LOGIC LF2250QC25, LF2250QC20 Datasheet

DEVICES INCORPORATED
LF2250
12 x 10-bit Matrix Multiplier
LF2250
FEATURES DESCRIPTION
❑❑
50 MHz Data and Computation
❑❑
Rate
❑❑
Nine Multiplier Array with 12-bit
❑❑
Data and 10-bit Coefficient Inputs
❑❑
Separate 16-bit Cascade Input and
❑❑
Output Ports
❑❑
On-board Coefficient Storage
❑❑ ❑❑
Four User-Selectable Filtering and
❑❑
Transformation Functions:
• 3 x 3 Matrix Multiplier
• Cascadable 9-Tap FIR Filter
• Cascadable 3 x 3 Convolver
• Cascadable 4 x 2 Convolver
❑❑
Replaces TRW/Raytheon/
❑❑
Fairchild TMC2250
❑❑
120-pin PQFP
❑❑
The LF2250 is a high-speed matrix multiplier consisting of an array of nine 12 x 10-bit multipliers. Internal summing adders are also included to provide the configurations needed to implement matrix multiplications, cascadable FIR filters, and pixel convolvers.
The 3 x 3 matrix multiplier (triple dot product) configuration of the LF2250 allows users to easily perform three­dimensional perspective translations or video format conversions at real-time video rates. By using the LF2250 in this configuration, conversions can be made from the RGB (color component) format to the YIQ (quadrature encoded chrominance) or YUV (color differ­ence) formats and vice versa (YIQ or YUV to RGB).
In addition to color space conversions, the LF2250 offers a range of selectable configurations designed for filtering applications. When configured as a 9-tap FIR filter, the LF2250 automatically
12 x 10-bit Matrix Multiplier
selects the necessary internal bus structure and inserts the appropriate data path delay elements. In addition, a 16-bit cascade input port allows for the creation of larger filters without a reduction in throughput.
Real-time video image filtering using the convolver modes of the LF2250 can provide edge detection, texture enhancement, and detail smoothing. Both pixel convolver configurations, 3 x 3 and 4 x 2, deliver high-speed data manipulation in a single chip solution. By using the 16-bit cascade input port to cascade two devices, cubic convolu­tions (4 x 4-pixel) can be easily accom­modated with no decrease in through­put rates.
All inputs and outputs, as well as all control lines, are registered on the rising edge of clock. The LF2250 operates at clock rates up to 50 MHz over the full commercial temperature and supply voltage ranges.
LF2250 BLOCK DIAGRAM
CLK
1-0
MODE
CWE
1-0
A
DATA
INPUTS
COEFFICIENT
INPUTS
{ {
B C
KA KB KC
11-0 11-0 11-0
9-0 9-0 9-0
2 2
12 12 12 12
10 10 10
9-MULTIPLIER
ARRAY
4 4 4
12
DATA
{
OUTPUTS
X
11-0
CASIN
Y
11-8
CASIN
Y
7-4
Y
3-0
CASOUT
Z
11-0
CASOUT
CASCADE
{
PORTS
15-4
XC
3-0
YC
Y
3-0
YC
15-4
ZC
PIN
{
NAME
11-0 11-8
7-4
3-0 11-0
Video Imaging Products
1
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
LF2250
12 x 10-bit Matrix Multiplier
TABLE 1. MODE SELECTION
MODE1-0 OPERATING MODE
00 3 x 3 Matrix Multiplier 01 9-Tap FIR Filter 10 3 x 3 Convolver 11 4 x 2 Convolver
OPERATING MODES
The LF2250 can realize four different user-selectable digital filtering architec­tures as determined by the state of the mode (MODE1-0) inputs. Upon selection of the desired function, the LF2250 automatically chooses the appropriate internal data paths and input/output bus structure. Table 1 details the modes of operation.
DATA FORMATTING
The coefficient input ports (KA, KB, KC) are 10-bit fractional two’s comple­ment format regardless of the operating mode. The data input ports (A, B, C) are 12-bit integer two’s complement format regardless of the operating mode.
