Datasheet LF48908QC25, LF48908JC50, LF48908JC25, LF48908QC31, LF48908JC31 Datasheet (LOGIC)

DEVICES INCORPORATED
1
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
40 MHz Data and Computation
Rate
Nine Multiplier Array with 8-bit
Data and 8-bit Coefficient Inputs
❑❑
❑❑
Separate Cascade Input and Output
Ports
❑❑
❑❑
On-board Programmable Row
Buffers
❑❑
❑❑
Two Coefficient Mask Registers ❑❑
❑❑
On-board 8-bit ALU ❑❑
❑❑
Two’s Complement or Unsigned
Operands
❑❑
❑❑
Replaces Harris HSP48908 ❑❑
❑❑
DECC SMD No. 5962-93007 ❑❑
❑❑
Package Styles Available:
• 84-pin Plastic LCC, J-Lead
• 100-pin Plastic Quad Flatpack
FEATURES DESCRIPTION
LF48908
Two Dimensional Convolver
DEVICES INCORPORATED
The LF48908 is a high-speed two dimensional convolver that imple­ments a 3 x 3 kernel convolution at real-time video rates. Programmable row buffers are located on-chip, eliminating the need for external data storage. Each row buffer can store up to 1024 pixels. Two internal register banks are provided allowing two separate sets of filter coefficients to be stored simultaneously. Adaptive filter operations are possible when both register banks are used. An on-chip ALU is provided, allowing real-time arithmetic and logical pixel point operations to be performed on the image data. The 3 x 3 convolver
comprises nine 8 x 8-bit multipliers, various pipeline registers, and sum­mers. A complete sum-of-products operation is performed every clock
cycle. The FRAME signal resets all data registers without affecting the control and coefficient registers.
Pixel and coefficient input data are both 8-bits and can be either signed or unsigned integers. Image data should be in a raster scan non-interlaced format. The LF48908 can internally store images as wide as 1024 pixels for the 3 x 3 convolution. By using external row buffers and multiple LF48908s, longer pixel rows can be used and convolutions with larger kernel sizes can be performed. Out­put data is 20-bits and this guarantees no overflow for kernel sizes up to 4 x 4.
A separate cascade input is used as the data input for summing results from multiple LF48908s. It can also function as the data input path when external line buffers are used.
FIGURE 1. LF48908 BLOCK DIAGRAM
DIN
7-0
CIN
9-0
CASO
7-0
A
2-0
LD
CS
CASI
15-0
CLK
HOLD
FRAME
RESET
OE
DOUT
19-0
16
3
8
8
20
8
EALU
3 x 3
CONVOLVER
ALU
ROW
BUFFERS
CONTROL
LOGIC
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
2
Video Imaging Products
08/9/2000–LDS.48908-J
FIGURE 2. LF48908 FUNCTIONAL BLOCK DIAGRAM
DIN
7-0
1-4
CIN
9-0
2:1 2:1
ROW
BUFFER
ROW
BUFFER
CASO
7-0
7-0 15-8
A
2-0
LD
CS
CONTROL
LOGIC
CASI
15-0
2:1
SHIFT
0
CLK
HOLD
FRAME
RESET
OE
DOUT
19-0
I
H
G
F
E
D
C
B
A
ALU
REGISTER
ALU
20
20
16
3
8
8
10
20
8 8
8 8
7-0
EALU
NOTE: NUMBERS IN REGISTER INDICATE
NUMBER OF PIPELINE DELAYS.
DEVICES INCORPORATED
3
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
A2-0 — Control Logic Address Lines
A2-0 determines which Control Logic Register will receive the CIN9-0 data.
CS — Chip Select
When CS is LOW, data can be loaded into the Control Logic Registers. When CS is HIGH, data can not be loaded and the register contents will not be changed.
LD — Load Strobe
If CS and LD are LOW, the data present on CIN9-0 will be latched into the Control Logic Register addressed by A2-0 on the rising edge of LD.
FUNCTIONAL DESCRIPTION
The LF48908, a two-dimensional convolver, executes convolutions using internal row buffers to reduce design complexity and board space require­ments. 8-bit image data, in raster scan, non-interlace format, is convolved with one of two internal, 3 x 3 user­programable filter kernels. Two 1024 x 8­bit row buffers provide the data delay needed to perform two-dimensional convolutions on a single chip. The result output of 20-bits allows for word growth during the convolution operation.
