DEVICES INCORPORATED
L4C381
16-bit Cascadable ALU
L4C381
DEVICES INCORPORATED
FEATURES DESCRIPTION
❑❑
❑ High-Speed (15ns), Low Power
❑❑
16-bit Cascadable ALU
❑❑
❑ Implements Add, Subtract, Accumu-
❑❑
late, Two’s Complement, Pass, and
Logic Operations
❑❑
❑ All Registers Have a Bypass Path
❑❑
for Complete Flexibility
❑❑
❑ 68-pin PLCC, J-Lead
❑❑
The L4C381 is a flexible, high speed,
cascadable 16-bit Arithmetic and
Logic Unit. It combines four 381-type
4-bit ALUs, a look-ahead carry
generator, and miscellaneous interface
logic — all in a single 68-pin package.
While containing new features to
support high speed pipelined architectures and single 16-bit bus configurations, the L4C381 retains full performance and functional compatibility with
the bipolar ’381 designs.
The L4C381 can be cascaded to
perform 32-bit or greater operations.
See “Cascading the L4C381” toward
L4C381 BLOCK DIAGRAM
B15-B
0
B REGISTER
ENA
A15-A
0
16 16
A REGISTER
16-bit Cascadable ALU
the end of this data sheet for more
information.
ARCHITECTURE
The L4C381 operates on two 16-bit
operands (A and B) and produces a
16-bit result (F). Three select lines
control the ALU and provide 3
arithmetic, 3 logical, and 2 initialization functions. Full ALU status is
provided to support cascading to
longer word lengths. Registers are
provided on both the ALU inputs and
the output, but these may be bypassed
under user control. An internal
feedback path allows the registered
ALU output to be routed to one of the
ALU inputs, accommodating chain
operations and accumulation. Furthermore, the A or B input can be
forced to Zero allowing unary func-
ENB
tions on either operand.
P, G, C
OVF, Z
FTF
OE
CLK
ALU OPERATIONS
FTAB
00
2
OSA
OSB
The S2–S0 lines specify the operation
to be performed. The ALU functions
and their select codes are shown in
Table 1.
The two functions, B minus A and
A minus B, can be achieved by setting
16
ALU
16
45
S
2-S0
, C
0
the carry input of the least significant
slice and selecting codes 001 and 010
respectively.
TABLE 1. ALU FUNCTIONS
ENF
S2-S0 FUNCTION
000 CLEAR (F = 00 • • • 00)
001 NOT(A) + B
010 A + NOT(B)
011 A + B
100 A XOR B
101 A OR B
110 A AND B
111 PRESET (F = 11 • • • 11)
TO ALL REGISTERS
RESULT REGISTER
16
16
F15-F
0
Arithmetic Logic Units
1
08/16/2000–LDS.381-P
DEVICES INCORPORATED
L4C381
16-bit Cascadable ALU
ALU STATUS
The ALU provides Overflow and Zero
status bits. Carry, Propagate, and
Generate outputs are also provided
for cascading. These outputs are
defined for the three arithmetic
functions only. The ALU sets the Zero
output when all 16 output bits are
zero. The Generate, Propagate, C16,
and OVF flags for the A + B operation
are defined in Table 2. The status
flags produced for NOT(A) + B and
A + NOT(B) can be found by complementing Ai and Bi respectively in
Table 2.
OPERAND REGISTERS
The L4C381 has two 16-bit wide input registers for operands A and B.
These registers are rising edge triggered by a common clock. The A
register is enabled for input by setting
the ENA control LOW, and the B
register is enabled for input by setting
the ENB control LOW. When either
the ENA control or ENB control is
HIGH, the data in the corresponding
input register will not change.
This architecture allows the L4C381 to
accept arguments from a single 16-bit
data bus. For those applications that
do not require registered inputs, both
the A and B operand registers can be
bypassed with the FTAB control line.