In the matrix multiplier mode (Mode
00), the data output ports (X, Y, Z) are 12-bit integer two’s complement format. In the FIR filter and convolver modes (Modes 01, 10, 11), the X, Y, and Z ports are configured as the cascade-in (CASIN15-0) and cascade-out (CASOUT15-0) ports. These ports assume 16-bit (12-bit integer, 4-bit fractional) two’s complement data on both the inputs and outputs. Table 2 shows the data port formatting for each of the four operating modes.
BIT WEIGHTING
The internal sum of products of the LF2250 can grow to 23 bits. However, in order to keep the output format of the matrix multiply mode (Mode 00) identical to the input format, the X, Y, and Z outputs are truncated to 12-bit integer words. In the filter modes (Modes 01, 10, 11), the cascade output is always half-LSB rounded to 16 bits (12 integer bits and 4 fractional bits). The user may half-LSB round the output to any size less than 16 bits by simply forcing a “1” into the bit position of the cascade input immedi­ately below the desired LSB. For example, if half-LSB rounding to 12 bits is desired, then a “1” must be forced into the CASIN3 bit position (CASOUT4 would then be the LSB).
In all four modes, the user may adjust the bit weighting, by applying an identical scaling correction factor to both the input and output data streams. If the coefficients are re­scaled, then the relative weightings of the cascade-in and cascade-out ports will differ accordingly. Figure 1 illustrates the input and output bit weightings for all four modes.
DATA OVERFLOW
Because the LF2250’s matched input and output data formats accommodate unity gain (0 dB), input conditions that could lead to numeric overflow may exist. To ensure that no overflow conditions occur, the user must be aware of the maximum input data and coefficient word sizes allowable for each specific algorithm being per­formed.
SIGNAL DEFINITIONS
Power
VCC and GND
+5 V power supply. All pins must be connected.
Clock
CLK — Master Clock
The rising edge of CLK strobes all enabled registers. All timing specifi­cations are referenced to the rising edge of CLK.
Inputs
A11-0, B11-0, C11-0 — Data Inputs
A, B, and C are the 12-bit registered data input ports. Data presented to these ports is latched into the multi­plier input registers for the current operating mode (Table 1). In the filter modes (Modes 01, 10, 11), the rising edge of CLK internally right-shifts new data to the next filter tap.
KA9-0, KB9-0, KC9-0 — Coefficient Inputs
KA, KB, and KC are the 10-bit regis­tered coefficient input ports. Data presented to these ports is latched into the corresponding internal coefficient register set defined by CWE1-0 (Table 4) on the next rising edge of CLK. Table 3 shows which coefficient registers are available for each coefficient input port.
TABLE 2. DATA PORT FORMATTING
PIN NAMES
MODE1-0 A11-0 B11-0 C11-0 KA9-0 KB9-0 KC9-0 XC11-0 YC11-8 Y7-4 YC3-0 ZC11-0
00 A11-0 B11-0 C11-0 KA9-0 KB9-0 KC9-0 X11-0 Y11-8 Y7-4 Y3-0 Z11-0 01 A11-0 A11-0 NC KA9-0 KB9-0 KC9-0 CASIN15-4 CASIN3-0 NC CASOUT3-0 CASOUT15-4 10 A11-0 B11-0 C11-0 KA9-0 KB9-0 KC9-0 CASIN15-4 CASIN3-0 NC CASOUT3-0 CASOUT15-4 11 A11-0 B11-0 NC KA9-0 KB9-0 KC9-0 CASIN15-4 CASIN3-0 NC CASOUT3-0 CASOUT15-4
Video Imaging Products
2
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
LF2250
12 x 10-bit Matrix Multiplier
FIGURE 1A.INPUT FORMATS
Data Input (All Modes)
11 10 9 6 5 487 3210
1121029
–2
(Sign)
282
Coefficient Input (All Modes)
987 43265 10
02–12–2
–2
(Sign)
2–32
Cascade Input (Modes 01, 10, 11)
15 14 13 10 9 81211 76543210
1121029
–2
(Sign)
282
7
26252
Internal Sum (All Modes)
20 19 18 3 2 117 0
1121029
–2
(Sign)
FIGURE 1B.OUTPUT FORMATS
Result (Mode 00)
11 10 9 6 5 487 3210
1121029
–2
(Sign)
282
7
26252
–4
4
8
2
7
26252
4
2322212
2–52–62
–7
2–82
232221202–12–22–32
2–62–72
–8
4
2322212
CASOUT15-0 — Cascade Output
In the filter modes (Modes 01, 10, 11), the 12-bit Z port and four bits of the Y port are internally reconfigured as the
0
16-bit registered cascade output port.