The input data path (DIN7-0) provides access to an 8-bit ALU. This allows point operations to be performed on the incoming data stream before reaching the row buffers and the convolver. The length of these buffers is programmable for use in various video formats without the need for additional external delay.
This device is configured by loading the coefficent data (filter kernels) and row buffer length through the coefficent data path (CIN7-0). Internal registers are addressed using the A2-0 address lines. Chip Select (CS) and Load Strobe (LD) complete the configuration interface which may be controlled by standard microproces­sors without additional external logic.
SIGNAL DEFINITIONS
Power
VCC and GND
+5 V power supply. All pins must be connected.
Clock
CLK — Master Clock
The rising edge of CLK strobes all enabled registers except for the Control Logic Registers.
Inputs
DIN7-0 — Pixel Data Input
DIN7-0 is the 8-bit registered pixel data input port. Data is latched on the rising edge of CLK.
CIN9-0 — Coefficient and Control Logic Register Input
CIN7-0 is used to load the Coefficient Registers or can be used to provide a second operand input to the ALU. CIN8-0 is used to load the Initializa­tion Register. CIN9-0 is used to load the ALU Microcode and Row Buffer Length Registers. The Control Regis­ter Address Lines, A2-0, determine which register will receive the CIN data. The CIN data is loaded into the addressed register by using the CS and LD control inputs.
CASI15-0 — Cascade Input
The cascade input is used when multiple LF48908s are cascaded together or when external row buffers are needed. This allows convolutions of larger kernels or longer row sizes.
Outputs
DOUT19-0 — Data Output
DOUT19-0 is the 20-bit registered data output port.
CASO7-0 — Cascade Output
The data presented on CASO7-0 is the internal ALU output delayed by twice the programmed internal row buffer length.
Controls
RESET — Reset Control
When RESET is LOW, all internal circuitry is reset, all outputs are forced LOW, all Control Logic Registers are loaded with their default values (which is 0 for each one except the ALU Microcode Register which has a default value of “0000011000”), and all other internal registers are loaded with a “0”.
FRAME — New Frame Input Control
When asserted, FRAME signals the start of a new frame. When FRAME is LOW, all internal circuitry is reset except for the ALU Microcode, Row Length, Initialization, Coefficient, and ALU Registers.
EALU — Enable ALU Register Input
When HIGH, data on CIN7-0 is latched into the ALU Register on the next rising edge of CLK. When LOW, data on CIN7-0 will not be latched into the ALU Register and the register con­tents will not be changed.
HOLD — Hold Control
The HOLD input is used to disable CLK from all of the internal circuitry. HOLD is latched on the rising edge of CLK and takes effect on the next rising edge of CLK. When HOLD is HIGH, CLK will have no effect on the LF48908 and all internal data will remain unchanged.
OE — Output Enable
When OE is LOW, DOUT19-0 is enabled for output. When OE is HIGH, DOUT19-0 is placed in a high­impedance state.
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
4
Video Imaging Products
08/9/2000–LDS.48908-J
The filtered image data is output on the Data Output bus (DOUT19-0). This bus is registered with three-state drivers to facilatate use on a standard microprocessor system bus.
Data Input
Image data is input to the 3 x 3 convolver using DIN7-0. Data present on DIN7-0 is latched into a program­mable pipeline delay on the rising edge of CLK. The programmable pipeline delay (1 to 4 clock cycles) allows for synchronization of input data when multiple LF48908s are cascaded together to perform larger convolutions. This delay is pro­gramed via the Initialization Register (see Table 3). The image data format, unsigned or two’s complement, is also controlled by this register.
Coefficient data is input to the 3 x 3 convolver using either of two Coef­ficient Registers (CREG0 or CREG1). The Coefficient Registers are loaded through CIN7-0 using the A2-0, CS, and LD controls. The coefficient data format, unsigned or two’s comple­ment, is determined by the Initializa­tion Register.
Arithmetic Logic Unit
The input data path ALU with shifter allows pixel point operations to be performed on the incoming image. These operations include arithmetic functions, logical masking, and left/ right shifts. The 10-bit ALU Micro­code Register controls the various operations. The three upper bits control the shift amount and direction while the seven lower bits determine the arithmetic or logical operation. The shift operation is performed on the output of the ALU. This shift operation is independent of the arithmetic or logical operation of the ALU.