When the FTAB control is asserted
(FTAB = HIGH), data is routed
around the A and B input registers;
however, they continue to function
normally via the ENA and ENB
controls. The contents of the input
registers will again be available to the
ALU if the FTAB control is released.
OUTPUT REGISTER
The output of the ALU drives the
input of a 16-bit register. This risingedge-triggered register is clocked by
the same clock as the input registers.
When the ENF control is LOW, data
from the ALU will be clocked into the
TABLE 2. ALU STATUS FLAGS
Bit Carry Generate = gi =AiBi for i = 0 ... 15
Bit Carry Propagate = pi =Ai + B i for i = 0 ... 15
P 0 =p0
Pi =pi (P i–1 ) for i = 1 ... 15
and
G 0 =g0
Gi=gi + p i (Gi–1 ) for i = 1 ... 15
C i =Gi–1 + Pi–1 (C 0 ) for i = 1 ... 15
then
G = NOT(G15)
P = NOT(P15)
C 16 =G15 + P 15C 0
OVF = C15 XOR C16
output register. By disabling the
output register, intermediate results
can be held while loading new input
operands. Three-state drivers controlled by the OE input allow the
L4C381 to be configured in a single
bidirectional bus system.
The output register can be bypassed
by asserting the FTF control signal
(FTF = HIGH). When the FTF control
is asserted, output data is routed
around the output register, however,
it continues to function normally via
the ENF control. The contents of the
output register will again be available
on the output pins if FTF is released.
With both FTAB and FTF true (HIGH)
the L4C381 is functionally identical to
four cascaded 54S381-type devices.
OPERAND SELECTION
The two operand select lines, OSA and
OSB, control multiplexers that precede
the ALU inputs. These multiplexers
provide an operand force-to-zero
function as well as F register feedback
to the B input. Table 3 shows the
inputs to the ALU as a function of the
operand select inputs. Either the A or
B operands may be forced to zero.
TABLE 3. OPERAND SELECTION
OSB OSA OPERAND B OPERAND A
00 F A
01 0 A
10 B 0
11 B A
When both operand select lines are
low, the L4C381 is configured as a
chain calculation ALU. The registered
ALU output is passed back to the B
input to the ALU. This allows accumulation operations to be performed
by providing new operands via the A
input port. The accumulator can be
preloaded from the A input by setting
OSA true. By forcing the function
select lines to the CLEAR state (000),
the accumulator may be cleared. Note
that this feedback operation is not
affected by the state of the FTF
control. That is, the F outputs of the
L4C381 may be driven directly by the
ALU. The output register continues to
function, however, and provides the
ALU B operand source.
Arithmetic Logic Units
2
08/16/2000–LDS.381-P
DEVICES INCORPORATED
L4C381
16-bit Cascadable ALU
MAXIMUM RATINGS
Storage temperature ........................................................................................................... –65°C to +150°C
Operating ambient temperature........................................................................................... –55°C to +125°C
VCC supply voltage with respect to ground............................................................................ –0.5 V to +7.0V
Input signal with respect to ground ........................................................................................ –3.0 V to +7.0 V
Signal applied to high impedance output ............................................................................... –3.0 V to +7.0 V
Output current into low outputs............................................................................................................. 25 mA
