxPA[D:A] is updated on the rising edge of TxCLK[D:A]. In 32-bit mode , only the T xPA[A] pin of port A is used t o in dicat e
the packet/cell available status. MPHY Support. When the TxP A signals are used for multi-PHY
(MPHY) direct status, the corresponding TxCLK[B, C, and/or D] must be provided. This clock will be the same as TxCLK[A].
3.3 V
(5 V tolerant)
3.3 V
(5 V tolerant)
I Transmit Clock. This clock is used to write cells or packets into
the transmit FIFO. TxCLK[D:A] can operate at speeds from dc to 104 MHz.
In U3 or U3+ (32-bit mode), only the TxCLK[A] input pin of port A is used to clock the data input.
If MPHY direct status is used, then all clocks TxCLK[D:A] must be provided.
I Transmit Data Enable (Active-Low). This signal is used to trans-
fer data on the TxDATA[D: A][1 5:0 ] bus into the transmit FIFOs. If TxENB[D:A] is high, no operation is performed. If TxENB[D:A] is low, a write occurs.
TxENB[D:A] is sampled on the rising edge of TxCLK[D:A]. TxENB[D:A] has the same meaning as da ta valid.
In U3 or U3+ (32-bit mode), only the TxENB[A] input pin of port A is used to enable the transfer of data.
Agere Systems Inc. 31
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
.
Table 5
Pin DescriptionsEnhanced UTOPIA Interface Signals
(continued)
(continued)
Pin Symbol Type I/O Name/Description
AN18
AL30
Y32 H31
TxSZ[D] TxSZ[C] TxSZ[B] TxSZ[A]
3.3 V
(5 V tolerant)
I Transmit Size. These pin s are used only in U2+ and U3+
(packet) modes. This signal defines the valid bytes transmitted and their packing within (1) TxDATA[D:A][15:0] for U2+ 16-bit mode, and (2) TxDATA[A][15:0] and TxDATA[B][15:0] for the U3+ (32-bit mode). The meaning of these bits may be inverted through UT register 0x0226 TxSIZE/Rx SIZE mode, page 164.
In U3+ (8-bit mode), TxSZ[D:A] are unused. For U2+ 16-bit mode,
TxSZ[D:A] = 0 defines the MSByte of TxDATA[D:A][15:0], i.e., TxDATA[D:A][15:8], to be the last byte of the packet transmit­ted when using the default configuration.
TxSZ[D:A] = 1 defines the LSByte of TxDATA[D:A][15:0], i.e. TxDATA[D:A][7:0], to be the last byte of the packet transmit­ted when using the default configuration.
For U3+ (32-bit mode), TxSZ[A] and TxSZ[B] are combined to define four states of the transmitted dat a stream. TxSZ[C] and TxSZ[D] are unused. The following states are assigned by TxSZ[A] and TxSZ[B] when TxEOP[A] is asserted when using the default configuration. TxSZ[D:A] is ignored when TxEOP[D:A] is not pres en t.
TxDATA[A] TxDATA[B]
TxDATA[A][15:8] TxDATA[A][7:0] TxDATA[B][15:8] TxDATA[B][7:0]
TxSZ[B]DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]
TxSZ[A]
0 0 Valid Not valid Not valid Not valid 0 1 Valid Valid Not valid Not valid 1 0 Valid Valid Valid Not valid 1 1 Valid Valid Valid Valid
There is no byte swapping and the data bytes are packed into the upper transmitted bytes first.
32 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
.
Ta ble 5
AN17
AL29 AA31
AM18 AM30
AA35
H32
AP20 AL32 AL33
W32 W31
N31 N32 N33 N34 P31 P32 P33 P34 P35 R31 R32 R33 R34 R35 T32 T33
Pin DescriptionsEnhanced UTOPIA Interface Sign als (continued)
Pin Symbol Type I/O Name/Description
TxEOP[D] TxEOP[C] TxEOP[B]
J31
TxEOP[A]
TxERR[D] TxERR[C] TxERR[B] TxERR[A]
RxADDR[4] RxADDR[3] RxADDR[2] RxADDR[1] RxADDR[0]
RxDATA[A][15] RxDATA[A][14] RxDATA[A][13] RxDATA[A][12] RxDATA[A][11] RxDATA[A][10]
RxDATA[A][9] RxDATA[A][8] RxDATA[A][7] RxDATA[A][6] RxDATA[A][5] RxDATA[A][4] RxDATA[A][3] RxDATA[A][2] RxDATA[A][1] RxDATA[A][0]
(continued)
(5 V tolerant)
(5 V tolerant)
(5 V tolerant)
3.3 V
3.3 V
3.3 V
3.3 V O Receive Data Channel A. Used to transport data out of the
I Transmit End of Packet. These pins are used only in U2+
and U3+ (packet) modes. This signal indicates that the last word of a packet is on the TxDATA[D:A][15:0] bus. TxEOP[D:A] is valid only when TxENB[D:A] is asserted, and is sampled on the rising edge of TxCLK[D:A] .
In U3+ (32-bit mode), onl y the TxE OP[ A] input pi n of po rt A is used to indicate the end of the incoming packet.
I Transmit Error. These pins are used only in U2+ and U3+
(packet) modes. TxERR[D:A] is only used in packet modes, and indicates that the current packet is to be aborted and discarded, if possible. TxERR[D:A] is only valid when TxEOP[D:A] and TxENB[D:A] are asserted, and is sampled on the rising edge of TxCLK[D:A].
In U3+ (32-bit mode), the TxERR[A] and the TxERR[B] input pin of port A is used to indicate an error on the incoming packet.
I Receive Address. Receive address is driven to the MPHY
to poll and sele ct the a ppropriate MPHY chan nel . Note: Th e addr ess for each chann el is configured by the
microprocessor.
UTOPIA PHY Rx block. RxDATA[A ][15 :0] is onl y valid when RxENB[A] is asserted, and is updat ed on the rising edge of RxCLK[A]. Note that RxDATA[A][15:0] is used in various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bi ts 15 to 8 are valid.
In U3 or U3+ (32-bit mode), RxDATA[A][15:0] forms the most significant 16 bits of the combined data bus (bits 31 to 16), and RxDATA[B][15:0] forms the least significant 16 bits of the combined data bus (bits 15 to 0).
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
Agere Systems Inc. 33
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
.
Table 5
AE32
AF35 AF34 AF33 AF32
AF31 AG35 AG34 AG33 AG32 AG31 AH34 AH33 AH32 AH31
AJ34 AN25
AP25 AR25
AL24
AM24
AN24 AP24 AR24
AL23
AM23
AN23 AP23
AL22
AM22
AN22 AP22
Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)
Pin Symbol Type I/O Name/Description
RxDATA[B][15] RxDATA[B][14] RxDATA[B][13] RxDATA[B][12] RxDATA[B][11] RxDATA[B][10]
RxDATA[B][9] RxDATA[B][8] RxDATA[B][7] RxDATA[B][6] RxDATA[B][5] RxDATA[B][4] RxDATA[B][3] RxDATA[B][2] RxDATA[B][1] RxDATA[B][0]
RxDATA[C][15] RxDATA[C][14] RxDATA[C][13] RxDATA[C][12] RxDATA[C][11] RxDATA[C][10]
RxDATA[C][9] RxDATA[C][8] RxDATA[C][7] RxDATA[C][6] RxDATA[C][5] RxDATA[C][4] RxDATA[C][3] RxDATA[C][2] RxDATA[C][1] RxDATA[C][0]
(continued)
3.3 V O Receive Data Channel B. Used to transport data out of the UTOPIA PHY Rx block. RxDATA[B][15:0] is only valid when RxENB[B] is asserted, and is updated on the rising edge of RxCLK[B]. Note that RxDATA[B][15:0] is used in various UTO­PIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8­bit mode), only bits 15 to 8 are valid.
In U3 or U3+ (32-bit mode), RxDATA[B][15:0] forms the least sig­nificant 16 bits of the combined data bus (bits 15 to 0), and RxDATA[A][15:0] forms the most significant 16 bits of the com­bined data bus (bits 31 to 16). In this mode, channel B port must be provisioned to idle.
In this mode, RxDATA[B][15:0] is valid when RxENB[A] is asserted, and RxDATA[B][15:0] is updated on the rising edge of RxCLK[A].
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
3.3 V O Receive Data Channel C. Used to transport data out of the UTOPIA PHY Rx block. RxDATA[C][15:0] is only valid when RxENB[C] is asserted, and is updated on the rising edge of RxCLK[C]. Note that RxDATA[C][15:0] is used in various UTO­PIA modes. In U2 or U2+, all 16 bits are valid. In U3+ (8-bit mode), only bits 15 to 8 ar e valid.
In U3 or U3+ (32-bit mode), channel C port must be provisioned to idle mode.
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
34 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
.
Ta ble 5
AM13
AL13
AR12
AP12 AN12 AM12
AL12 AR11
AP11 AN11 AM11 AR10
AP10 AN10 AM10
AL10
AR9
AR22
AJ33
T34
Pin DescriptionsEnhanced UTOPIA Interface Sign als (continued)
Pin Symbol Type I/O Name/Description
RxDATA[D][15] RxDATA[D][14] RxDATA[D][13] RxDATA[D][12] RxDATA[D][11] RxDATA[D][10]
RxDATA[D][9] RxDATA[D][8] RxDATA[D][7] RxDATA[D][6] RxDATA[D][5] RxDATA[D][4] RxDATA[D][3] RxDATA[D][2] RxDATA[D][1] RxDATA[D][0]
RxPRTY[D] RxPRTY[C] RxPRTY[B] RxPRTY[A]
(continued)
3.3 V O Receive Data Channel D. Used to transport data out of the UTOPIA PHY Rx block. RxDATA[D][15:0] is only valid when RxENB[D] is asserted, and is updated on the rising edge of RxCLK[D]. Note that RxDATA[D][15:0] is used in various UTO­PIA modes. In U2 or U2+, all 16 bits are valid. In U3+ (8-bit mode), only bits 15 to 8 are valid.
In U3 or U3+ (32-bit mode), channel D port must be provisioned to idle mode.
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
3.3 V O Receive Parity. This signal indicates the parity on the RxDATA[D:A][15:0]. Odd or even parit y may be pr ov is io ned through a software register. RxPRTY[D:A] is considered valid only when RxENB[D:A] is asserted, and is updated on the rising edge of RxCLK[D:A].
AP9
AL21
AJ32
U31
RxSOP/C[D] RxSOP/C[C] RxSOP/C[B] RxSOP/C[A]
In U3 or U3+ (32-bit mode), the RxPRTY[A] parity pin of port A indicates the parity for the entire 32-bit data output.
3.3 V O Receive Start of Packet/Cell. In ATM mode, RxSOP/C[D:A] signal marks the start of a cell on the RxDATA[D:A][15:0] bus. When RxSOP/C[D:A] is high on the clock cycle following the latching of an active RxENB[D:A] signal, the first word of the cell structure is pre sen t on the RxDATA [D:A ][15 :0] bus.
In packet modes, the RxSOP/C[D:A] signal marks the start of a packet on the RxDATA[D:A][15:0] bus. When RxSOP/C[D:A] is high, the first word of the packet is present on the RxDATA[D:A][15:0] bus.
RxSOP/C[D:A] is considered valid only when RxENB[D:A] is asserted, and is updated on the rising edge of RxCLK[D:A].
In U3 or U3+ (32- bit mode ), only the RxSOP/ C[A] pin of port A is used to indicate a start of packet/cell for the 32-bit data output.
Agere Systems Inc. 35
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
.
Table 5
Pin DescriptionsEnhanced UTOPI A Interface Signals (continued)
(continued)
Pin Symbol Type I/O Name/Description
AL9 AP21 AK33
V33
RxPA[D] RxPA[C] RxPA[B] RxPA[A]
3.3 V O Receive Cell/Packet Available. This signal indicates when the TDAT042G5 receive FIFO can send data to the master device. The RxPA[D:A] signal behavior depends on the provisioned low watermark in the UTOPIA interfac e.
One-Cycle Delay Mode. This mode follows the UTOPIA Level
2 Standard. The RxPA response occurs one cycle after the address is polled. RxENB is asserted to activate the selected PHY. RxDATA and RxSOP are output one cycle after RxENB is sampled active by the PHY device.
Two-Cycle Delay Mode. This mode follows the UTOPIA Level
3 baselined text*. The RxPA response occurs two cycles after the address is polled. Rx ENB is asserted to activate the selected PHY. RxDATA and RxSOP are output two cycles after RxENB is sampled active by the PHY device.
RxPA[D:A] Assertion. RxPA[D:A] goes high (is asserted)
when the amount of data in the receive FIFO has reached or exceeded the low watermark or there is end of packet (EOP) resident in the FIFO.
RxPA[D:A] Deassertion. In ATM mode, the RxPA[D:A] signal
goes low (is deasser ted) when the FIFO has less than the low threshold amount of data and there is no EOP inside the FIFO (i.e., part of an ATM cell). Once the last byte of the current cell is transmitted, and if the amount of data within the FIFO is still less than the low threshold, RxPA[D:A] is deasserted.
In packet mode, the RxPA[D:A] signal goes low (is deasserted) when the FIFO has less than the low threshold amount of data and there is no EOP inside the FIFO.
Once the data transfer begins (since the amount of data has reached or exceeded the low watermark), and if there is no EOP below the low threshold (i.e., a long packet), the RxPA signal is deasserted when the FIFO is drained by the UTOPIA master device. In this case, the master must closely monitor the RxPA[D:A] signals and use these signals as data valid indica­tors to ensure that bad data is not read from the TDAT042G5. TDAT042G5 will deassert the RxPA[D:A] signal immediately when the FIFO is drained.
* ATM Forum Technical C ommittee, UTOPIA Level 3, STR-P HY-UL3-01.00, July
1999.
(See fur the r description on next page.)
36 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
.
Ta ble 5
AL9 AP21 AK33
V33
Pin DescriptionsEnhanced UTOPIA Interface Sign als (continued)
Pin Symbol Type I/O Name/Description
RxPA[D] RxPA[C] RxPA[B] RxPA[A]
(continued)
3.3 V O Receive Cell/Packet Available. (continued) Data Transfer. A TDAT042G5 ingress channel sends data
when it has asserted RxPA[D:A] and the master device requests data (via RxENB[D:A]). In ATM mode, if the master device requests data using RxENB[D:A] and if the TDAT042G5 has less than the low watermar k amo unt of data to send an d there is no end of cell in the FIFO (RxPA[D:A] is deasserted), then the TDAT042G5 UTOPIA interface will send out data that should be ignored by the master, i.e., it does not send data from its internal FIFO.
In ATM mode, once an ATM cell transfer starts, the Tx or Rx side must complete the transfer. If the transfer is not com­pleted, then the cell will be corrupted. The transfer continues until either (1) the end of cell is reached, when the end of cell exists below the low watermark, or (2) the end of the FIFO is reached. If the end of the FIFO is reached, no underflow is flagged on the receive side. In ATM mode, the low watermark should be set so that at least one entire cell is in the FIFO prior to asserting RxPA[D:A].
AM9
AN21
AK34
U34
RxENB[D] RxENB[C] RxENB[B] RxENB[A]
3.3 V
(5 V tolerant)
In packet mode, once the data transfer begins, the RxPA[D:A] signal will remain asserted until the FIFO is drained if there is no EOP below the low watermark. During the time RxPA[D:A] is asserted, valid data is being transferred.
RxPA[D:A] is updated on the rising edge of RxCLK[D:A]. In 32-bit mode, only the RxPA[A] pin of port A is used to indi-
cate the packet/cell available status. MPHY Support. When the RxPA signals are used for MPHY
direct status, the corresponding RxCLK[B, C, and/or D] must be provided. This clock will be the same as RxCLK[A].
I Receive Data Enable (Active-Low). This signal is used to indi-
cate to the UTOPIA PHY Rx block that it is selected. If RxENB[D:A] is high, no operation is performed. If RxENB[D:A] is low, th e UTOPIA PHY Rx block sends data (no t necessarily valid data).
In U3 or U3+ (32-bit mode), only the RxENB[A] input pin of port A is used to enable the transfer of data.
Agere Systems Inc. 37
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
.
Table 5
Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)
(continued)
Pin Symbol Type I/O* Name/Description
AM8
AN20
AL34
W33
RxCLK[D] RxCLK[C] RxCLK[B] RxCLK[A]
3.3 V
(5 V tolerant)
u
I
/O Receive Clock. This clock is used to read cells or packets from
the receive FIFO. RxCLK[D:A] can operate at speeds from dc to 104 MHz. For clock rates above 52 MHz, the receive clock mu st be placed in source mode.
RxCLK[D:A] sourcing from the respect ive TxCLK[D:A] may be provisioned by CLOCK_MODE_Rx (see registers 0x020F, 0x0213, 0x0217, 0x021B on pages 114—115).
In U3 or U3+ (32-bit mode), only the RxCLK[A] input/output pin of port A is u se d to clock the data out put.
If MPHY mode is used, then all clocks RxCLK[D:A] must be pro­vided.
AN8
AM20
AK31
W35
RxSZ[D] RxSZ[C] RxSZ[B] RxSZ[A]
3.3 V O Recei ve S ize. These pins are used only in U2+ and U3+ (packet) modes. This signal defines the valid bytes received and their packing within (1) RxDATA[D:A][15:0] for U2+ 16-bit mode, and (2) RxDATA[A][15:0] and RxDATA[B][15:0] for the U3+ (32-bit mode). The meaning of these bits may be inverted through UT register 0x0226 TxSIZE/RxSIZE mode, page 164.
In U3+ (8-bit mode), RxSZ[D:A] are unused. For U2+ 16-bit mode,
RxSZ[D:A] = 0 defines the MSByte of RxDATA[D:A][15:0], i.e., RxDATA[D:A][15:8], to be the last byte of the packet received when using the default configuration.
RxSZ[D:A] = 1 defines the LSByte of RxDATA[D:A][15:0], i.e., RxDATA[D:A][7:0], to be the last byte of the packet received when using the default configuration.
In U3+ (32-bit mode), the MSByte will be placed on RxDATA[A], bits 15 to 8. In the 16-bit mode, the MSByte will be placed on RxDATA[D:A], bits 15 to 8.
For U3+ (32-bit mode), RxSZ[A] and RxSZ[B] are combined to define four states of the received data stream. RxSZ[C] and RxSZ[D] are unused. The following states are assigned by RxSZ[A] and RxSZ[B] when RxEOP[A] is asserted and the default configuration is provisioned.
RxDATA[A][15:8] RxDATA[A][7:0] RxDATA[B][15:8] RxDAT A[B][7:0]
RxSZ[B]DATA[31:24] DATA[23:16] DATA[15:8] DAT A[7:0]
RxSZ[A]
0 0 Valid N ot valid Not valid Not valid 0 1 Valid Valid Not valid Not valid 1 0 Valid Valid Valid Not valid 1 1 Valid Valid Valid Valid
RxDATA[A] RxDATA[B]
The data bytes are packed into the upper transmitted bytes first.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
38 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
.
Table 5
Pin Symbol Type I/O* Name/Description
AN9
AM21
AJ31
U32
AP8
AR21
AK32
V32
Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)
RxEOP[D] RxEOP[C] RxEOP[B] RxEOP[A]
RxERR[D] RxERR[C] RxERR[B] RxERR[A]
(continued)
3.3 V O Receive End of Packet. These pins are used only in U2+ and U3+ (packet) modes. This signal indicates that the last word of a packet is on the RxDATA[D:A][15:0] bus. RxEOP[D:A] is valid only when RxENB[D:A] is asserted, and is updated on the rising edge of RxCLK[D:A].
In U3+ (32-bit mode), only the RxEOP[A] output pin of port A is used to indicate the end of the outgoing packet.
3.3 V O Receive Error. The se pins are used only in U2+ and U3+ (packet) modes. RxERR[D:A] is only used in POS mode, and indi­cates that the current packet is to be aborted and discarded, if possible. RxERR[D:A] is only valid when RxEOP[D:A] and RxENB[D:A] are asserted, and is updated on the rising edge of RxCLK[D:A].
If the Rx FIFO overflows, RxERR[D:A] and RxEOP[D:A] are asserted to indicate a corrupted packet.
RxERR is asserted when a CRC error occurs in any packet mode using CRC-16 or CRC-32. RxERR is asserted when an incoming packet has an abort flag at the end of its stream. In both of these cases, an RxEOP is asserted with the RxERR.
RxERR is not asser ted when a header does not match in PPP header attaching mode. In that case, no data is sent to the UTO­PIA interface.
In U3+ (32-bit mode), only the RxERR[A] output pin of port A is used to indicate an error on the outgoing packet.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
Agere Systems Inc. 39
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)