NOTE: The X, Y, and Z ports are automatically reconfigured by the LF2250 as the cascade-in and cascade-out ports as required for each operating mode.
–9
Because both the X and Z ports are used for the cascade ports, all X port pins and all Z port pins are labelled as XC and ZC, respectively. All Y port pins that are used for the cascade ports are labelled as YC. Those Y port pins which are not
–4
used for the cascade ports are labelled as Y.
Controls
MODE1-0 — Mode Select
–9
2
The registered mode select inputs determine the operating mode of the LF2250 (Table 1) for data being input on the next clock cycle. When switch­ing between modes, the internal pipeline latencies of the device must be observed. After switching operat­ing modes, the user must allow enough clock cycles to pass to flush
0
the internal registers before valid data will appear on the outputs.
Cascade Out (Modes 01, 10, 11)
15 14 13 10 9 81211 76543210
1121029
–2
(Sign)
282
7
26252
CASIN15-0 — Cascade Input
In the filter modes (Modes 01, 10, 11), the 12-bit X port and four bits of the Y port are internally reconfigured as the 16-bit registered cascade input port. Data presented to this port will be added to the internal sum of prod­ucts.
4
232221202–12–22–32
–4
Outputs
X11-0, Y11-0, Z11-0 — Data Outputs
X, Y, and Z are the 12-bit registered output ports for the matrix multiply mode (Mode 00). These ports are automatically reconfigured for the filter modes (Modes 01, 10, 11) as the cascade-in and cascade-out ports.
3
CWE1-0 — Coefficient Write Enable
The registered coefficient write enable inputs determine which internal coefficient register set to update (Table 4) on the next clock cycle.
TABLE 3. COEFFICIENT INPUTS
INPUT PORT REG. AVAILABLE
KA KA1, KA2, KA3 KB KB1, KB2, KB3 KC KC1, KC2, KC3
Video Imaging Products
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
LF2250
12 x 10-bit Matrix Multiplier
TABLE 4. COEFF. REG. UPDATE
CWE1-0 COEFFICIENT SET
00 Hold All Registers 01 KA1, KB1, KC1 10 KA2, KB2, KC2 11 KA3, KB3, KC3
DETAILS OF OPERATION
3 x 3 Matrix Multiplier — Mode 00
In this mode, all three input ports (A, B, C) and all three output ports (X, Y, Z) are utilized to implement a 3 x 3 matrix multiplication (triple dot product). Each rounded 12-bit output is the sum of all three input words multiplied by the appropriate coeffi­cients (Table 5). The pipeline latency for this mode is five clock cycles. Therefore, the sum of products will be output five clock cycles after the input data has been latched. New output data is subsequently available every clock cycle thereafter.
(comprising of the summation of the multiplications of the last nine data inputs with their related coefficients) becomes available (Table 5). The CASIN term is also added to each new output. The internal bus struc­ture and pipeline delays allow new input data to be added every cycle while maintaining the structure of the filtering operation. This addition of new data every cycle produces the effect of the convolution window moving to the next pixel column.
4 x 2-Pixel Convolver — Mode 11
Using the A and B ports, input data is loaded and multiplied by the on­board coefficients. These products are then summed with the CASIN data and rounded to create the 16-bit output. The cascade ports allow multiple devices to be used together for use with larger kernels. As with Mode 10, each cycle results in a 16-bit output created from the products and summations performed.