Latchup current ............................................................................................................................... > 400 mA
OPERATING CONDITIONS
Active Operation, Commercial 0°C to +70°C 4.75 V ≤ VCC ≤ 5.25 V
Active Operation, Military –55°C to +125°C 4.50 V ≤ VCC ≤ 5.50 V
ELECTRICAL CHARACTERISTICS
Above which useful life may be impaired (Notes 1, 2, 3, 8)
To meet specified electrical and switching characteristics
Mode Temperature Range (Ambient) Supply Voltage
Over Operating Conditions (Note 4)
Symbol Parameter Test Condition Min Typ Max Unit
VOH Output High Voltage VCC = Min., IOH = –2.0 mA 2.4 V
VOL Output Low Voltage VCC = Min., IOL = 8.0 mA 0.5 V
VIH Input High Voltage 2.0 VCC V
VIL Input Low Voltage (Note 3) 0.0 0.8 V
IIX Input Current Ground ≤ VIN ≤ VCC (Note 12) ±20 µA
IOZ Output Leakage Current Ground ≤ VOUT ≤ VCC (Note 12) ±20 µA
ICC1 VCC Current, Dynamic (Notes 5, 6) 15 30 mA
ICC2 VCC Current, Quiescent (Note 7) 1.5 mA
Arithmetic Logic Units
3
08/16/2000–LDS.381-P
DEVICES INCORPORATED
16-bit Cascadable ALU
SWITCHING CHARACTERISTICS — COMMERCIAL OPERATING RANGE (0°C to +70°C)
L4C381
GUARANTEED MAXIMUM COMBINATIONAL DELAYS
To Output
From Input
FTAB = 0, FTF = 0
Clock
C0
S2-S0, OSA, OSB
FTAB = 0, FTF = 1
Clock
C0
S2-S0, OSA, OSB
FTAB = 1, FTF = 0
A15-A0, B15-B0
Clock
C0
S2-S0, OSA, OSB
FTAB = 1, FTF = 1
A15-A0, B15-B0
Clock (OSA, OSB = 0)
C0
S2-S0, OSA, OSB
GUARANTEED MINIMUM SETUP AND HOLD TIMES WITH RESPECT TO CLOCK RISING EDGE
Input
A15-A0, B15-B0
C0
S2-S0, OSA, OSB
ENA, ENB, ENF
TRI-STATE ENABLE/DISABLE TIMES
tENA
tDIS
2345678901234567890123
*DISCONTINUED SPEED GRADE
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
L4C381-55*L4C381-40*L4C381-26
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
20 18 16
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
20 18 16
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
F15-F0 P, G OVF, Z C16
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
Setup Hold Setup Hold
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
2345678901234567890123456789012123456789012345678901234567890121234567890123
L4C381-55
32 38 53 36
— — 34 22
—424242
56 38 53 36
37 — 34 22
55 42 42 42
—364637
32———
— — 34 22
—424242
55 36 46 37
56 38 53 36
37 — 34 22
55 42 42 42
L4C381-55
FTAB = 0 FTAB = 1
82352
21 0 21 0
44 0 44 0
10 2 10 2
Notes 9, 10, 11 (ns)
Notes 9, 10 (ns)
*
F15-F0 P, G OVF, Z C16
*
Setup Hold Setup Hold
CLOCK CYCLE TIME AND PULSE WIDTH
*
Minimum Cycle Time
Highgoing Pulse
Lowgoing Pulse
4
L4C381-40
*
F15-F0 P, G OVF, Z C16
26 30 44 32
— — 28 20
—323435
46 30 44 32
30 — 28 20
40 32 34 35
—304032
26———
— — 28 20
—323435
40 30 40 32
46 30 44 32
30 — 28 20
40 32 34 35
L4C381-40
FTAB = 0 FTAB = 1
82282
16 0 16 0
32 0 32 0
10 2 10 2
*
234567890123456789012345678901212345
234567890123456789012345678901212345
L4C381-55*L4C381-40*L4C381-26
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
43 34 20
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
15 10 10
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
234567890123456789012345678901212345
15 10 10
234567890123456789012345678901212345
Setup Hold Setup Hold
Arithmetic Logic Units
L4C381-26
*
22 22 26 22
— — 18 18
—222222
28 22 26 22
22 — 18 18
26 22 22 22
—222222
22———
— — 18 18
—222222
26 22 22 22
28 22 26 22
22 — 18 18
26 22 22 22
Notes 9, 10 (ns)
L4C381-26
*
FTAB = 0 FTAB = 1
82162
80 80
18 0 18 0
82 82
Notes 9, 10 (ns)
*
08/16/2000–LDS.381-P