Tables 1 and 2 show the operations of the ALU Microcode Register. The “A” operand comes from the DIN input
data path, while the “B” operand is taken from the ALU Register. The ALU Register is loaded using CIN7-0 and EALU. With EALU HIGH, data from CIN7-0 is loaded into the ALU Register on the rising edge of CLK. With EALU LOW, the data is held in the ALU Register. Since CIN7-0 is also used to load the Control Logic Regis­ters, it is possible to overwrite data in those registers if CS and LD are active when loading the ALU Register. Therefore, special care must be taken to ensure that CS and LD are not active when writing to the ALU Register.
Programmable Row Buffers
The two internal row buffers provide the delay needed to perform the two­dimensional convolution. The row buffers function like 8-bit serial shift registers with a user-programmable delay from 1 to 1024 stages (it is possible to select delay stages of 1 or 2, but this leads to meaningless results for a 3 x 3 kernel convolution). The row buffer length is set via the Row Length Register (see Row Length Register Section). The row buffers are connected in series to provide the proper pixel information to the
multiplier array. The Cascade Output (CASO7-0) provides a 2X row delay of the input data allowing for cascading of LF48908s to handle larger frames and/or kernel sizes. If more than 1024 delay stages are needed, it is possible to use external row buffers and bypass the internal row buffers. Bit 0 of the Initialization Register determines if internal or external row buffers are used. If Bit 0 is a “0”, the internal row buffers are used. If Bit 0 is a “1”, the internal row buffers are bypassed and external row buffers may be used.
3 x 3 Multiplier Array
The multiplier array comprises nine 8 x 8-bit multipliers. The active Coefficient Register supplies the coefficents to each of the multipliers, while the pixel data comes from the data input path and row buffers. The array forms a sum-of-products result as defined by the equation listed in Figure 3.
CONTROL LOGIC
Four sets of registers, the ALU Micro­code, Row Length, Initialization, and Coefficient, define the Control Logic section. These registers are updated
FIGURE 3. MULTIPLIER ARRAY OUTPUT
P1 P2 P3
P4 P5 P6
P7 P8 P9
ABC
DEF
GH I
PIXEL INPUT DATA
FILTER KERNEL
MULTIPLIER ARRAY OUTPUT A(P1)=
+ D(P4) + G(P7)
+ + +
B(P2) E(P5) H(P8)
+ + +
C(P3) F(P6) I(P9)
DEVICES INCORPORATED
5
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
Row Length Register
The value stored in the Row Length Register determines the number of delay stages for each row buffer. The number of delay stages should be set equal to the row length of the input image. The Row Length Register may be loaded with the values 0 through 1023 (0 represents 1024 delay stages). It is possible to program the row buffers to have 1 or 2 delay stages, but this will lead to meaningless results for a 3 x 3 convolution. This register is loaded through CIN9-0 using the A2-0, CS, and LD controls. Once the Row Length Register has been loaded, a new value can not be loaded until the LF48908 has been reset. This is done by asserting RESET. After RESET goes HIGH, the Row Length Register must
be loaded within 1024 CLK cycles. If the Row Length Register is not loaded within 1024 CLK cycles, the register will automatically be loaded with a “0”.
Initialization Register
The Initialization Register configures various functions of the device including: input data delay, input data format, coefficent data format, output rounding, cascade mode, and cascade input shift (see Table 3). This register is loaded through CIN8-0 using the A2-0, CS, and LD controls.
Coefficient Registers - CREG0, CREG1
The Coefficient Registers are used to store the filter coefficients for the multiplier array. Each Coefficient
through the CIN bus using A2-0, CS, and LD (see Figure 4). All the Control Logic Registers are set to their default values when RESET is active. FRAME does not affect the values in these registers.
ALU Microcode Register
Operation of the ALU and shifter are determined by the value stored in the ALU Microcode Register. This 10-bit instruction word is divided into two fields. The lower seven bits define the arithmetic and logical operations of the ALU. The upper three bits specify shift distance and direction. Tables 1 and 2 detail the various instruction words. This register is loaded through CIN9-0 using the A2-0, CS, and LD controls. Also see Arithmetic Logic Unit section.