TABLE 5. LATENCY EQUATIONS
3 x 3 Matrix Multiplier — Mode 00
X(n+4) = A(n)KA1(n) + B(n)KB1(n) + C(n)KC1(n) Y(n+4) = A(n)KA2(n) + B(n)KB2(n) + C(n)KC2(n) Z(n+4) = A(n)KA3(n) + B(n)KB3(n) + C(n)KC3(n)
9-Tap FIR Filter — Mode 01
CASOUT(n+12) = A(n+8)KA3(n+8) + A(n+7)KA2(n+7) + A(n+6)KA1(n+6)
9-Tap FIR Filter — Mode 01
This mode utilizes the 12-bit A and B data input ports as well as the 16-bit CASIN port. The input data should be presented to the A and B ports simultaneously. The resulting 9­sample response, which is half-LSB rounded to 16 bits, begins after five clock cycles and ends after 13 clock cycles (Table 5). The pipeline latency from the input of an impulse response to the center of the output response is nine clock cycles. The latency from the CASIN port to the CASOUT port is four clock cycles. New output data is available every clock cycle.
3 x 3-Pixel Convolver — Mode 10
When configured in this mode, line delayed data is loaded through the A, B, and C input ports. During each cycle, a new rounded 16-bit output
+ B(n+5)KB3(n+8) + B(n+4)KB2(n+7) + B(n+3)KB1(n+6) + B(n+2)KC3(n+8) + B(n+1)KC2(n+7) + B(n)KC1(n+6) + CASIN(n+9)
3 x 3-Pixel Convolver — Mode 10
CASOUT(n+6) = A(n+2)KA3(n+2) + A(n+1)KA2(n+1) + A(n)KA1(n)
+ B(n+2)KB3(n+2) + B(n+1)KB2(n+1) + B(n)KB1(n) + C(n+2)KC3(n+2) + C(n+1)KC2(n+1) + C(n)KC1(n) + CASIN(n+3)
4 x 2-Pixel Convolver — Mode 11
CASOUT(n+7) = A(n+3)KA3(n+3) + A(n+2)KA2(n+2) + A(n+1)KA1(n+1)
+ A(n)KC3(n+3) + B(n+3)KB3(n+3) + B(n+2)KB2(n+2) + B(n+1)KB1(n+1) + B(n)KC1(n+1) + CASIN(n+4)
Video Imaging Products
4
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
FIGURE 2. 3 X 3 MATRIX MULTIPLIER — MODE 00
12
A
KA1 KA2 KA3
10
KA
21 21 21
12
B
LF2250
12 x 10-bit Matrix Multiplier
KB
KC
KB3KB2KB1
10
21 21 21
12
C
KC1 KC2 KC3
10
21 21 21
12 (MSB) 12 (MSB) 12 (MSB)
XYZ
Video Imaging Products
5
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
FIGURE 3. 9-TAP FIR FILTER — MODE 01
12
A
KA1 KA2 KA3
10
KA
LF2250
12 x 10-bit Matrix Multiplier
21 21 21
KB
KC
12
B
4
KB3KB2KB1
10
3
21 21 21
KC1 KC2 KC3
10
21 21 21
CASIN
NOTE: NUMBERS IN REGISTERS INDICATE
16
NUMBER OF PIPELINE DELAYS
16
(HALF-LSB ROUNDING)
5
10000
21
2
21
16 (MSB)
CASOUT
Video Imaging Products
6
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
FIGURE 4. 3 X 3-PIXEL CONVOLVER — MODE 10
12
A
KA1 KA2 KA3
10
KA
12
B
LF2250
12 x 10-bit Matrix Multiplier
21 21 21
KB
KC
KB3KB2KB1
10
21 21 21
12
C
KC1 KC2 KC3
10
21 21 21
CASIN
16
16
(HALF-LSB ROUNDING)
5
10000
21
2
21
16 (MSB)
CASOUT
Video Imaging Products
7
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
FIGURE 5. 4 X 2-PIXEL CONVOLVER — MODE 11
12
A
KA1 KA2 KA3
10
KA
21 21 21
12
B
LF2250
12 x 10-bit Matrix Multiplier
3
KB
KC
KB3KB2KB1
10
21 21 21
0
KC1 KC2 KC3
10
21 21 21
CASIN
NOTE: NUMBERS IN REGISTERS INDICATE
16
NUMBER OF PIPELINE DELAYS
16
(HALF-LSB ROUNDING)
5
10000
21
2
21
16 (MSB)
CASOUT
Video Imaging Products
8
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
LF2250
12 x 10-bit Matrix Multiplier
MAXIMUM RATINGS
Storage temperature ........................................................................................................... –65°C to +150°C