Table 6. Pin DescriptionsMicroproce ssor Interface Signals

Pin Symbol Type I/O* Name/Description
u
C7 RST
3.3 V
(5 V tolerant)
Reset (Asynchronous) (Active-Low). Reset must be held
I
active-low for a minimum of 100 ns. After deassertion of reset, the device is reset and available for use after 8 µs.
E7 ICT
3.3 V
(5 V tolerant)
u
3-State Control (Active-Low). ICT
I
has an intern al 100 k pull­up. This control 3-states the digital outputs. It does not control the LVPECL outputs.
D7 PMRST 3.3 V
(5 V tolerant)
I/O 1-Second Performance Monitor (PM) Clock. PM clock can be
generated on-chip. This signal will have a 50% duty cycle. PMRST clock may be programmed by core register 0x0013,
bit 15 (PMRST_I/O_CTRL) to be either an output or input. As an output clock, it is derived from the transmit line clock, TxCKP/N. This clock is divided to produce a 1 second, 50% duty cycle clock output. As an input, PMRST is under software control and can be activated longer or shorter than once per second. In the software control mode with PMRST an input, the minimum pulse width of the external PMRST signal is 10 ms.
D8 MPMODE 3.3 V
(5 V tolerant)
C8 MP CLK 3.3 V
(5 V tolerant)
B8 CS
3.3 V
(5 V tolerant)
B7 INT
3.3 V
(open drain)
A12 B12 C12 D12 E12 A11 B11 C11 D11 A10 B10 C10 D10 E10
A9 B9
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
DATA[15] DATA[14] DATA[13] DATA[12] DATA[11] DATA[10]
DA TA[9] DA TA[8] DA TA[7] DA TA[6] DA TA[5] DA TA[4] DA TA[3] DA TA[2] DA TA[1] DA TA[0]
3.3 V
(5 V tolerant)
u
I
MPU Mode Select. This sign al is se t high for a synchronous microprocessor, or low for an asynchronous microprocessor.
u
I
MPU Clock. This clock can operate from 1 Hz to 66 MHz when in synchronous mode.
u
Chip Select (Active-Low). This signal must be low during regis-
I
ter access.
O Interrupt (Active-Low). This signal goes low when the device
generates an unmasked interrupt.
u
I
/O Data Bus. This bus is a bidirectiona l data bus for writing and
reading software registers. [15:0] refers to a 16-bit data b us (15 = MSB, 0 = LSB).
40 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
Table 6. Pin DescriptionsMicroprocessor Interfa ce Sig nals
(continued)
(continued)
Pin Symbol Type I/O* Name/Description
B16 C16 D16 A15 B15 C15 E15 A14 B14 C14 D14 E14 B13 C13 D13 E13
ADDR[15] ADDR[14] ADDR[13] ADDR[12] ADDR[11] ADDR[10]
ADDR[9] ADDR[8] ADDR[7] ADDR[6] ADDR[5] ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]
E9 ADS
3.3 V
(5 V tolerant)
3.3 V
(5 V tolerant)
u
I
Address Bus. This bus is used to address registers. [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).
u
Address Strobe (Active-Low). This signal indicates the address
I
is valid for MPU access in the asynchronous mod e, and trans fer start for the synchronou s mode.
D9 R/W
C9 DS
3.3 V
(5 V tolerant)
3.3 V
(5 V tolerant)
u
Read/Write. This signal is low to indicate a write operation and is
I
high to indicate a read operation.
u
Data Strobe (Active-Low). This signal used in the asynchronous
I
mode (MPMODE = 0) indicates that the data is valid for MPU writes.
E8 DT
3.3 V O Data Transfer Acknowledge (Active-Low). This signal acknowl- edges the data transfer cycle.
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.