FIGURE 4. LF48908 CONTROL LOGIC BLOCK DIAGRAM
A2-0
LD
CS
ADDRESS
DECODE
3
ENCR1 ENCR0 CAS CR1 CR0 LMC EOR
CIN9-0
10
ALU MICROCODE REGISTER
LMC
ALU MICROCODE
10
ROW LENGTH REGISTER
EOR
ROW LENGTH
10
INITIALIZATION REGISTER
CAS
INITIALIZATION DATA
9
8-0
I
0 H0 G0 F0 E0 D0 C0 B0 A0
CR0
CR1
SRQ
Q
OE OE OE OE OE OE OE OE OE
I1 H1 G1 F1 E1 D1 C1 B1 A1
OE
OE OE OE OE OE OE OE OE
ENCR1 ENCR0
I
H
G
F
E
D
C
B
A
8 8 8 8 8 8 8 8 8
COEFFICIENT REGISTER 0
COEFFICIENT REGISTER 1
9
7-0
8
7-0
8
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
6
Video Imaging Products
08/9/2000–LDS.48908-J
loaded is determined by the data on A2-0 during the load operation. If CREG0 is to be loaded, “010” must be placed on A2-0 during the load opera­tion. If CREG1 is to be loaded, “011” must be placed on A2-0. If desired, the Coefficient Register that is not being used to send data to the multiplier array can be loaded with coefficient data while the LF48908 is in active operation.
Address Decoder
The Address Decoder is used to load the Control Logic Registers and to determine which Coefficient Register sends data to the multiplier array. To load a Control Logic Register, the address of the register must be placed on A2-0, the data to be written must be placed on the CIN bus, and CS and LD must be asserted. The data is
TABLE 2. ALU LOGICAL AND ARITHMETIC OPERATIONSTABLE 1. ALU SHIFT OPERATIONS
ALU MICROCODE REGISTER
REGISTER BIT
9 8 7 OPERATION
0 0 0 No Shift (Default) 0 0 1 Shift Right 1 0 1 0 Shift Right 2 0 1 1 Shift Right 3 1 0 0 Shift Left 1 1 0 1 Shift Left 2 1 1 0 Shift Left 3 1 1 1 Not Valid
Register can hold nine 8-bit values. This allows two different 3 x 3 filter kernels to be stored simultaneously on the LF48908. The outputs of CREG0 and CREG1 are connected to the coefficient inputs of the multiplier array (A through I). The register used to supply the coefficient data is determined by the address written to the Address Decoder. If a “101” is written to the Address Decoder, CREG0 will provide the coefficient data. If a “110” is written to the Address Decoder, CREG1 will be used. It is possible to switch between the two Coefficient Registers in real time. This facilitates adaptive filtering operations. It is important to remem­ber to meet the tLCS timing specifica­tion when switching the Coefficient Registers. When a Coefficient Register is selected to supply data to the multiplier array (one of the registers is always selected), all of its outputs are enabled simultaneously. When RESET is asserted, CREG0 is the default register selected to supply the coeffi­cient data.
CREG0 and CREG1 are loaded through CIN7-0 using the A2-0, CS, and LD controls. The nine coefficient values are presented on CIN7-0 one by one, in order from A to I. As each value is placed on CIN7-0, it is latched into the selected Coefficient Register using CS and LD. The register to be
latched into the addressed register when LD goes HIGH. To select a Coefficient Register (CREG0 or CREG1) to send data to the multiplier array, the appropriate address must be placed on A2-0, and CS and LD must be asserted. When LD goes HIGH, the addressed register will begin supply­ing coefficient data to the multiplier array. Table 4 lists all of the register addresses.
The Control Logic Registers can be modified during active operation of the LF48908. If this is done, it is very important to meet the tLCS timing specification. This is to ensure that the outputs of the Control Logic Registers have enough time to change before the next rising edge of CLK. If tLCS is not met, unexpected results may occur on DOUT19-0 for one clock cycle. There are two situations in which tLCS may
ALU MICROCODE REGISTER
REGISTER BIT
6 5 4 3 2 1 0 OPERATION
0 0 0 0 0 0 0 Logical (00000000) 1 1 1 1 0 0 0 Logical (11111111) 0 0 1 1 0 0 0 Logical (A) (Default) 0 1 0 1 0 0 0 Logical (B) 1 1 0 0 0 0 0 Logical (A) 1 0 1 0 0 0 0 Logical (B) 0 1 1 0 0 0 1 Arithmetic (A + B) 1 0 0 1 0 1 0 Arithmetic (A – B) 1 0 0 1 1 0 0 Arithmetic (B – A) 0 0 0 1 0 0 0 Logical (A AND B) 0 0 1 0 0 0 0 Logical (A AND B) 0 1 0 0 0 0 0 Logical (A AND B) 0 1 1 1 0 0 0 Logical (A OR B) 1 0 1 1 0 0 0 Logical (A OR B) 1 1 0 1 0 0 0 Logical (A OR B) 1 1 1 0 0 0 0 Logical (A NAND B) 1 0 0 0 0 0 0 Logical (A NOR B) 0 1 1 0 0 0 0 Logical (A XOR B) 1 0 0 1 0 0 0 Logical (A XNOR B)
DEVICES INCORPORATED
7
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
be ignored. If the LF48908 is not in active operation or if the innactive Coefficient Register is being written to during active operation.