Operating ambient temperature........................................................................................... –55°C to +125°C
VCC supply voltage with respect to ground............................................................................ –0.5 V to +7.0V
Input signal with respect to ground ............................................................................... –0.5 V to VCC + 0.5 V
Signal applied to high impedance output ...................................................................... –0.5 V to VCC + 0.5 V
Output current into low outputs............................................................................................................. 25 mA
Latchup current ................................................................................................................ ............... > 400 mA
OPERATING CONDITIONS
Active Operation, Commercial 0°C to +70°C 4.75 V VCC 5.25 V Active Operation, Military –55°C to +125°C 4.50 V VCC 5.50 V
ELECTRICAL CHARACTERISTICS
Above which useful life may be impaired (Notes 1, 2, 3, 8)
To meet specified electrical and switching characteristics
Mode Temperature Range (Ambient) Supply Voltage
Over Operating Conditions (Note 4)
Symbol Parameter Test Condition Min Typ Max Unit
VOH Output High Voltage Vcc = Min., IOH = –2.0 mA 2.4 V VOL Output Low Voltage Vcc = Min., IOL = 4.0 mA 0.4 V VIH Input High Voltage 2.0 VCC V V IL Input Low Voltage (Note 3) 0.0 0.8 V IIX Input Current Ground VIN VCC (Note 12) ±10 µA IOZ Output Leakage Current (Note 12) ±40 µA ICC1 VCC Current, Dynamic (Notes 5, 6) 160 mA ICC2 VCC Current, Quiescent (Note 7) 12 mA CIN Input Capacitance TA = 25°C, f = 1 MHz 10 pF COUT Output Capacitance TA = 25°C, f = 1 MHz 10 pF
Video Imaging Products
9
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
4
4
SWITCHING CHARACTERISTICS
LF2250
12 x 10-bit Matrix Multiplier
COMMERCIAL OPERATING RANGE (0°C to +70°C)
Symbol Parameter Min Max Min Max Min Max
tCYC Cycle Time 33 25 20 tPWL Clock Pulse Width Low 15 10 6 tPWH Clock Pulse Width High 10 10 8 tS Input Setup Time 8 6 6 tH Input Hold Time 0 0 0 tD Output Delay 18 16 15
MILITARY OPERATING RANGE (–55°C to +125°C)
Symbol Parameter Min Max Min Max
tCYC Cycle Time 33 25 tPWL Clock Pulse Width Low 15 10 tPWH Clock Pulse Width High 10 10 tS Input Setup Time 12 9 tH Input Hold Time 2 2 tD Output Delay 25 20
Notes 9, 10 (ns)
2345678901234567
2345678901234567
33
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
2345678901234567
Notes 9, 10 (ns)
LF2250–
*
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
234567890123456789012345678901212
25 20
LF2250–
*
33
25
*
2345678901234567890123
2345678901234567890123
*DISCONTINUED SPEED GRADE
10
Video Imaging Products
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
SWITCHING WAVEFORMS:3 X 3 MATRIX MULTIPLIER — MODE 00
LF2250
12 x 10-bit Matrix Multiplier
CLK
CWE
KA, KB, KC
A, B, C
MODE
X11-0
Y11-0
Z11-0
1234 678
tS
1-0
01
10 11 00
tPWH
tPWL
5
tH
Kx1 Kx2 Kx3
001.0000
1-0
00
tD
KA1 + KB1 + KC1
KA2 + KB2 + KC2
KA3 + KB3 + KC3