Table 7. Pin Descriptio nsGeneral-Purpose I/O Signals: Interface Signals

Pin Symbol Type I/O* Name/Description
AG5 AH2 AH3 AH4
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance.
GPIO[3] GPIO[2] GPIO[1] GPIO[0]
3.3 V
(5 V tolera n t )
u
I
/O General-Purpose I/O. These programmable I/O pins may be
used to monitor or control external circuitry . These pins may also be provisioned to cause an interrupt upon a change in their val­ues.
Agere Systems Inc. 41
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information
(continued)

Table 8. Pin DescriptionsJTAG Interface Signals

Pin Symbol Type I/O* Name/Description
u
F2 TCK 3.3 V
(5 V tolerant)
F4 TMS 3.3 V
(5 V tolerant)
G5 TDI 3.3 V
(5 V tolerant)
JTAG Test Clock. This 10 MHz si gnal provides timing for test
I
operations.
u
I
JTAG Test Mode Se lect . Controls test operations. TMS is sam­pled on the risi ng edge of TCK.
u
I
JTAG Test Data In. Provides a 10 Mbits/s test data input signal. TDI is samp led on the rising edge of TCK.
G2 TDO 3.3 V O JTAG Test Data Out. This 10 Mbits/s data ou tput signa l is
updated on the falling edge of TCK. The TDO output is 3-stated except when scanning out test data.
G3 TRST
3.3 V
(5 V tolerant)
* Iu = Id = 50 k, where Iu = internal pull-up resistance and Id = internal pull-down resistance. Note: JTAG interface signals are used for test operations that are carried out using the IEEE P1149.1 test access port. IEEE is a registered
trademark of The Institute of Electrical and Electronics Engineers, Inc.
u
JTAG Test Re set (Ac tive-Low). This signal provides an asyn-
I
chronous reset for the TAP. Under normal device operations, TRST
should be pulled low. TRST is a Schmitt-trig ger ed inp ut.
42 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Pin Information
(continued)

Table 9. Pin Descriptio nsPower Signals

Pin Symbol Type* I/O Name/Description
B6 V
A1, A2, A5, A6, A17,
V
DDA
DDD
A18, A30, A31, A34,
A35, B1, B2, B34, B35,
C3, C33, D4, D27, D32,
E1, E5, E11, E16, E20,
E25, E31, E35, F1, F35,
K5, L5, L31, M5, P4, R1,
T5, T31, U35, V1, V2,
V35, W1, Y5, Y31, AB5,
AD5, AE5, AE 31, AF5,
AK1, AK35, AL1, AL5,
AL11, AL16, AL18, AL20, AL25, AL31,
AL35, AM4, AM32, A N3,
AN33, AP1, AP2, AP34,
AP35, AR1, AR2, AR5,
AR6, AR18, AR19,
AR30, AR31, AR34,
AR35
DDD
E3 V
C6 GND
A3, A4, A7, A8, A13,
PLL P Digital Power Supply PLL.
A
GND
D
A16, A20, A23,
A27, A28, A29, A32,
A33, B3, B4, B32, B33,
C1, C2, C4, C32, C34, C35, D1, D2, D3, D33,
D34, D35, F3, G1, G35,
H1, H3, H5, H35, N1,
N35, T1, T35, V3, V31, Y1, Y4, Y35, AA5, AC1, AC35, AH1, AH35, AJ1,
AJ35, AM1, AM2, AM3,
AM33, AM34, AM35,
AN1, AN2, AN4, AN6,
AN32, AN34, AN35,
AP3, AP4, AP32, AP33,
AR3, AR4, AR7, AR8,
AR13, AR16, AR20, AR23, AR28, AR29,
AR32, AR33
D
E4 GND
*P = power.
PLL P Digi tal Ground PLL.
P Analog Power Supply. P Digital Power Supply.
P Analog Ground. P Digital Ground.
Agere Systems Inc. 43
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Pin Information

Table 10. Pin Descriptions No Connect Pins

Pin Symbol Type I/O Name/Description
E6, D6 NC ——No Connection. Has internal pull-up resistor.
A19, A21, A22, A24,
A25, A26, B5, B17, B 18,
B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30,
B31, C5, C17, C18, C19,
C20, C21, C22, C23, C24, C25, C26, C27,
C28, C29, C30, C31, D5,
D15, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D28,
D29, D30, D31, E2, E17,
E18, E19, E21, E22, E23, E24, E26, E27, E28, E29, E30, E32,
E33, E34, F5, F31, F32,
F33, F34, G4, G31, U33,
V34, AL8, AL19, AM7,
AM19, AN19, AN31,
AP5, AP7
(continued)
NC ——No Connection. Do not connect to these pins.
Do not connect to these pins.
44 Agere Systems Inc.
Data Sheet May 2001
155/622/2488 Mbits/s Data Interface
TDAT042G5 SONET/SDH

Overview

This device integrates the SONET/SDH interface termination functions with a generic cell/packet delineation cir­cuit. It supports STS-48/STM-16, quad STS-12/STM-4, and quad STS-3/STM-1 interface rates. Up to four data channels transported within an STS-N payload are processed via the SONET/SDH termination blocks and the on­chip data encapsulation/decapsulation engine. Packet or ATM data are transmitted/received by this device on the equipment side via the enhanced UTOPIA interface. S ON ET /SD H st rea ms a re tr ansm itte d /received by thi s devic e on the network side via the line interface.
Concatenation levels supported by this device range fr om STS -1 to ST S-48c. Val id standard concate nate d SONET frame configurations for this device are STS-3c, STS6c, STS-9c, STS-12c, STS-15c, STS-18c, and STS­48c. Non-standard concatenation levels (such as STS-4c, STS-5c, STS-7c, etc.) are supported as well. In STS-48 mode, four pointer processors are available. This allows an STS-48 frame to carry up to four concatenated sub­frames (for example, mapping of four STS-12c payloads into an STS-48 frame). In quad STS-3 and STS-12 modes, only one pointer processor is available. Therefore, only a single subframe may be mapped into an STS-3 or STS-12 frame (mapping a single STS-3c payload into an STS-12 frame, for instance). For details, see Table 22 on page 68.
This device supports mapping for ATM cells into SONET/SDH, mapping for packet data via all existing or currently proposed standards (e.g., PPP, SDL) into SONET/SDH streams. Via SDL mapping, this device also supports packet over fiber or ATM over fiber, respectively. Figure 2 shows the overview block diagram, and Figure 3 sh ows the interface block diagram for this d ev ice.
SINGLE STM-16/STS-48
OR QUAD STM-4/STS-12
OR QUAD STM-1/STS-3
LINE INTERFACE
SINGLE STM-16/STS-48
OR QUAD STM-4/STS-12
OR QUAD STM-1/STS-3
LINE
TERMINATION
OVERHEAD
PROCESSOR
INSERT
OVERHEAD
PROCESSOR
LINE INTERFACE BLOCK
MONITOR

Figure 2. Overview Block Diagram

PATH
TERMINATION
SPE
MAPPER
POINTER
INTERPRETER
CONTROL
µP INTERFACE
PAYLOAD
TERMINATION
PACKET/CELL PROCESSOR
-ENCAPSULATION
-SCRAMBLING
-CRC GENERATION
PACKET/CELL PROCESSOR
-DELINEATION
-DECAPSULATION
-UNSCRAMBLING
-CRC VERIFICATION
ENHANCED
UTOPIA
COMPATIBLE
INTERFACE
(U2, U2+, U3, U3+)
ENHANCED
UTOPIA
INTERFACE
5-6680(F).ar.15
Agere Systems Inc. 45
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Overview
(continued)
Figure 3 shows the interface diagram of the IC.
TRANSMIT
OVERHEAD
TOH
PROCESSOR
OVERHEAD INTERFACE
RECEIVE
OVERHEAD
PROCESSOR
INTERPRETER
INTERFACE
STS-3/STM-1
STS-12/STM-4
STS-48/STM-16
LINE INTERFACE
STS-3/STM-1
STS-12/STM-4
STS-48/STM-16
INTERFACE
SPE
MAPPER
POINTER
MPU
ATM/HDLC/SDL
FRAME INSERTION
SCRAMBLING
ENCAPSULATION
ATM/HDLC/SDL
FRAME
UNSCRAMBLING
DECAPSULATION
JTAG
INTERFACE
UTOPIA
Tx
UTOPIA
Rx
ENHANCED UTOPIA INTERFACE
5-6746(F)r.11

Figure 3. Interface Block Diagram

The receive path terminates and processes section, line, and path overhead. It performs frami ng (A1, A2), descrambling, detects al ar m con ditions, and monito rs s e c ti on, line, and path BIP-Ns (B1, B2, B3), accumulating error counts for each level for performance monitoring purposes. Line and path remote error indications (M1, G1) are also accumulated. The payload pointers (H1, H2) are interpreted, and the synchronous payload envelope (SPE) is extracted.
The transmit path inserts section, line, and path overhead. It inserts the framing pattern (A1, A2), performs scram­bling, inserts AIS (optionally), and calculates and inserts section, line, and path BIP-8s (B1, B2, B3). Line and path remote failure indications (M1, G1) are inserted based on received BIP-8 errors. The payload pointers (H1, H2) are generated, and the SPE is inserted.
When used to implement an ATM UNI, ATM cells are written into an internal 4-cell FIFO buffer using a generic 8-/16-/32-bit wide UTOPIA 2/3 compliant interface. Idle/unassigned cells are automatically inserted when the inter­nal FIFO is empty. The device provides generation of the hea der check sequence and optionally scrambles the ATM pay lo ad.
46 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Overview
When used to implement a POS UNI, the dev ic e writes pa ck et s into an internal 256-byte FIFO bu ffer using a generic 8-/16-/32-bit wide enhanced UTOPIA 2/3 compliant interface. HDLC framing performs the insertion of flags, control escape characters, and the FCS fields. Either the CRC-ITU or CRC-32 (in regular or reversed mode) can be computed and added to the frame. Counts of transmitted packets and errored/dropped packets are accu­mulated for performance mon ito ring purpos es .
(continued)

ATM/HDLC/HDLC-CRC/PPP Support

TDAT042G5 supports the transfer of ATM cel ls or variable-length packets. Support for 52- or 53-byte cell size s is provided at the UTOPIA interface through register provisioning. The following three types of packet data can be sent and received with HLDC-like framing: transparent HDLC, CRC, and PPP. Transparent HDLC contains 0x7E framing but no CRC. CRC mode is HDLC with an attached CRC. PPP has 0x7E framing with provisionable attached header information and CRC.
When used to implement an ATM UNI, the device performs cell delineation on the SPE. HEC error correction is provided. Idle/unassigned cells may be dropped according to a programmable filter. Cells are also dropped upon detection of an uncorrectable header check sequence error. The ATM cell payloads are descrambled before being passed to a 4-cell FIF O bu ffer. The r ec eived cells are read from the FIFO u sing a gener i c 8-/16- /32 -b it wide UTOPIA 2/3 compliant interface. Counts of received ATM cells, uncorrectable HEC errors, and correctable HEC errors are accumulated independently for performance monitoring purposes.
When used to implement a POS UNI, the device descrambl es the SP E befo re ex trac tin g HDLC frame s. T he con­trol escape characters are removed. Descrambling can be performed after control escape byte destuffing (or before to control malicious HDLC expansion) rectness. The packets are placed into a 256-byte FIFO buffer.* The received packets are read from the FIFO using a generic 8-/16-/32-bit wide enhanced UTOPIA 2/3 compliant interface. Counts of received packets and errored/ dropped packets are accumulated independ ently for perfo r man ce mon ito ring pur po se s. Th e devi ce P O S imple ­mentation also allows the optional attach/detach of a p e r-c hannel p rov i sionable P P P header.
.
The optional 16- or 32-bit error ch eck sequence is ve rified for cor-
* FI FOs are 256 bytes per channel and cannot be reallocated.
Agere Systems Inc. 47
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Overview
(continued)

SDL Support

Supports the simplified data link (SDL) protocol, which is currently being reviewed in standards bodies. The imple­mentation supports 4-b yte modified SDL UNI including the foll owi ng:
CRC-16 based frame delineation with 2-byte packet field length
Forty-eighth order scrambler
No HDLC-like packet expansion
Optional CRC-16/-32 payload check
Capable of packet-over-fiber operation (i.e., no SONET frame)
Two user-programmable 6-byte OAM messages
Optional offset field from 0 to 32 bytes
TDA T042G5 provides support for a provisionable offset to the packet to allow for the attachment of layer 2 routing information (e.g., MPLS tags). Table 11 defines the provisioned value for each offset.