Cascade Operation
The Cascade Input lines (CASI15-0) and Cascade Output lines (CASO7-0) are used to allow convolutions of kernel sizes larger than 3 x 3. The Cascade Input lines are also used to allow convolutions on row lengths longer than 1024 pixels. The Cascade Mode Bit (Bit 0) of the Initialization Register determines the function of the Cascade Input lines. If the Cas­cade Mode Bit is a “0”, then the Cascade Input lines are to be used to cascade multiple LF48908s together to perform convolutions of larger kernel sizes. CASI15-0 will be left shifted (by an amount determined by bits 7 and 8 of the Initialization Register) and then added to DOUT19-0. Cascading is accomplished by connecting CASO7-0 and DOUT19-0 of one LF48908 to DIN7-0 and CASI15-0 respectively of another LF48908. If the Cascade Mode Bit is a “1”, then the Cascade Input lines are to be used with exter­nal row buffers to allow for longer row lengths. In this mode, the Cas­cade Input lines are split into two 8-bit data busses (CASI15-8 and CASI7-0) which are fed directly into the multi­plier array.
TABLE 3. INITIALIZATION REGISTER
BIT FUNCTION
0 CASCADE MODE
0 Multiplier input from internal row buffers 1 Multiplier input from external buffers
2 1 INPUT DATA DELAY
0 0 No data delay registers used 0 1 One data delay register used 1 0 Two data delay registers used 1 1 Three data delay registers used
3 INPUT DATA FORMAT
0 Unsigned integer format 1 Two’s complement format
4 COEFFICIENT DATA FORMAT
0 Unsigned integer format 1 Two’s complement format
6 5 OUTPUT ROUNDING
0 0 No rounding 0 1 Round to 16 bits (i.e. DOUT19-4) 1 0 Round to 8 bits (i.e. DOUT19-12) 1 1 Not valid
8 7 CASI15-0 INPUT SHIFT
0 0 No shift 0 1 Shift CASI15-0 left two 1 0 Shift CASI15-0 left four 1 1 Shift CASI15-0 left eight
A2-0 FUNCTION 000 Load Row Buffer Length
Register 001 Load ALU Microcode Register 010 Load Coefficient Register 0 011 Load Coefficient Register 1 100 Load Initialization Register 101 Select Coefficient Register 0
for Internal Processing 110 Select Coefficient Register 1
for Internal Processing 111 No Operation
TABLE 4. CONTROL LOGIC
ADDRESS MAP
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
8
Video Imaging Products
08/9/2000–LDS.48908-J
Symbol Parameter Test Condition Min Typ Max Unit
VOH Output High Voltage VCC = Min., IOH = –400 µA 2.8 V VOL Output Low Voltage VCC = Min., IOL = 2.0 mA 0.4 V VIH Input High Voltage 2.0 VCC V V IL Input Low Voltage (Note 3) 0.0 0.8 V IIX Input Current Ground VIN VCC (Note 12) ±10 µA IOZ Output Leakage Current Ground VOUT VCC (Note 12) ±10 µA ICC1 VCC Current, Dynamic (Notes 5, 6) 110 mA ICC2 VCC Current, Quiescent (Note 7) 500 µA CIN Input Capacitance TA = 25°C, f = 1 MHz 10 pF COUT Output Capacitance TA = 25°C, f = 1 MHz 12 pF
OPERATING CONDITIONS
To meet specified electrical and switching characteristics
ELECTRICAL CHARACTERISTICS
Over Operating Conditions (Note 4)
Mode Temperature Range (Ambient) Supply Voltage
Active Operation, Commercial 0°C to +70°C 4.75 V VCC ≤ 5.25 V Active Operation, Military –55°C to +125°C 4.50 V VCC 5.50V
Storage temperature ........................................................................................................... –65°C to +150°C
Operating ambient temperature........................................................................................... –55°C to +125°C