SWITCHING WAVEFORMS: 9-TAP FIR FILTER — MODE 01
CLK
CWE
KA, KB, KC
A, B
MODE
CASIN15-0
CASOUT15-0
1 2 3 13 14 15
tS
1-0
1-0
01
Kx1 Kx2 Kx3
0 0 1.0 0
tPWH
10 11
tH
tPWL
12 16 17
0 0
01
Q13
0
0
tD
Q13KC1KC2KC3KB1
Video Imaging Products
11
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
SWITCHING WAVEFORMS:3 X 3-PIXEL CONVOLVER — MODE 10
LF2250
12 x 10-bit Matrix Multiplier
123 789
61011
CLK
t
PWL
0 0
10
Q7
CWE
KA, KB, KC
A, B, C
MODE
CASIN
CASOUT
15-0
15-0
t
t
S
01
1-0
Kx1 Kx2 Kx3
0 0 1.0 0
1-0
PWH
10 11
t
H
SWITCHING WAVEFORMS:4 X 2-PIXEL CONVOLVER — MODE 11
CLK
CWE
KA, KB, KC
123 789
t
t
t
S
01
1-0
Kx1 Kx2 Kx3
PWH
10 11
t
H
PWL
61011
0
0
0
t
D
KA1 + KB1 + KC1KA2 + KB2 + KC2KA3 + KB3 + KC3
Q7
MODE
CASIN
CASOUT
A, B
15-0
15-0
0 0 1.0 0
1-0
0 0
11
0
Q8
0
0
t
D
KC1 + KC3KA1 + KB1KA2 + KB3KA3 + KB3
Q8
Video Imaging Products
12
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
OE
0.2 V
t
DIS
t
ENA
0.2 V
1.5 V 1.5 V
3.0V Vth
1
Z
0
Z
Z
1
Z
0
1.5 V
1.5 V
0V Vth
VOL*
V
OH
*
V
OL
*
V
OH
*
Measured V
OL
with IOH = –10mA and IOL = 10mA
Measured V
OH
with IOH = –10mA and IOL = 10mA
S1
I
OH
I
OL
V
TH
C
L
DUT
NOTES
LF2250
12 x 10-bit Matrix Multiplier
1. Maximum Ratings indicate stress specifications only. Functional oper­ation of these products at values be­yond those indicated in the Operating Conditions table is not implied. Expo­sure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this spec­ification include internal circuitry de­signed to protect the chip from damag­ing substrate injection currents and ac­cumulations of static charge. Never­theless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at –0.6 V and VCC + 0.6 V. The device can withstand indefinite operation with inputs in the range of –0.5 V to +7.0 V. Device opera­tion will not be adversely affected, how­ever, input current levels will be well in excess of 100 mA.
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except
tDIS test), and input levels of nominally
0 to 3.0 V. Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs ca­pable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1 µF ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the ±200mV level from the measured steady-state output voltage with ±10mA loads. The balancing volt­age, VTH, is set at 3.5 V for Z-to-0 and 0-to-Z tests, and set at 0 V for Z­to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
FIGURE A. OUTPUT LOADING CIRCUIT
FIGURE B. THRESHOLD LEVELS
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given applica­tion can be accurately approximated by:
2
NCV F
4
where
N = total number of device outputs C = capacitive load per output V = supply voltage F = clock frequency
6. Tested with all outputs changing ev­ery cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of
VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a min­imum or maximum value. Input re­quirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the exter­nal system must supply at least that much time to meet the worst-case re­quirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case opera­tion of any device always provides data within that time.