Table 11. Optional Offset Field

Provisioned
Value
0x0 0 0x1 1 0x2 2 0x3 3 0x4 4 0x5 5 0x6 6 0x7 7 0x8 8
0x9 10 0xA 12 0xB 14 0xC 16 0xD 20 0xE 24
0xF 32
Route Tag Length
(Bytes)
The packet length value (header value that CRC is calculated over) will account for the total l ength of the packet datagram as well as the associated route tags.
48 Agere Systems Inc.
Data Sheet
May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Overview
(continued)

Over-Fiber Mode

Over-fiber mode is used for packet delivery over fi ber . No SONET overhead is added in this mode. Since no SONET overhead is added, the OHP and PT blocks must be confi gured for the bypass mode.
In transmitting from the TDAT042G5 to the line, the data engine maps the data payload into a full SONET frame starting at what normally would be the first A1 byte. The data engine continues to map payload into the full SONET frame until an end of packet or end of frame is reached, at which time the data engine halts the mapping of the incoming data stream into the SO NE T frame un til the nex t start of frame.
When TDAT042G5 is receiving from the line, the data engine must be provisioned to receive the maximum packet size, unless the location of the last byte of the packet is known in advance. If the size of the packet is not known, one must program the data engine to receive the entire SONET frame. The external UTOPIA interface device must then be capable of extracting the variable length packets from the full SONET frame.
Details of the over-fiber mode are given in the Data Engine (DE) Block section, page 82.

Test and General-Purpose I/O Support

The device is provisioned, controlled, and monitored using a generic 16-bit microprocessor interface. A standard five-signal IEEE -1149.1 compliant JTAG test port is also provided for boundary-scan purposes.
A 4-bit GPIO (general-purpose input/output) interface is provided to control and/or monitor other onboard devices.

External Interfaces

Figure 4 shows the external interfaces.
TXTOHF
TxCK
TxD
RxD
2
2
TX LINE
2
32
2
32
2
RX LINE
TxFSYNC
TxCKQ
ECLREF
RxCLK
CLKDIV
TXTOHCK
TOHD
X
T
4
MPU AND TEST INTERFACE
RXREF
OHP
RXTOHF
4
RXTOHCK
4
RXTOHD
4
348 SIGNAL PINS
UTOPIA INTERFACE
4 x 24 Tx UTOPIA +5 MPHY ADDRESS
4 x 24 Rx UTOPIA +5 MPHY ADDRESS
16
JTAG
5
GPIO
4
RST
ICT
PMRST
MPMODE
MPCLKCSINT
DATA
ADDR
16
ADS
R/W
DS
DT
5-6745(F).br.3

Figure 4. External Interface Summary Diagram

Agere Systems Inc. 49
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface

Functional Description

The block diagram for this device can be seen in Figure 5.
TOH I/O
Data Sheet
May 2001
Tx LINE I/O
Rx LINE I/O
TX LINERX LINE
OHP
PT DE
Tx UTOPIA I/O
UTOPIA IF
Rx UTOPIA I/O
CTRL
MP JTAG GPIO
5-7055(F).br.2

Figure 5. Functional Block Diagram

50 Agere Systems Inc.
Data Sheet
May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
(continued)

Line Interface Block

This device is designed to work with co mmo nl y ava ilabl e optoe lec tron ic co nv erter s for OC- 3, OC-12, and OC-48 line rates. It will also wor k with av ail ab le mul tip lex er and demultiplexer chip se ts for an ST S -48/S T M- 16 li ne inte r­face rate. The line interface will operate in one of three possible modes, and is provisioned through core register 0x0010 (mode), bits 40. These three values of the mode register are the only values allowed.

Table 12. Line Interface Modes

Mode[4:0]
Core Register
0x0010
10000 STS-48/STM-16 RxC KP/N, RxD[15: 0]P /N, Tx CKP/N, TxD[15:0]P/N 01111 STS-12/STM-4 RxCLK[D]P/N, RxD[D]P/N, TxCKP/N, TxD[D]P/N
00000 STS-3/STM-1 RxCLK[D]P/N, RxD[DP/N, TxCKP/N, TxD[D]P/N
Interfaces Line Interface Signals
RxCLK[C]P/N, RxD[C]P/N, TxCKP/N, TxD[C]P/N RxCLK[B]P/N, RxD[B]P/N, TxCKP/N, TxD[B]P/N RxCLK[A]P/N, RxD[A]P/N, TxCKP/N, TxD[A]P/N
RxCLK[C]P/N, RxD[C]P/N, TxCKP/N, TxD[C]P/N RxCLK[B]P/N, RxD[B]P/N, TxCKP/N, TxD[B]P/N RxCLK[A]P/N, RxD[A]P/N, TxCKP/N, TxD[A]P/N
This block provides the interface between the external SONET/SDH line components and the overhead processor (OHP) block. The line interface mu st prov ide tr ansmi t/r ec ei ve fun cti ons fo r quad STS-3/STM-1, quad STS-12/ STM-4, and STS-48/STM-16 applications. All external inputs and outputs for the TDAT042G5 line I/O block are ref­erenced to the positive edge of the clock. When the external devices are referenced to the negative edge, the dif­ferential input clock will ne ed to be re ve rsed at the TDAT042G5 input.

Receive Line Interface Summary

The following list summarizes the receive line interface operations for each STS mode:
In quad STS-3/STM-1 mode, the receive line interface provides four separate STS-3/STM-1 input pin groups.
Each input group comprises a differential LVPECL 155.52 Mbits/s data input and a differential 155.52 MHz clock. Each input group provides data to only one of four (A, B, C, or D) OHP blocks. This interface is synchronous and requires an external CDR.
In quad STS-12/STM-4 mode, the receive line interface provides four separate STS-12/STM-4 input pin groups.
Each input group comprises a differential LVPECL 622.08 Mbits/s data input and a differential 622.08 MHz clock. Each input group provides data to only one of four (A, B, C, or D) OHP blocks. This interface is synchronous and requires an external CDR.
In the STS-48/STM-16 mode, the device provides 16 differential LVPECL data inputs at 155.52 Mbits/s with a dif-
ferential LVPECL 155.52 MHz clock. In this mode, an external 1:16 data demultiplexer with a 1/16 clock divider is required. External barrel shifter circuitry to byte align the data is not required.
Multiplexers select between the terminal loopback data, the 32-bit parallel STS-48/STM-16 data bus, and the
four STS-12/STM-4 or STS-3/STM-1 8-bit parallel data buses. The controls for these MUXes are mode (register 0x0010) and loopback (register 0x0012) provided by the control block (see Table 48 and Table 50 on pages 150151).
For STS-48 mode, the 155.52 MHz input clock is divided by two to 77.76 MH z and distributed to all four multi-
plexers. For the STS-1 2/S T M-4 mo de, each 622.08 MHz in p u t clock i s divided by eight to 77.76 MHz. Each
77.76 MHz clock is distr ibuted to the appr opriate clock multiplexer (A, B, C, or D). For the STS-3/STM -1 mode, each 155.52 MHz input clock is divided by eight to 19.44 MHz. Each 19.44 MHz clock is distributed to the appro­priate clock multiplexer (A, B, C, or D).
Agere Systems Inc. 51
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Line Interface Block
(continued)
(continued)

Transmit Line Interface Summary

The following list summarizes the tra ns mit li ne int er fac e operatio ns for each STS mode.
In quad STS-3/STM-1 and STS-12/STM-4 modes, the transmit line interface receives 8 bits of data from each
OHP block (A, B, C, and D) at 19.44 Mbits/s and 77.76 Mbits/s, respectively. An 8-to-1 parallel-to-serial conver­sion produces output data at 155.52 Mbits/s for STS-3/STM-1 mode and 622.08 Mbits/s for STS-12/STM-4 mode. For fa ci li ty loo pba ck, the outputs ar e multiplexed with the correspondi ng data fr om the ST S -12 /ST S-3 (STM-4/STM-1) receive block and sent to four differential LVPE CL buffer s.
In STS-48/STM-16 mode, a 32-bit data word at 77.76 Mbits/s is received from the OHP. Then a 2-to-1 parallel-to-
parallel conversion is performed producing a 16-bit word at 155.52 Mbits/s. In this mode, an external 16:1 data demultiplexer is required. Facility loopback is not available for the STS-48/STM-16 mode.
There is a single clock input, TxCKP/N, in the transmit case. The clock source rates are 622.08 MHz (STS-12/
STM-4), 155.52 MHz (STS-3/STM-1), or 155.52 MHz (STS-48/STM-16).
In the STS-48/STM-16 case, two transmit clock modes are available, contra* and forward clocking. In the contra­clocking mode, the transmit data is sent out as commanded by TxCKP/N; in addition, an internal PLL must be activated, core register 0x0010 bit 5, to minimize the phase delay between TxCKP/N and the transmitted data. In the forward clocking mod e, the transmit data and the clock, TxCKQ (used to clock out the data), are sent in par­allel to the transmit multiplexer.
In STS-12/STM-4 and STS-3/STM-1 modes, the input clock is divided by eight producing the internal clock at
77.76 MHz and 19.44 MHz, respectively. In STS-48/STM-16 mode, the input clock is divided by eight to produce an internal clock at 77.76 MHz. The CLKDIV pin (H4) controls this division. Table 13 shows the required value of CLKDIV.

Table 13. Clock Settings for CLKDIV Pin

CLKDIV Pin Description
CLKDIV = 1 When in STS-12/ST M-4 (62 2.08 MHz divide by 8). CLKDIV = 0 When in STS-3/STM - 1, STS- 48/STM-16 (155.52 MHz divide by 2).
TxFSYNCP/N is an optional external frame sync. This 8 kHz frame sync pulse must be synchronous with
TxCKP/N. It is, at minimum, a one TxCKP/N clock cycle wide pulse that is latched in at the system rate (622.08 MHz or 155.52 MHz). TOH interface signal RxREF should not be used as a source to TxFSYNCP/N.
The active edge of the transmit clock is the positive edge.
When TDAT042G5 operates in asynchronous mode (MPMO DE = 0), the li ne block provides the microproc es s or
clock to the microprocessor interface block. The CLKDIV pin must be set to ensure that the clock is always
77.76 MHz.
Line interface timing is given in the Interface Timing Specifications section (see Table 168, page 267).
* Contra refers to a type of data transmission whereby a clock signal is received by a register before the register sends data.
52 Agere Systems Inc.
Data Sheet
May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
(continued)

SONET Framer

The SONET framer consis ts of the overhead processor (OHP) and path termina t or (PT) blocks. The receive SONET framer req ui res 625 µs to drop frame after the line input signal is lost. Once a valid receive line input is restored, the maximum average reframe time (MART) is 250 µs.

Overhead Processor (OHP) Block

The OHP block terminates/generates the section and line overhead bytes of the line. The data rate of the TOH interface is given in Table 14. Timing for the TOH interface is given in the Interface Timing Specifications section (see Table 172 and Ta ble 173 , page 271) .

Table 14. R/T TOH Interface Rates

Mode R/T TOH Interface Rate
STS-48/STM-16 20.736* Mbits/s
STS-12/STM-4 20.736 Mbits/s
STS-3/STM-1 5.184 Mbits/s
* This STS-48/STM-16 interface is a four-line interface resulting in an effective interface rate
of 82.944 Mbits/s.
All receive transport overhead bytes are output on the RTOH interface for external processing. Tra nsmit transport overhead bytes can optionally be inserted from the TTOH interface.
The transmit transport overhead bytes can be inserted in one of three ways selected through software provision­ing: (1) automatically by hardware, (2) via software provisioning, or (3) through the TOAC. Table 15 defines those overhead bytes that can be inserted via each of the three paths. In some cases, the user has the choice to insert the byte via software registers or through the TOAC. Superscripts in the table reference these insertion methods which are des cribed in the footnotes.