VCC supply voltage with respect to ground............................................................................ –0.5 V to +7.0V
Input signal with respect to ground ............................................................................... –0.5 V to VCC + 0.5 V
Signal applied to high impedance output ...................................................................... –0.5 V to VCC + 0.5 V
Output current into low outputs............................................................................................................. 25 mA
Latchup current ............................................................................................................................... > 400 mA
MAXIMUM RATINGS
Above which useful life may be impaired (Notes 1, 2, 3, 8)
DEVICES INCORPORATED
9
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
LF48908–
50 31 25
Symbol Parameter Min Max Min Max Min Max
tCYC Cycle Time 50 31 25 tPWH Clock Pulse Width High 20 12 8 tPWL Clock Pulse Width Low 20 13 8 tDS Data Input Setup Time 14 13 8 tDH Data Input Hold Time 0 0 0 tCS CIN7-0 Setup Time 16 14 10 tCH CIN7-0 Hold Time 0 0 0 tES EALU Setup Time 14 12 10 tEH EALU Hold Time 0 0 0 tD Output Delay 22 16 15 tENA Three-State Output Enable Delay (Note 11) 22 16 15 tDIS Three-State Output Disable Delay (Note 11) 32 28 8
COMMERCIAL OPERATING RANGE (0°C to +70°C)
Notes 9, 10 (ns)
SWITCHING CHARACTERISTICS
SWITCHING WAVEFORMS:CONVOLVER DATA I/O
CLK
tCYC
tPWL tPWH
DIN7-0
CASI15-0
tDS tDH
DOUT19-0
CASO7-0
tD
CIN7-0
tCS tCH
EALU
tES tEH
(ALU REG DATA)
OE
tD
tDIS tENA
HIGH IMPEDANCE
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
10
Video Imaging Products
08/9/2000–LDS.48908-J
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
234567890123456789012345678901212345678901234
5
LF48908–
50
*
37
*
25
*
Symbol Parameter Min Max Min Max Min Max
tCYC Cycle Time 50 37 25 tPWH Clock Pulse Width High 20 15 8 tPWL Clock Pulse Width Low 20 15 8 tDS Data Input Setup Time 17 16 8 tDH Data Input Hold Time 0 0 0 tCS CIN7-0 Setup Time 20 17 10 tCH CIN7-0 Hold Time 0 0 0 tES EALU Setup Time 17 15 10 tEH EALU Hold Time 0 0 0 tD Output Delay 28 19 15 tENA Three-State Output Enable Delay (Note 11) 28 19 15 tDIS Three-State Output Disable Delay (Note 11) 40 35 8
MILITARY OPERATING RANGE (–55°C to +125°C)
Notes 9, 10 (ns)
SWITCHING WAVEFORMS:CONVOLVER DATA I/O
CLK
tCYC
tPWL tPWH
DIN7-0
CASI15-0
tDS tDH
DOUT19-0
CASO7-0
tD
CIN7-0
tCS tCH
EALU
tES tEH
(ALU REG DATA)
OE
tD
tDIS tENA
HIGH IMPEDANCE
2345678901234567890123
4
2345678901234567890123
4
*DISCONTINUED SPEED GRADE
DEVICES INCORPORATED
11
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
1234567890123456789012345678901212345678901234
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1234567890123456789012345678901212345678901234
COMMERCIAL OPERATING RANGE (0°C to +70°C)
Notes 9, 10 (ns)
LF48908–
50
*
37
*
25
*
Symbol Parameter Min Max Min Max Min Max
tLPW LD Pulse Width 20 15 8 tLCS LD Setup Time (Applies only during active operation) 37 30 15 tCDS Configuration Data Setup Time 20 17 10 tCDH Configuration Data Hold Time 0 0 0 tAS Address Setup Time 15 15 10 tAH Address Hold Time 0 0 0 tCSS CS Setup Time 0 0 0 tCSH CS Hold Time 0 0 0
MILITARY OPERATING RANGE (–55°C to +125°C)
Notes 9, 10 (ns)
SWITCHING WAVEFORMS:CONFIGURATION DATA
LD
CS
A
2-0
CIN
9-0
t
CDS
t
CDH
t
CSS
t
LPW
t
CSH
t
AS
t
AH
CLK
t
LCS
*
*applies only when the LF48908 is in active operation.