13
Video Imaging Products
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
ORDERING INFORMATION
ORDERING INFORMATION
120-pin
XC7XC8VCCXC9XC10XC11GND
MODE0MODE1C11C10C9C8C7GND
12 x 10-bit Matrix Multiplier
C6C5C4VCCC3C2C1C0B11B10B9B8B7B6B
LF2250
5
XC XC XC XC XC XC XC
GND YC YC
YC V YC
GND
YC V YC YC YC
GND
ZC ZC ZC ZC ZC ZC
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
CC
KC7KC8KC
V
103
6
1
5
2
4
3
3
4
2
5
1
6
0
7 8
11
9
10
10
9
11
CC
12
8
13
Y
7
14
Y
6
15 16
5
Y
17
Y
4
18
0
19
CC
20
1
21
2
22
3
23 24
0
25
1
26
2
27
3
28
4
29
5
30
3132333435363738394041424344454647484950515253545556575859
8
9
11
GND
ZC
ZC10ZC
KC0KC1KC2KC
ZC6ZC7ZC
3
GND
Top
View
4KC5KC6
KC
999897969594939291
102
101
100
9
KB0KB1KB2KB3KB4KB5KB6KB7KB8KB9KA
90
B 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
60
0
4
B
3
CLK
2
B
B
1
B
0
A
11
A
10
A
9
A
8
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
GND
CWE
CWE
KA
KA
KA
KA
KA
KA
KA
KA
KA
0
1 9 8 7 6 5 4 3 2 1
Speed
25 ns 20 ns
0°C to +70°C — COMMERCIAL SCREENING
0°C to +70°C — COMMERCIAL SCREENING
–55°C to +125°C — COMMERCIAL SCREENING
–40°C to +85°C — COMMERCIAL SCREENING
–55°C to +125°C — MIL-STD-883 COMPLIANT
–55°C to +125°C — MIL-STD-883 COMPLIANT
Plastic Quad Flatpack
(Q1)
LF2250QC25 LF2250QC20
Video Imaging Products
14
08/16/2000–LDS.2250-L
DEVICES INCORPORATED
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
12 x 10-bit Matrix Multiplier
ORDERING INFORMATION
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
120-pin
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
M
Speed
0°C to +70°C — COMMERCIAL SCREENING
–55°C to +125°C — COMMERCIAL SCREENING
–55°C to +125°C — MIL-STD-883 COMPLIANT
12345
A
XC
9
XC
7
XC
B
XC
5
XC
4
XC
C
XC
2
XC
1
XC
D
XC
0
YC
11
XC
E
YC
10
YC
9
GND
F
YC
8
Y
7
V
G
Y
6
Y
5
GND
H
V
YC
0
Y
4
J
YC
2
YC
1
GND
K
ZC
YC
0
3
ZC
L
ZC
4
ZC
ZC
7
ZC
ZC
ZC
1
2
N
ZC
8
ZC
5
ZC
6
MODE
0
C
11
C
1
C
C
KEY
8
9
10
GND
Top View
CC
10
XC
11
MODE
8
V
CC
6
GND
3
Through Package
(i.e., Component Side Pinout)
CC
3
GND
6
ZC
9
KC
10
0
GND
KC
11
KC
2
4
KC
1
KC
3
KC
5
Discontinued Package
Ceramic Pin Grid Array
(G4)
15
7 8 9 10 11
C
7
C
5
C
3
C
1
C
6
C
4
C
2
B
11
V
CC
C
0
B
8
CC
KB
0
KB
V
KC
KC
6
KC
7
KC
4
KB
8
9
KB
2
KB
5
8
KB
1
KB
3
12 13
B
10
B
7
B
4
B
9
B
6
B
2
B
5
B
3
B
1
CLK
B
0
A
10
A
11
A
9
A
8
A
7
A
6
A
5
A
3
A
2
A
4
GND
A
0
A
1
8
CWE
1
CWE
KA
KA
4
KA
KA
1
KA
KB
9
KA
KB
6
KB
Video Imaging Products
0
7
KA
9
5
KA
6
2
KA
3
7
KA
0
LF2250
08/16/2000–LDS.2250-L
Loading...