Table 15. TOAC Byte Insertion: An STS-3/STM-1 Example

OH Parity
3
6
X
6
X
6
X
6
X
6
X
J0
5
Z0
4
Z0
4
(1st bit of
1st byte)
X
D1
X
X D4 D7
D10
S1
6
3 6 6
3
3
3
5
B1-2 D1-2
6
X
6
X D4-2 D7-2
D10-2
Z1-2
1 1
1 1
1
3
B1-3 D2-3
6
X
6
X D4-3 D7-3
D10-3
Z1-3
1 1
1 1
1
3
E1
D2
X
K1 D5 D8
D11
Z2
5 3
6
2 3 3
3
3
E1-2
D2-2
6
X
K1-2 D5-2 D8-2
D11-2
Z2-2
1 1
1 1 1
1
3
E1-3
D2-3
6
X
K1-3 D5-3 D8-3
D11-3
6
X
1 1
1 1 1
1
F1
D3
X K2 D6 D9
D12
E2
5
3
6
2 3 3
3
3
F1-2 D3-2
6
X K2-2 D6-2 D9-2
D12-2
E2-2
1 1
1 1 1
1
1
F1-3 D3-3
6
X K2-3 D6-3 D9-3
D12-3
E2-3
1
1
1
1 1
1
1
1.Inserted via TOAC, but not part of SONET standard.
2.Inserted via software or automatically via hardware.
3.Inserted via TOAC only.
4.Inserted via software register only.
5.Inserted via TOAC or software register.
6.Inserted via TOAC hardware; should be included in TOAC interface timing.
Agere Systems Inc. 53
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Overhead Processor (OHP) Block
(continued)
(continued)
The TOAC inserter must insert the first bit of A1 at the TOAC input, TxTOHD[D:A], during the first clock cycle when TxTOHF = 1. The TOAC has a built-in parity checker. For the parity che ck, th e value of the first inserted bit of A1 must be set to the parity value of the previous frame. The remainder of the inserted bits of the A1, A2 bytes are ignored by the transmi t fram er.
Receive OHP Loss-of-Signal. The loss-of-signal block monitors the incoming scrambled data for the absence of transitions.
When an absence of transitions is detected for a programmable length of time, a loss-of-signal (LOS) is declared. LOS is cleared when two valid framing patterns are detected, and during the intervening time, no LOS condition is detected.
Framer. The frame block finds and locks onto the incoming A1 and A2 by tes of the SO NE T trans port ove rhead. Loss-of-frame (LOF) is declared when a defect persists for more than 3 ms. LOF is cleared when the defect is absent for more than 3 ms. To prevent intermittent out-of-frame/in-frame conditions, the 3 ms timer is not reset to zero until an in-frame (or out-of-frame) condition persists for 3 ms. The framer is also responsible for performing bit rotations on the incoming data stream to ensure that the rest of the IC receives byte-aligned data.
While in-frame, the A1/A2 fr amin g by tes in each frame are compared against the exp ect ed patte rn . Out-of- fr am e (OOF) is declared when five consecutive frames containing one or more framing pattern errors have been received.
While out-of-frame, this block will monitor the receive data stream for an occurrence of the framing pattern. When a framing pattern has been recognized, t he framer performs the necessary bit rotation and verifies that an error-free framing pattern is present in the next frame before declaring in-frame.
J0 Section Trace. The section trace message is extracted and stored in a 16-byte memory for access by software. The first byte of the message can be provisioned to be either:
The byte with the most significant bit (MSB) set high (for SDH), or
The byte following a carriage return (0x0 D) and line feed (0x0A ) sequen ce (for SONET).
J0 mismatch detection is provided using one of four methods (provisionable via J0MONMODE[AD][1:0]; see reg­ister description, page 173).
Descrambler. The descrambler block implemen ts the fra me sy nchr ono us SONE T desc ramb ler with a gener ati ng polynomial of 1 + x
6
+ x7. The framing bytes (A1, A2), the section trace bytes (J0), and the growth bytes (Z0) are
not descrambled. The descrambler may be disabled through a software register.
54 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Overhead Processor (OHP) Block
Receive OHP (continued) B1 BIP-8 Check. The SBIP block counts section BIP-8 (B1) errors. The SBIP value is c alculated over the scram-
bled data of the complete previous frame. The calculated value is compared against the received B1 byte and dif­ferences (errors) are counted. A theoretical maximum of 64,000 errors may be detected per second. The SBIP block accumulate s these error s in a 16-bit saturating counter. This counter operates in la tch and clear mode to ensure Bellco re an d ITU com pli ance with regard to not mis si ng any ev ents (bit errors). It is intended that this counter be polled at least once per second so that no error events a r e missed. Optionally, a maximum of only one SBIP error per frame can be counted (provisionable via B1BITBLKCNT[AD]; see register description, page 174). This causes the error counter to only increment by one when one or more errors are detected.
B2 BIP-N Check. The LBIP block counts line BIP- N error s . The LB IP va lue is calcula ted over the incoming frame and is compared to the received B2 bytes re ce iv ed in the nex t fram e. The er r ors are coun ted. Op tio nal ly, a maxi­mum of only one LBIP error per frame can be counted (B2BITBLKCNT[AD]; see register description, page 174). This causes the block error counter to only increment by one when one or more errors are detected. A theoretical maximum of 3,072,000 errors may be detected per second. The LBIP block accumulates these errors in a 22-bit saturating counter. This counter is operated in latch and clear mode to ensure Bellcore and ITU compliance with regard to not missing any events (bit err ors) . It is inten ded that thi s cou nte r be polled at least o nce per second so that no error events are missed.
BER Check. The OHP block also detects provisionable signal fail (SF) and signal degrade (SD) conditions. The SF and SD values are provisioned through a group of software registers (SF addresses 0x0452—0x0469, SD addresses 0x043A0x0451). The SF alarm can be provisioned for a bit error rate (BER) of between 10
–5
10
; the SD alarm can be provisioned for a bit error rate (BER) of between 10–5 to 10–9 (see Table 86, page 187).
(continued)
(continued)
–3
to
Agere Systems Inc. 55
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Overhead Processor (OHP) Block
(continued)
(continued) Receive OHP (continued) Figure 6 illustrates the parameters used in determining the bit error detection rate.
NUMBER OF MONITORING BLOCKS SFBSET[AD] OR SDBSET[AD] (I N T H IS CASE, 3)
NUMBER OF FRAMES IN A MONITORING BLOCK SFNSSET[AD] OR SDNSSET[A—D],
FRAME
BOUNDARY
SFNSCLEAR[A—D] OR SDNSCLEAR[A—D] (IN THIS CASE, 7)
BLOCK
BOUNDARY
SFLSET[AD] OR SDLSET[AD] SFLCLEAR[AD] OR SDLCLEAR[AD]
ACCUMULATED BIP ERROR COUNT:
B1 OR B2 FOR LINE B3 FOR PATH
SFMSET[AD] OR SDMSET[AD] SFMCLEAR[AD] OR SDMCLEAR[AD]
BLOCK GOOD/BAD COUNT
5-7934(F)

Figure 6. Signal Degrade and Failure Parameters for BER

TDAT042G5 provides a method to monitor the BER at the line and path layers. The following explains the algo­rithm for this method to set and clear the BER. The al gorithm for this method is the same for setti ng and clear in g the BER, the only difference is the programmed values. TDAT042G5 includes two complete sets of identical counters, one used to determi ne si gnal fa il (SF ) and one us ed to deter mi ne si gnal degrade (SD). The only d iffer­ence between SF and SD is the provisioned values. The same algorithm is used for both the line and path layers of SONET.
The algorithm uses four sets of counters: labelled Ns (number of frames), L (number of errors), M (number of errored blocks), and B (total number of blocks). Each of these counters has different values that are provisioned to either set the BER high or clear the BER indication. The algorithm works by counting blocks, i.e., a preset number of SONET/SDH frames (Ns). If the number of errors in the block exceeds the provisioned level (L), then the errored block counter is incremented by 1; othe rw ise, t he numb er of block s in error sta ys at its current level. At this point, the frame counter and the error counter are reset back to 0 and start counting again. At the end of a preset number of blocks (B), the count in the errored block counter is compared against a provisioned threshold (M). If the total number of blocks in error equals or exceeds the provisioned threshold (M), then the BER alarm is raised. If the total number of blocks in error is less than the provisioned amount (M), then the BER alarm is cleared.
The values used by the counters are determined by the state of the algorithm. If the BER state is low, then the SET parameters are used. If the BER state is high, then the CLEAR parameters are used.
56 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Overhead Processor (OHP) Block
(continued)
(continued) Receive OHP (continued) Table 16 and Table 17 show values of Ns, L, M, and B for STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 to
set and clear the BER indicator. SF registers are 0x04520x0469 and SD registers are 0x043A0x0451. All SF/SD set and clear values are hexadecimal.

Table 16. Ns, L, M, and B Values to Set the BER Indicator

Mode BER SF/SD Se t Values Actual
Number o f
Frames
Ns* L* M* B* @BER @BER/2 @BER @BER/2
STS-3/
STM-1
1.00E-03 1 6 3D 3D 62 99.96 85.13 97.68 0.00 0.008 64
1.00E-04 6 9 3 7 48 72.70 7.28 96.06 0.16 0.013 104
1.00E-05 30 7 3 7 384 71.34 10.08 95.19 0.52 0.1 800
1.00E-06 1E0 7 3 7 3840 71.34 10.09 95.19 0.52 1 8000
1.00E-07 127 5 7 4 9 47250 69.74 9.44 95.07 0.13 10 80000
1.00E-08 B5A4 7 3 9 465000 68.07 8.82 98.47 0.82 83 664000
1.00E-09 3F7A0 4 5 F 4160000 56.90 11.25 96.52 0.60 667 5336000
1.00E-10 ———— ———— — —
Probability of
Detecting L
Errors (%)
Probability of
Declaring
SF/SD (%)
Integra-
tion
Time
(s)
Max-
imum
Number
of Frame s
STS-12/
STM-4
STS-48/
STM-16
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
1.00E-03
1.00E-04 2 B 6 A 22 84.92 9.64 98.3 8 0.00 0.008 64
1.00E-05 D 8 3 8 117 67.93 7.17 96.48 0.25 0.025 200
1.00E-06 80 8 3 8 1152 66.19 6.66 95.46 0.19 0.25 2000
1.00E-07 4FB 8 3 8 11475 65.75 6.53 95.16 0.18 2.5 20000
1.00E-08 31CE 8 3 8 1 14750 65.75 6.53 95 .16 0.18 21 168000
1.00E-09 1F20C 8 3 8 1147500 65.75 6.53 95.16 0.18 167 1336000
1.00E-10 ———— ———— — —
1.00E-03
1.00E-04 1 E 3F 3F 64 99.95 58.97 96.89 0.00 0.008 64
1.00E-05 5 A 35 3F 320 90.60 16.25 96.47 0.00 0.008 64
1.00E-06 20 7 8 E 480 77.55 13.09 96.69 0.00 0.0625 500
1.00E-07 13A 7 8 E 4710 75.80 12.15 95.17 0. 00 0.625 5000
1.00E-08 C1C 7 7 E 46500 74.58 11 .54 98.09 0.01 5.2 41600
1.00E-09 765C 6 6 A 333300 82.92 19.71 97.29 0.18 42 336000
1.00E-10 ———— ———— — —
— ——— 64 100.00 88.43 100.00 0.04 0.00 8 64
— ——— 64 100.00 100.00 100.00 100.00 0.008 64
Agere Systems Inc. 57
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Overhead Processor (OHP) Block
(continued)
(continued)
Receive OHP (continued) Overhead (OH) Extract . A ll tr an sport overhead (TOH) bytes are extracted and sent over the RxTOH interface for
possible external proces si ng . The num ber of bits sent are as follows:
STS-3/STM-1: 5,184,000 bits/s per interface
STS-12/STM-4: 20,736,000 bits/s per interface
STS-48/STM-16: 82,944,000 bit s/s (over 4 seria l lines (20,736 kbits/s each))