LF48908–
50 31 25
Symbol Parameter Min Max Min Max Min Max
tLPW LD Pulse Width 20 12 8 tLCS LD Setup Time (Applies only during active operation) 30 25 15 tCDS Configuration Data Setup Time 16 14 10 tCDH Configuration Data Hold Time 0 0 0 tAS Address Setup Time 13 13 10 tAH Address Hold Time 0 0 0 tCSS CS Setup Time 0 0 0 tCSH CS Hold Time 0 0 0
2345678901234567890123
4
2345678901234567890123
4
*DISCONTINUED SPEED GRADE
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
12
Video Imaging Products
08/9/2000–LDS.48908-J
1234567890123456789012345678901212345678901234
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1
23456789012345678901234567890121234567890123
4
1234567890123456789012345678901212345678901234
LF48908–
50
*
37
*
25
*
Symbol Parameter Min Max Min Max Min Max
tHS HOLD Setup Time 14 13 9 tHH HOLD Hold Time 2 2 0 tFPW FRAME Pulse Width 50 37 8 tFS FRAME Setup Time 30 25 20 tRPW RESET Pulse Width 50 37 8
LF48908–
50 31 25
Symbol Parameter Min Max Min Max Min Max
tHS HOLD Setup Time 12 11 9 tHH HOLD Hold Time 1 1 0 tFPW FRAME Pulse Width 50 31 8 tFS FRAME Setup Time 25 21 20 tRPW RESET Pulse Width 50 31 8
COMMERCIAL OPERATING RANGE (0°C to +70°C)
Notes 9, 10 (ns)
MILITARY OPERATING RANGE (–55°C to +125°C)
Notes 9, 10 (ns)
SWITCHING WAVEFORMS:CONTROL SIGNALS
CLK
HOLD
t
HS
t
HH
RESET
t
RPW
FRAME
t
HS
t
FPW
t
FS
2345678901234567890123
4
2345678901234567890123
4
*DISCONTINUED SPEED GRADE
DEVICES INCORPORATED
13
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
1. Maximum Ratings indicate stress specifications only. Functional oper­ation of these products at values beyond those indicated in the Operating Condi­tions table is not implied. Exposure to maximum rating conditions for ex­tended periods may affect reliability.
2. The products described by this spec­ification include internal circuitry de­signed to protect the chip from damag­ing substrate injection currents and ac­cumulations of static charge. Neverthe­less, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. In­put levels below ground or above VCC will be clamped beginning at –0.6 V and VCC + 0.6 V. The device can withstand indefinite operation with inputs in the range of –0.5 V to +7.0 V. Device opera­tion will not be adversely affected, how­ever, input current levels will be well in excess of 100 mA.
4. Actual test conditions may vary from those designated but operation is guar­anteed as specified.
5. Supply current for a given applica­tion can be accurately approximated by:
where
N = total number of device outputs C = capacitive load per output V = supply voltage F = clock frequency
6. Tested with all outputs changing ev­ery cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of
VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
NCV F
4
2
NOTES
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except
tDIS test), and input levels of nominally
0 to 3.0 V. Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs ca­pable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1 µF ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a min­imum or maximum value. Input re­quirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the exter­nal system must supply at least that much time to meet the worst-case re­quirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the ±200mV level from the measured steady-state output voltage with ±10mA loads. The balancing volt­age, VTH, is set at 3.5 V for Z-to-0 and 0-to-Z tests, and set at 0 V for Z­to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