Table 17. Ns, L, M, and B Values to Clear the BER Indicator

Mode BE R SF/SD Set Values Actual
Number of
Frames
Ns* L* M* B* @BER*5 @BER @BER*5 @BER
STS-3/
STM-1
1.00E-03 ———— ————— —
1.00E-04 1 6 3 7 8 85.13 0.39 0.27 100.00 0.013 104
1.00E-05 6 2 3 7 48 93.01 11.33 0.01 99.21 0.1 800
1.00E-06 30 2 3 7 384 84.42 6.84 0.34 99.88 1 8 000
1.00E-07 1E05 2 3 7 3840 84.42 6.84 0.34 99.88 10 80000
1.00E-08 1 275 2 4 9 47250 83.66 6.59 0.22 99.98 83 664000
1.00E-09B5A423946500082.866.35 0.0399.756675336000
1.00E-10 3F7A0 2 2 F 4160000 46.31 1.48 0.50 99.84 6670 53360000
Probability of
Detecting L
Errors (%)
Probability of
Clearing
SF/SD (%)
Integra-
tion
Time
(s)
Max-
imum
Number
of Frames
STS-12/
STM-4
STS-48/ STM-16
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).
1.00E-03
1.00E-04 1 7 6 6 7 100.00 51.54 0.00 99.03 0.008 64
1.00E-05 2 2 8 A 22 98.36 20.51 0.07 100.00 0.025 200
1.00E-06 D 2 3 8 117 87.99 8.23 0.02 99.59 0.25 2000
1.00E-07 80 2 3 8 1152 87.34 7.94 0.02 99.64 2.5 20000
1.00E-08 4FB 2 3 8 11475 87.17 7.87 0.03 99.65 21 168000
1.00E-0931CE23811475087.177.87 0.0399.65 1671336000
1.00E-10 1F20C 2 3 8 1147500 87.17 7.87 0.03 99.65 1670 13360 000
1.00E-03
1.00E-04 † ††† 64 100.00 45.99 0.00 99.42 0.008 64
1.00E-05 1 2 D E 15 100.00 60.11 0.00 99.47 0.008 64
1.00E-06 5 3 D 3F 320 95.07 7.28 0.00 99.98 0.0625 500
1.00E-07 20 2 6 13 640 87.34 7.94 0.00 99.94 0.625 5000
1.00E-08 13A 2 6 13 6280 86.52 7.61 0.00 99.95 5.2 41600
1.00E-09 C1C 2 6 13 62000 85.95 7.38 0.00 99.96 42 336000
1.00E-10 765C 2 4 A 333300 84.89 7.00 0.03 99.95 420 3360000
———— ————— —
———— ————— —
58 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Overhead Processor (OHP) Block
(continued)
(continued) Receive OHP (continued) The OH interface consists of clock, data, and frame. The data and frame signals update on the falling edge of the
clock. The frame pulse is high for the most significant bit (MSB) of the first bit of the frame. Bytes J0, Z0, and F1 (current and previous), K1, K2, and S1 can also be extracted via software registers.
Table 18 shows the ordering of the bytes for the allowed TOAC configurations.

Table 18. TOAC Channel I/O vs. STS Number/Time Slot

Output Rate TOAC Channel Input vs. Input STS Number/Time Slot
Time
STS-3/STM-1 3 2 1 (Channel A)
3 2 1 (Channel B) 3 2 1 (Channel C) 3 2 1 (Channel D)
STS-12/STM-4 12 9 6 3 11 8 5 2 10 7 4 1 (Channel A)
12 9 6 3 11 8 5 2 10 7 4 1 (Channel B) 12 9 6 3 11 8 5 2 10 7 4 1 (Channel C) 12 9 6 3 11 8 5 2 10 7 4 1 (Channel D)
STS-48/STM-16 39 27 15 3 38 26 14 2 37 25 13 1 (Channel A)
42 30 18 6 41 29 17 5 40 28 16 4 (Channel B) 45 33 21 9 44 32 20 8 43 31 19 7 (Channel C) 48 36 24 12 47 35 23 11 46 34 22 10 (Channel D)
The overhead extract block also performs the following functions:
Error Monitors. The REI_L block counts remote error indication block errors. The M1 byte is extracted and
counted. This represents the number of LBIP errors detected by the far-end equipment. Optionally, a maximum of only one REI-L error per frame may be counted (provisionable via M1BITBLKCNT[AD]; register description, page 175). This causes the block error counter to only increment by one when one or more errors are detected.
Automatic Protection Switch Signaling. The APS block filters the K1 and K2 bytes (automatic protecti on
switching channel) and stores the validated message in software-accessible registers. The K bytes are validated after a programmable number of consecutive frames contain identical K1 (and K2[7:3] or K2[7:0]) values. APS protection switching byte failure is detected within this block when a programmable number of frames have passed without valid K bytes. The protection switching byte failure is removed upon detection of a programmable number of frames with identical K1 (and K2[7:3] or K2[7:0]) bytes. The use of K2[7:3] or K2[7:0] is provisionable via the K1K2_2_OR_1 registe r bit ( see regi st er desc ription, page 169).
Line Remote Defect Indicator. Bits 2, 1, and 0 of the K2 byte are monitored for the pattern 110. If this pattern
appears for 315 (provisionable by OHP register CNTDK2) consecutive frames, RDI-L is asserted. RDI-L is removed when any pattern other than 110 is detected for 315 (provisionable by OHP register CNTDK2) con­secutive frames. (See page 171 for register description of CNTDK2[A—D][3:0].)
Line Alarm Indication Signal. Bits 6, 7, and 8 of the K2 byte are monitored for the pattern 111. If this pattern
appears for 315 (provisionable by OHP register CNTDK2) consecutive frames, AIS-L is asserted. AIS-L is removed when any pattern other than 111 is detected for 315 (provisionable by OHP register CNTDK2) con­secutive frames. (See page 171 for register description of CNTDK2[A—D][3:0].)
Agere Systems Inc. 59
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Overhead Processor (OHP) Block
(continued)
(continued)
Receive OHP (continued)
Rx Synchronization Message. The S1 block filters the synchronization message (S 1) byte and s tor es the vali-
dated message in a software-accessible register. The s ynchro ni zati on me ssage will be validated if a programma­ble number (in OHP register CNTDS1) of consecutive frames contain identical S1 values. An inconsistent synchronization message alarm will be reported if a provisional number (by OHP register CNTDS1FRAME) of consecutive frames pass without a validated message occurring. (See page 172 for register descriptions of CNTDS1[AD][3:0] and CNTDS1FRAME [AD][3:0].)
F1 User Channel. The F1 byte is extracted by the OHP. The F1 user channel is monitored for change of state
using OHP registers 0x0402, 0x0404, 0x0406, 0x0408 (see register map, page 116). The previous and current F1 values are stored in F1DMON1[AD][7:0] and F1DMON0[AD][7:0], respectively (see page 122 for register map, page 190 for register descriptions).
DCC and Orderwire Bytes. The data communication channel (D1D3, D4D12) and orderwire bytes (E1, E2)
can only be extracted via the TOAC. D1/D2/D3 Section Data Communications Channels (DCC). DCC outputs are taken from the TOAC.
D4D12 Line Data Communications Channels (DCC). DCC outputs are taken from the TOAC.
M1 REI-L. REI-L is extracted by the OHP.
Support for ATM/Packet-Over-Fiber. The transport overhead must be bypassed when operating in data-over-
fiber mode. In this mode, the TOH_BYPASS and ROH_BYPASS register bits must be set to 1. No overhead inserti on/extraction is done when in bypass mod e.
Transmit OHP Overhead Insertion. Some transport overhead (TOH) bytes can optionally be inserted via the TxTOH interface
and inserted into the TOH bytes (see Table 15, page 53). Certain bytes can be either inserted from values stored in registers or automatically generated. The TxTOH interface controls the insertion mechanism. Software insertion takes precedence over TOAC insertion. The number of bits received are as follows:
STS-3/STM-1: 5,184,000 bits/s per interface
STS-12/STM-4: 20,736,000 bits/s per interface
STS-48/STM-16: 82,944,000 bits/s (over 4 serial lines (20,736 kbits/s each))
S1 Synchronizat io n Me ssage. The S1 block controls the insertion of the S1 byte. The byte ordering is the same as the RxTOAC and is shown in Table 18 (see pa ge59). The S1 byte can be provisioned to come from the TxTOH interface or from a software-settable register. Control for message insertion is from software control register TS1INS[AD] (see register description, page 179 and page 183).
K1K2 APS Signaling. The APS block controls the insertion of the K bytes based on software provisioned K bytes, and alarm conditions (AIS-L, RDI-L). Inconsistent APS bytes can be inserted via register provisioning by TAPSBABBLEINS[AD] (see register description, page 178 and page 183).
RDI_L Generation. The following six alarms contribute to RDI_L generation: LOF, OOF, LOS, LOC, AIS_L, and SF. They can be inhibited from contributing to RDI-L via transmit control registers (addresses 0x042F, 0x0431, 0x0433, 0x0435; see register description, page 180).
60 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Overhead Processor (OHP) Block
Transmit OHP (continued) BIP-8 Generation. The SBIP block calcula tes the B1 value according to B el lcore and ITU standards. Insertion of
SBIP errors is possible through the use of software control register TB1ERRINS[AD] (see register description, page 180).
The LBIP block calculates the B2 values according to Bellcore and ITU standards. Insertion of LBIP errors is pos­sible through the use of software control register TB2ERRINS[AD] (see register description, page 180).
The REI_L block controls the insertion of t he remote err or indication bl ock err o r co u nt. J0 Section Trace. The section trace message is ins er ted eit her from the T xTOH inter fac e or from a mes s age
stored in a 16-byte software-accessible memory. Control for message insertion is from software control register TJ0INS[AD] (see register description, page 177 and page 181).
SONET Scrambler. The scramble r b lo ck i m pl em e nts th e fra me sy nc hr on o us SONE T scr am b le r w it h a generating polynomial of 1 + x
A1/A2 Framing Bytes. A1 and A2 are automatically placed on the line. Errors can be inserted into A2 by setting OHP register TA1A2ERRINS[AD][4:0] (see register description, page 180).
6
+ x7. The scrambler may be di sa ble d thro ugh a soft war e reg ist er.
(continued)
(continued)
E1/E2 Orderwire Bytes. The orderwire bytes for section and line are taken from the TOAC. D1/D2/D3 Section Data Communications Channels (DCC). DCC inputs are taken from the TOAC. D4D12 Line Data Communications Channels (DCC). DCC inputs are taken from the TOAC. F1 User Channel. The F1 byte can be optionally inserted from stored values in OHP register TF1INS[AD]
(addresses 0x047E, 0x0480, 0x0482, 0x0484; see register description, page 179 and page 183). M1 REI-L. REI-L can be automatically generated and inserted into the outgoing SONET frame, or can optionally
be inhibited. Errors can be inserted into M1 via OHP register TM1_ERR_INS[AD] (addresses 0x042E, 0x0430, 0x0432, 0x0434; see register description, page 179 and page 183).
Support for ATM/Packet-Over-Fiber. The transport overhead must be bypassed when operating in data-over­fiber mode. In this mode, the TOH_BYPASS and ROH_BYPASS register bits must be set to 1. No overhead inser­tion/extraction is do ne w hen in by pas s mod e.
Agere Systems Inc. 61
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
(continued)

Path Terminator (PT) Block

The path terminator performs path overhead (POH) ter mination and extracts the payload for further processing by the downstream circuitry. The path terminator block interprets the incoming H1/H2 pointer of each incoming STS channel. The pointer interpreter supports up to four channels and performs path overhead termination on each channel. Each channel may be either an STS-1, STS-3c, STS-6c, STS-9c, . . . , STS-45c, or STS-48c.
The pointer is validated according to Bellcore and ITU specifica tions. The H1/H2 pointers are used to determine the location of the first path overhead (POH) byte (J1). The pointer interpreter consists of a finite state machine (FSM) with four steady states. These states are defined as follows:
Normal state
Loss-of-pointer (LOP)
Alarm indicati on si gna l (AIS)
Concatenation
The transition between states will require several consecutive events to protect against transient conditions caused by bit errors during high BER conditions. The state machine is shown below in Figure 7.
1 NDF POINTER OR
3 NORMAL POINTERS
NORMAL AIS
3
N
8 NDF POINTERS
OR 8 INVALID POINTERS
3 NORMAL POI N T E R S
O
R
M
A
L
P
O
I
N
S
I
A
3
8 INVALID POINTERS
3 AIS INDICATIONS
I
L
A
V
N
I
8
T
E
R
S
S
N
O
I
T
A
C
I
D
N
I
S
R
E
T
N
I
O
P
D
3
C
O
N
C
I
N
D
I
C
A
T
3 CONC INDICATIONS
I
O
N
S
CONCLOP
3 AIS INDICATIONS
3 CONC INDICATIONS
5-7935(F)

Figure 7. Pointer Interpreter State Diagram

The PT block monitors for the following conditions and takes appropriate actions:
Pointer Increment. TDAT042G5 uses an 11-bit counter to count the number of pointer increments and updates
the associated counter holding register on the occurrence of PMRST (RPI_INC[AD][10:0]; see register description, page 198). A pointer increment can occur when in the normal pointer mode. The following two meth­ods can be used to determine if the pointer increment operation should be performed: 6-of-10 or 8-of-10 majority matching (selectable via software provisioning of register RINCDEC_6OR8MAJ [AD]; see register description, page 200).
62 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Path T erminator (PT) Block
Pointer Decrement. TDAT042G5 uses an 11-bit counter to count the number of pointer decrements and
(continued)
(continued)
updates the associated counter holding register on the occurrence of PMRST (RPI_DEC[AD][10:0]; see regis­ter description, page 198). A pointer decrement can occur when in the normal pointer mode. The following two methods can be used to determine if the pointer decrement operation should be performed: 6-of-10 or 8-of-10 majority matching (selectable via software provisioning of register RINCDEC_6OR8MAJ [AD]; see register description, page 200).
Loss-of-Pointer. LOP-P is declared as shown in the above state diagram. In an LOP-P state, none of the path
overhead bytes are ext racted. AIS-P. The AIS-P is declared when the H1 and H2 bytes are set to all ones. In an AIS-P state, none of the path
overhead bytes are ext racted. Concatenated Pointer. A concatenated pointer is detected when the new data flag is set and the pointer offset
value is all ones. New Pointer. TDAT042G5 uses a 13-bit counter to count the number of new data flags that occur and updates
the associated counter holding register on the occurrence of PMRST (RNDFCNT[A—D][12:0]; see register description, page 198). TDAT042G5 uses a 3-of-4 majority voting scheme to determine if the new data flag is set. Valid new data flags occur when the NDF bits are either 1001, 0001, 1101, 1011, or 1000.
Normal Pointer. A nor mal pointer occurs when all of the following condition s are tr u e simult ane ous ly :
1. NDF is not set (NDF bits are either 0110, 0111, 0100, or 0010),
2. The re is no invalid pointe r value,
3. The re is a valid offset (0 to 782) Invalid Pointer. An invalid pointer is declared when neither a new data flag nor a normal pointer is detected.
SPE Terminate Receive Path Trace. The path trace message is extracted and stored in a 16-byte (SDH) or 64-byte (SONET)
memory for access by software. The first byte of the message can be provisioned to be either of the following:
For SDH mode, the byte with the most significant bit (MSB) set high (for SDH)
For SONET mode, the byte following a carriage re turn (0x0D) and li ne feed (0x0A) sequence
The framing can also be disabled. Receive Error Monitor. The PBIP block counts path BIP-8 errors. A theoretical maximum of 64,000 errors may be
detected per second. The PBIP block accumulates these errors in a 16-bit saturating counter. This counter is oper­ated in latch and clear mode to ensure Bellcore and ITU compliance with regard to not missing any events (bit errors). It is intended that this counter be polled at least once per second in order that no error events are missed. The REI_P block counts remote error indication block errors.
Agere Systems Inc. 63
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Path Terminator (PT) Block
SPE Terminate (continued) Receive Signal Label. The C2 block will extract and validate the signal label byte (C2) and store it in a softwar e -
accessible regi ste r. The signal label is updated when a provisionable num ber of co ns ec utive detections of a new C2 value occur (CNTDC2[AD][3:0]; see register description, page 204). All monitoring is disabled when the pointer is in an LOP-P or an AIS -P stat e. Commonly used val ues of C2 with their signal labe ls are lis te d belo w in Table 19.

Table 19. Types of Signal Labels

C2 Va lue Signal Label
0x00 Unequipped STS SPE 0x01 Equipped nonspeci fic payload 0x13 Mapping for ATM 0x16 Mapping for HDLC-PPP
Any value of C2 may be provisioned. If the provisioned value is not matched by the detected value, then data is not passed to the DE. If the provisioned value does match the detected value, then data is passed to the DE.
TDA T042G5 will detect unequipped payloads (UNEQ-P) when a provisionable number of consecutive monitored C2 bytes match the 0x00 unequipped STS SP E sta te. TD AT042G5 will detect mism atc hed payloads (PLM-P) when a provisionable number of consecutive monitored C2 bytes do not match the provisioned expected payload label (RC2EXPVAL[7:0]; see register description, page 205).
(continued)
(continued)
Receive Path Status. The G1 block extracts the path remote error indication (REI-P) bits of G1[7:4] and accumu­lates the REI-P errors in a 16-bit saturating counter. This counter is operated in latch and clear mode to ensure Bellcore and ITU compliance. It is intended that this counter be polled at least once per second in order that no error events are mi ssed.
RDI-P. This block will also validate the path remote defect indication (RDI-P) bits and store the result in a software­accessible register. The receive path can monitor remote defect indications in either enhanced or single bit RDI-P modes (provisionable via software bit RDIPMON_ENH_OR1B [AD]; see register description, page 200). The interpretation of the G1 byte is as follows.

Table 20. 1-bit Mode

G1 Bytes Description
G1[3:1] = 0xx No RDI-P defec ts G1[3:1] = 1xx AIS-P, LOP-P

Table 21. 3-bit Mode (Enhanced RDI)

G1 Bytes Description
G1[3:1] = 001 No RDI-P defects G1[3:1] = 010 PLM-P or LCD-P G1[3:1] = 101 AIS-P or LOP-P G1[3:1] = 110 UNEQ-P or TIM-P (TIM-P is J1 mismatc h*)
* TIM-P must be accomplished through (microprocessor) software by reading the
transmit RDI-P state and inserting the G1 bit.
64 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Path T erminator (PT) Block
(continued)
(continued)
Z5/N1, Z4/K4, Z3/F3, H4, F2 Monitoring. TDAT042G5 monitors the F2 user channel byte, the H4 VT multiframe indicator byte, Z3/F3 growth/user byte, Z4/K4 growth/APS path byte, and the Z5/N1 tandem connection byte. These bytes are stored in software registers. These registers are updated when a provisionable number of detec­tions of new values occur on the associated incoming byte. All monitoring is disabled when the pointer is in an LOP-P or an AIS-P state.
Signal Failure and Signal Degrade Monitoring. The path overhead processor also detects/clears provisionable signal fail (SF) and signal degrade (SD) conditions. The SF and SD values are provisionable through a group of software registers in the PT register map. The provisioning is the same as that shown in Table 16, page 57 of the Overhead Processor (OHP) Block section.
SPE Generate Transmit Pointer Generation. The pointer generation block generates the outgoing H1 and H2 poin ter valu es .
Each of the four PT channels can generate one normal (valid) pointer. Therefore, in STS-3/STM-1 and STS-12/ STM-4 modes, only one normal pointer (and only one SPE) may be inserted into the transmitted SONET/SDH frame. In STS-48/STM-12 mode, all four PT channels are used. Therefore, up to four normal pointers (and four SPEs) may be inserted into the transmitted SONET/SDH frame.
When inserting concatenated frames, only the fir s t H1 and H2 byte s will con tain a val id poi nte r va lue . The remai n­ing H1 and H2 bytes of the channel will be set to indicate concatenation. The remaining unequipped channels will have their H1 and H2 pointers set to a fixed pointer value.
For proper pointer generation, the appropriate values must be provisioned in the H-byte transmit state register THx_STATE (see register description, page 203).
The following examples illustrate how the device may be co nfi gur ed to t rans mit various sub-rates and concate­nated payloads. Each block in the following diagrams represents one STS-1 frame. Figure 8 illustrates how to pro­vision the THx_STA TE registers to transmit an STS-48c frame within an STS-48 signal. In this example, the pointer to the first STS-1 is provisioned as a normal pointer value while the pointers to the remaining STS-1 signals are provisioned as concatenated pointers. Figure 9 illustrates how to provision the THx_STATE registers to transmit four STS-12c frames within an STS-48 signal. The concatenated STS-Mc frames that may be mapped into STS-N signals (where M N) are restricted to those listed in Table 22 (see page 68).
121110987654321 39
27
15
3
38
26
14
2
37
25
13
42
30
18
6
41
29
17
5
40
28
16
45
33
21
9
44
32
20
8
43
31
19
48
36
24
12
47
35
23
11
46
34
22
01 01 01 01 01 01 01 01 01 01 01 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
TIME-SLOT NUMBER
1 4 7
10
NORMAL POINTER
TH
_STATE[A][121][1:0]
X
TH
_STATE[B][121][1:0]
X
_STATE[C][121][1:0]
X
TH
_STATE[D][121][1:0]
TH
X
47 CONCATENATED POINTERS
0351(F)

Figure 8. STS-48 Signal Carr ying One STS-48c Frame

Agere Systems Inc. 65
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Path Terminator (PT) Block
SPE Generate (continued)
121110987654321 39
27
15
3
42
30
18
6
45
33
21
9
48
36
24
12
01 01 01 01 01 01 01 01 00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
44 CONCATENATED POINTERS
(continued)
(continued)
38
26
41
29
44
32
47
35
14 17 20 23
11
TIME-SLOT NUMBER
2
37
25
13
1
5
40
28
16
4
8
43
31
19
7
46
34
22
10
FOUR NORMAL POINTERS
TH
_STATE[A][121][1:0]
X
TH
_STATE[B][121][1:0]
X
_STATE[C][121][1:0]
X
TH
_STATE[D][121][1:0]
TH
X
0352(F)

Figure 9. STS-48 Signal Carrying Four STS-12c Frames

121110987654321
12a
9a
6a
3a
11a
8a
5a
2a
10a
7a
4a
12b
9b
6b
3b
11b
8b
5b
2b
10b
7b
4b
12c
9c
6c
3c
11c
8c
5c
2c
10c
7c
4c
12d
9d
6d
3d
11d
8d
5d
2d
10d
7d
4d
10 10 10 01 10 10 10 01 10 10 10 00 10 10 10 01 10 10 10 01 10 10 10 00 10 10 10 01 10 10 10 01 10 10 10 00 10 10 10 01 10 10 10 01 10 10 10 00
UNEQUIPPED
POINTERS
UNEQUIPPED
POINTERS
UNEQUIPPED
POINTERS
TIME-SLOT NUMBER
1a 1b 1c 1d
CONCATENATED POINTERS
TH
_STATE[A][121][1:0]
X
TH
_STATE[B][121][1:0]
X
_STATE[C][121][1:0]
X
TH
_STATE[D][121][1:0]
TH
X
NORMAL POINTERS

Figure 10. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-3c Frame

0353(F)
66 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Path T erminator (PT) Block
SPE Generate (continued)
121110987654321
12a
9a
6a
3a
12b
9b
6b
3b
12c
9c
6c
3c
12d
9d
6d
3d
01 01 01 01 01 01 01 01 01 01 01 00 10 01 01 01 10 01 01 01 10 01 01 00 10 10 01 01 10 10 01 01 10 10 01 00 01 10 10 01 10 10 10 01 10 10 10 00
Figure 11. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-12c Frame
(Channel A), One STS-9c Frame (Channel B), One STS-6c Frame (Channel C), and One STS-3c Frame (Channel D)
(continued)
(continued)
11a
8a
11b
8b
11c
8c
11d
8d
5a 5b 5c 5d
2a 2b 2c 2d
10a 10b 10c 10d
7a 7b 7c 7d
4a 4b 4c 4d
TIME-SLOT NUMBER
1a 1b 1c 1d
NORMAL POINTERS
TH
_STATE[A][121][1:0]
X
_STATE[B][121][1:0]
TH
X
_STATE[C][121][1:0]
X
TH
_STATE[D][121][1:0]
TH
X
0354(F)
121110987654321 3a
2a
1a
3a
2a
1a
3a
2a
1a
3a
2a
3b
2b
1b
3b
2b
1b
3b
2b
1b
3b
2b
3c
2c
1c
3c
2c
1c
3c
2c
1c
3c
2c
3d
2d
1d
3d
2d
1d
3d
2d
1d
3d
2d
10 10 10 10 10 10 10 10 10 10 10 00 10 10 10 10 10 10 10 10 10 10 10 00 10 10 10 10 10 10 10 10 10 10 10 00 10 10 10 10 10 10 10 10 10 10 10 00
UNEQUIPPED POINTERS
TIME-SLOT NUMBER
1a 1b 1c 1d
CONCATENATED POINTERS
TH
_STATE[A][121][1:0]
X
TH
_STATE[B][121][1:0]
X
_STATE[C][121][1:0]
X
TH
_STATE[D][121][1:0]
TH
X
NORMAL POINTERS

Figure 12. Quad STS-3 Configuration With Each STS-3 Signal Carrying One STS-2c Frame

0355(F)r.1
Agere Systems Inc. 67
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Path Terminator (PT) Block
SPE Generate (continued)
The general rule for mapping STS-Mc frames in STS-N signals (M N) is that the TDAT042G5 can have a maxi­mum of four normal pointers in STS-48 mode. For M 12, the valid starting locations for mapping into an STS-48 signal are 1, 13, 25, and 37. For M >12, only one normal pointer is permitted and it must start at the first location (the first STS-1). The TDAT042G5 allows only one normal pointer in STS-3 or STS-12 modes. The only valid start­ing location for mapping concatenated frames into an STS-3 or STS-12 signal is 1.