S1
I
OH
I
OL
V
TH
C
L
DUT
OE
0.2 V
t
DIS
t
ENA
0.2 V
1.5 V 1.5 V
3.5V Vth
1
Z
0
Z
Z
1
Z
0
1.5 V
1.5 V
0V Vth
VOL*
V
OH
*
V
OL
*
V
OH
*
Measured V
OL
with IOH = –10mA and IOL = 10mA
Measured V
OH
with IOH = –10mA and IOL = 10mA
FIGURE B. THRESHOLD LEVELS
FIGURE A. OUTPUT LOADING CIRCUIT
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
14
Video Imaging Products
08/9/2000–LDS.48908-J
Plastic J-Lead Chip Carrier
(J3)
LF48908JC50 LF48908JC31 LF48908JC25
ORDERING INFORMATION
0°C to +70°C — COMMERCIAL SCREENING
Speed
50 ns 31 ns 25 ns
84-pin
1234567
74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54
84 83 82 81 80 79
4443 45 46 47 493837 39 40 41 42
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
48
Top
View
891011 78 77 76 75
36353433 50 51 52 53
CIN3 CIN4 CIN5 CIN6 CIN7 CIN8 CIN9
GND
CLK
V
CC
HOLD
LD
CS
A
2
A1 A0
EALU
CASI
15
CASI14 CASI13 CASI12
CASO6 CASO7 DOUT0 DOUT1 DOUT2 GND DOUT
3
DOUT4 DOUT5 DOUT6 DOUT7 VCC DOUT8 GND DOUT
9
DOUT10 DOUT11 DOUT12 DOUT13 DOUT14 GND
CASI11
CASI10
CASI9
CASI8
CASI7
CASI6
CASI5
CASI4
CASI3
VCC
CASI2
CASI1
CASI0
FRAME
RESET
GND
DOUT
19
DOUT18
DOUT17
DOUT16
DOUT15
CIN2
CIN1
CIN0
DIN7
DIN6
DIN5
DIN4
DIN3
DIN2
DIN1
DIN0
VCCOEGND
CASO0CASO1
CASO2
CASO3
CASO4
GND
CASO
5
–40°C to +85°C — COMMERCIAL SCREENING
DEVICES INCORPORATED
15
LF48908
Two Dimensional Convolver
1
2
3
4
5
6
7
8
9
10
11
08/9/2000–LDS.48908-J
Video Imaging Products
Plastic Quad Flatpack
(Q2)
LF48908QC31 LF48908QC25
ORDERING INFORMATION
0°C to +70°C — COMMERCIAL SCREENING
Speed
31 ns 25 ns
100-pin
CIN1 CIN2
NC NC
CIN
3
CIN4 CIN5 CIN6 CIN7 CIN8 CIN9 GND GND
CLK V
CC
VCC
HOLD
LD
CS
A
2
A1 A0
EALU
CASI
15
CASI14 CASI13 CASI12
NC NC
CASI
11
CIN0
DIN7
DIN6
DIN5
DIN6
DIN3
DIN2
DIN1
DIN0
VCC
VCCOEGND
GND
CASO0CASO1
CASO2
CASO3
CASO4
GND
GND CASO
5
NC CASO
6
CASO7 DOUT0 DOUT1 DOUT2 GND GND DOUT
3
DOUT4 DOUT5 DOUT6 DOUT7 VCC VCC DOUT
8
GND GND DOUT
9
DOUT10 DOUT11 DOUT12 DOUT13 DOUT14 GND GND DOUT
15
DOUT16
CASI10
CASI9
CASI8
CASI7
CASI6
CASI5
CASI4
CASI3
VCC
VCC
CASI2
CASI1
CASI0
FRAME
RESET
GND
GND
DOUT
19
DOUT18
DOUT17
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
Top
View
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31323334353637383940414243444546474849
50
100
99989796959493929190898887868584838281
–40°C to +85°C — COMMERCIAL SCREENING
DEVICES INCORPORATED
LF48908
Two Dimensional Convolver
16
Video Imaging Products
08/9/2000–LDS.48908-J
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
1
Ceramic Pin Grid Array
(G6)
ORDERING INFORMATION
0°C to +70°C — COMMERCIAL SCREENING
Speed
–55°C to +125°C — MIL-STD-883 COMPLIANT
–55°C to +125°C — COMMERCIAL SCREENING
84-pin
A
B
C
D
E
F
G
H
J
K
L
Top View
Through Package
(i.e., Component Side Pinout)
12345
6
7 8 9 10 11
CIN
0
CIN
3
CIN
4
CIN
7
GND
V
CC
A
2
EALU
CASI
13
CASI
11
CASI
9
DIN
7
CIN
1
CIN
9
HOLD
LD
CASI
10
CASI
8
DIN
5
DIN
6
CASI
7
CASI
6
DIN
2
DIN
3
DIN
4
CASI
5
CASI
4
CASI
3
DIN
1
CASO
0
DIN
0
CASI
2
V
CC
RESET
OE
GND
V
CC
CASI
1
FRAME
CASI
0
CASO
1
CASO
2
DOUT
19
GND
CIN
2
CIN
5
CIN
6
CIN
8
CLK
A
1
CS
A
0
CASI
15
CASI
14
CASI
12
CASO
3
GND
DOUT
3
DOUT
7
V
CC
DOUT
16
DOUT
18
CASO
4
CASO
5
CASO
7
DOUT
2
DOUT
4
DOUT
9
GND
DOUT
11
DOUT
14
GND
DOUT
17
CASO
6
DOUT
0
DOUT
1
GND
DOUT
5
DOUT
6
DOUT
8
DOUT
10
DOUT
12
DOUT
13
DOUT
15
Discontinued Package
Loading...