Table 22. Valid Concatenation Starting Locations: STS-Mc into an STS-48c

STS-1 Number STS-3c STS-6c STS-9c STS-12c STS-15c STS-18c STS-48c
1 YYYYYYY 4 NoNoNoNoNoNoNo
7 NoNoNoNoNoNoNo 10 No No No No No No No 13 Y Y Y Y No No No 16 No No No No No No No 19 No No No No No No No 22 No No No No No No No 25 Y Y Y Y No No No 28 No No No No No No No 31 No No No No No No No 34 No No No No No No No 37 Y Y Y Y No No No 40 No No No No No No No 43 No No No No No No No 46 No No No No No No No
(continued)
(continued)
68 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Path T erminator (PT) Block
SPE Generate (continued) BIP-8. The PBIP block calculates the B3 value according to Bellcore and ITU standards. Insertion of PBIP errors is
possible through t he use of a so ftware control register. REI Generation. The REI_P block controls the insertion of the remote error indication block error count. The
received PBIP error counts are inserted into the path status (G1) byte. RDI-P Generation. The transmit path can insert remote defect indications using either single-bit or enhanced
RDI-P modes (provisionable via software register bit TRDIP_ENH_OR1B[AD]; see register description, page
202). The highest to lowest priority of the defect code insertion is as follows:
1. AIS-P, LOP-P (applies only to the single-bit version of RDI-P),
2. UNEQ-P,
3. P L M- P, L C D - P,
4. No defects TIM-P can be inserted using software through TRDIPSINS (registers 0x0AAA, 0x0AB2, 0x0ABA, or 0x0AC2,
bits 1511; see register description, page 201). The LCD-P defect is observed in the data engine and passed to the pointer block for transmission. Each particular defect can be inhibited from contributing to the transmitted RDI-P insertion value via software registers 0x0AAA, 0x0AB2, 0x0ABA, and 0x0AC2. RDI_P can either be inserted by software or automatically through hardware.
(continued)
(continued)
Z5/N1, Z4/K4, Z3/F3, H4, F2 Insertion. TDAT042G5 inserts the F2 user channel byte, the H4 VT multiframe indi­cator byte, Z3/F3 growth/user byte, Z4/K4 growth/APS path byte, and the Z5/N1 tandem connection byte via soft­ware provisionin g.
Error Insertion Mec han ism s . TDAT042G5 provides a method to inject via software REI- P (TREIPERRINS[AD]) and B3 (TB3ERRINS[AD]) errors into the transmitted SONET frame (see register descriptions, pag e 202).
Insertion of J1, F2, C2, Z3, H4, Z4, Z5, SS Values. TDAT042G5 provides paged provisionable registers to insert the path overhead bytes into the outgoing SONET frame. The paging is done by first writing to the page provision­ing register at location 0x0AC6 to set the port number and time slot to be provisioned, and then writing to the appropriate insertion registers. Available time-slot values for TDAT042G5 are time slot 1 for STS-48c mode; time slots 1, 2, 3, and 4 for STS-48 consisting of four STS-Mc (M 12) signals; and time slot 1 for quad STS-12c and quad STS-3c modes (ports A, B, C, and D confi gu re d for quad ST S -3c and qua d STS- 12 c) .
Agere Systems Inc. 69
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
(continued)

Data Engine (DE) Block

The DE block processes ATM, SDL, PPP, and HDLC cells/packets at rates up to 2.488 Gbits/s. The DE block behaves like four ind epe nden t logi ca l data cha nne ls , one for each of the fou r STS -1 2/S TM- 4 or STS -3 /STM -1 channels, or like a separate single channel for STS-48/STM-16. The following description is for each one of these data engines. Each of the functional elements to be described are independently provisioned.
The data engine suppo rts both AT M cells and packet data formats.
The ATM processor functions with 52-byte, 53-byte, and 56-byte ATM cells.
The packet processor has three packet modes: HDLC, CRC, and PPP. All three modes use HDLC framing, i.e.,
0x7E delineates the packets. In HDLC mode, the 0x7E framing bytes are inserted or detected by the data engine. In the CRC mode, a user-selectable 16-bit or 32-bit CRC word is appended or detected at the end of the packet. The PPP mode places or detects a PPP header on the front of the packet as well as uses the CRC word.
The block diagram for the data engi ne is show n in Figure 13.
RECEIVE-SIDE DE BLOCK
CBINT
PT
INTERFACE
PT
INTERFACE
RX
SEQUENCER
TX
SEQUENCER
SDL
FRAMER
ATM
FRAMER
X43
POST-
UNSCRAMB LE R
X43
POST-
SCRAMBLER
HDLC
FRAMER
TRANSMIT-SIDE DE BLOCK
SDL
INSERTER
ATM
INSERTER
HDLC
INSERTER
X43
PRE-
UNSCRAMBLER
CBINT
X43
PRESCRAMBLER

Figure 13. Block Diagram of Date Engine (DE)

CRC
CHECKER
CRC
GENERATOR
PPP
DETACH
PPP
ATTACH
UT
INTERFACE
UT
INTERFACE
5-8385(F)r.2
70 Agere Systems Inc.
Data Sheet May 2001
TDAT042G5 SONET/SDH
155/622/2488 Mbits/s Data Interface
Functional Description
Data Engine (DE) Block
(continued)
(continued)
Receive Data Engine Receive Sequencer. The receive sequencer demaps SONET framing to four logical channels, performs the phys-
ical channel byte alignmen t and pa ck in g, and p erfor ms ap propr i ate pay lo ad clock d oma in tra nsfer. The receive sequencer must be provisioned properly for correct operation. There are six registers that are fixed for each partic­ular mode of operation (STS-3/STM- 1, STS -1 2/ST M-4, or STS -4 8/S TM- 16) an d must not be modifi ed (SEQ_CTRL, INIT_CNTS, OH_MARKER_LO, OH_MARKER_HI, SOH_MARKER_LO, SOH_MARKER_HI). See the register descriptions for details, page 214. Also, the appropriate time slots must be provi sioned for the r ate of the payload expected for each channel. This is done via the registers Rx_TS[112] (see register descriptions, page 219). An example of how to configure this for STS-48c mode is shown in the section on configuring the trans­mit/receive seque nc er (s ee Transmit Data Engine section, page 78).
ATM Cell Processor. The cell proces s or perfo rm s ATM cell delineation using the ATM header error co rr ec tion (HEC) field found in the cell header. The HEC is a CRC-8 calculation over the first four octets (total of 32 bits) of the ATM cell header. If the TDAT042G5 is in bit-synchronous mode (data is not byte-aligned), 32 separate HEC calculatio ns ar e p er fo rm e d to deli n ea t e an ATM cell . I f the TDAT 042G5 is i n byte - synchronous mode (data is byte­aligned), four separate HEC calculations are performed to delineate an ATM cell. An alpha-delta counter is used to track the processo rs ability to frame the ATM cells consistently. When a certain level of confidence is reached (defined by the programmable delta counter threshold), the frame is declared in sync state, and data is passed to subsequent blocks. If the frame r is unable to frame ATM cells over a few cell per i ods (def ine d by the programma­ble delta counter threshold), the framer resumes hunt state.
In SONET mode, the processor performs optional X
43
unscrambling of the payload. Because the X43 scrambler is
self-synchronizing, the framer needs no assistance from the data in order to synchronize the scrambler. The
31
TDAT042G5 also supports an X applications. The state dia gr am for the X
31
an x
+ x28 + 1 polynomial to scramble the data. Unlike the X43 scrambler, the X31 scrambler does not self-
scrambler, complia nt with I.432 , whic h is mainly us ed for pac ket -o ve r-fi ber
31
scrambler is shown in Figure 14 on page 72. The X31 scrambler uses
synchronize based upon the data it receives. Thus, one-bit samples of the scrambler output are sent on the trans­mit side and compared with the scrambler samples on the receive side every 212 bits. If the samples do not match, the receive-side scrambler is adjusted to converge with the transmit-side scrambler. This process continues until a
31
certain level of confidence in the scrambler synchronization is achieved. In the X does not send out any output until both the framer and the scrambler are synchronized, whereas in X
mode, the ATM cell processor
31
mode, only
the framer needs to be synchronized. Idle ATM cells, which contain no real data, can be either left in or removed from the bit stream. The idle cell header
description can be configured, though it is set to a default value (0x00000001). ATM cells can also be filtered if the header contents match a provisioned match register after masking with a provisionable mask register. This allows filtering based on the contents of the GFC, PTI, and CLP fields of the header. Optionally, ATM cells may be dropped if uncorrectable HEC errors are detected. Incoming single-bit ATM header errors can be corrected and the cells may be passed through or dropped, depending on the software configuration.
The data engine processes only standard 53 -b yte ATM cells. However, the UTOPIA block process e s 52 -byte, 53­byte, 54-byte, and 56-byte cells, and interfaces these to the dat a engine. (See UTOPIA (UT) Interface Block, page 86, for details).
Agere Systems Inc. 71
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface
Data Sheet
May 2001
Functional Description
Data Engine (DE) Block
(continued)
(continued)
Receive Data Engine (continued)
COUNTER EQUALS Y
VERIFICATION SYNCHRONIZED
COUNTER LESS
THAN Y
COUNTER EQUALS X
Note: Even in synchronized mode, the confidence counter can continue to increase up to the Z value.
COUNTER DROPS
BELOW V
ACQUISITION
COUNTER LESS
THAN X
COUNTER DROPS
BELOW W
5-8388(F)

Figure 14. State Diagram for the X31 Scrambler Synchronization Process

SDL Frame Processor. The SDL frame processor consists of an SDL framer, which detects the start of SDL pack-
ets, and an (optional) X
48
unscrambler, which is us ed to uns cr am ble payload data. SDL pac ke ts can also arrive unscrambled, in which case the unscrambler is disabled. The SDL frame processor can frame packets in SDL form which contain a data length between 4 and 65,535 bytes.
The SDL framer uses a CRC-16 check upon 2 bytes sequences used to determine packet length in order to frame SDL packets. Since the framer is designed to support data that is no t byte- al ig ned , 32 se par at e fram er s may be used to search for the CRC-16 pattern. If the data is byte-synchronized, only four frame rs are needed. A confi­dence counter is used to gauge the framers ability to frame SDL packets consi s tent ly. When the confidence counters reaches a certai n lev el (d efi ned by the programmable SD L delta counter register), the framer is in sync state. Single-bit error correction for the SDL headers is also supported. Shown below in Figure 15 is the general structure of the SDL packets. In this figure, there is no interpacket fill.
PACKET PAYLOAD
PACKET LENGTH
CRC-16 PACKET PAYLOAD
PACKET LENGTH
PACKET PAYLOADCRC-16
5-8386(F)r.2

Figure 15. General Structure of SDL Packets

72 Agere Systems Inc.
Loading...