LOGIC L2340QC20 Datasheet

DEVICES INCORPORATED
L2340
Digital Synthesizer
L2340
DEVICES INCORPORATED
FEATURES DESCRIPTION
❑❑
Digital Waveform Synthesis at
❑❑
❑❑
24-Bit Polar Phase Angle Accuracy
❑❑ ❑❑
User-selectable Waveform Synthesis,
❑❑
Frequency Modulation, or Phase Modulation.
❑❑
Amplitude Input for Amplitude
❑❑
Modulation and Gain Adjustment.
❑❑
Replaces TRW/Raytheon/Fairchild
❑❑
TMC2340A
❑❑
120-pin PQFP
❑❑
The L2340 is a digital synthesizer that performs waveform synthesis, modu­lation, and demodulation.
The L2340 automatically generates quadrature matched pairs of 16-bit sine and cosine waves in DAC­compatible 16-bit offset binary format with15-bit amplitude and 32-bit phase inputs.
Output waveforms can be phase or frequency modulated. Digital output frequencies are restricted to the Nyquist limit.
Functional Description
The L2340 converts Polar (Phase and Magnitude) data into Rectangular (Cartesian) coordinates. The user
Digital Synthesizer
selects the numeric format. A valid transformed result is seen at the output after 22 clock cycles and will continue upon every clock cycle thereafter.
15-bit amplitude and 32-bit phase data are input into the L2340 to produce an output of 16-bit rectangular data. The user may select the data format to either 16-bit offset binary or 15-bit unsigned magnitude format. High accuracy phase increment values with minimal accumulation error is accom­plished by use of a 32-bit phase accumulator.
The phase accumulator structure supports frequency or phase modula­tion and is selected by ENP1-0 and accumulator controls FM and PM.
L2340 BLOCK DIAGRAM
ENP
ENA
AM
PH
OBIQ
14-0
1-0
31-0
FM
PM
15
32
2
16
OEI
I
15-0
Digital
Synthesizer
OEQ
16
Q
15-0
CLK
Special Arithmetic Functions
1
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
L2340
Digital Synthesizer
L2340 FUNCTIONAL BLOCK DIAGRAM
14-0
OBIQ
OEI
15
15
15
16
16
AM
ENA ENP
32
AM
TRANSFORM
*
PROCESSOR
PH
MC
31-0
Outputs
I15-0 — x-coordinate Data Output
1-0
FM PM
I15-0 is the 16-bit Cartesian x-coordi-
32
2
nate Data output port. When OEI is HIGH, I15-0 is forced into the high­impedance state. I15 is forced HIGH if OBIQ is LOW.
Q15-0 — y-coordinate Data Output
32
PM
32
Q15-0 is the 16-bit Cartesian y-coordi­nate Data output port. When OEQ is HIGH, Q15-0 is forced into the high­impedance state. Q15 is forced HIGH if OBIQ is LOW.
FM
24
32
Controls
ENA — Amplitude Modulation Data
Input Enable
24
When ENA is HIGH, AM is latched into the input register on the rising
16
edge of clock. When ENA is LOW, the value stored in the register is un­changed.
16
OEQ
ENP1-0 — Phase Modulation Data Input
Control
I
15-0
REQUIRES 18 CYCLES TO COMPLETE AND IS FULLY PIPELINED*
SIGNAL DEFINITIONS
Power
Vcc and GND
+5V power supply. All pins must be connected.
Clock
CLK — Master Clock
The rising edge of CLK strobes all enabled registers.
Q
15-0
Inputs
AM14-0 — Amplitude Modulation Data Input
AM14-0 is the 15-bit Amplitude Modulation Data input port. AM14-0 is latched on the rising edge of CLK.
PH31-0 — Phase Angle Data Input
PH31-0 is the 32-bit Phase Angle Data input port. Input phase accumulators are loaded through this port into registers enabled by ENP1-0. PH31-0 is latched on the rising edge of CLK.
ENP1-0 is the 2-bit Phase Modulation Data Input Control that determines one of the four modes shown in Table
1. ‘M’ is the Modulation Register and ‘C’ is the Carrier Register as shown in the Functional Block Diagram.
TABLE 1. REGISTER OPERATION
ENP1-0 Configuration
0 0 No registers enabled, current data held 0 1 M register input enabled, C data held 1 0 C register input enabled, M data held 1 1 M register = 0, C register input enabled
TABLE 2. ACCUMULATOR CONTROL
FM PM Configuration
00No accumulation (normal operation) 01PM accumulator path enabled 10FM accumulator path enabled 11Logical OR of PM and FM (Nonsensical)
Special Arithmetic Functions
2
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
L2340
Digital Synthesizer
FM, PM — Frequency Modulation,
Phase Modulation Control
FM and PM is the 2-bit Frequency Modulation/Phase Modulation Control that determines one of the four modes shown in Table 2. When full-scale is exceeded, the accumulator will roll over correctly allowing continuous phase accumulation through 2π radians.
FIGURE 1A.INPUT FORMATS
AM PH
14 13 12 2 1 0 2142132
12
OBIQ — Data Input/Output Format
Select
When OBIQ is HIGH, offset binary format is selected. When OBIQ is LOW, unsigned format is selected.
OEI — x-coordinate Data Output
Enable
When OEI is LOW, I15-0 is enabled for data output. When OEI is HIGH, I15-0 is placed in a high-impedance state.
(RTP = 0)
Fract. Unsigned Mag./Two's Comp.Integer Unsigned Magnitude
22212
0
OEQ — y-coordinate Data Output
Enable
When OEQ is LOW, Q15-0 is enabled for data output. When OEQ is HIGH, Q15-0 is placed in a high-impedance state.
31 30 29 2 1 0
*±202–12
–2
–292–302–31
2
*±20 denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π and phase accumulator is modulo 2
FIGURE 1B.OUTPUT FORMATS
IQ
14 13 12 2 1 0
14213212
2
15 14 13 2 1 0
14213
NS 2
NS denotes negative sign. (i.e. '1' negates the number)
32
, this bit may be regarded as ±π
.
Integer Unsigned Magnitude (OBIQ = 0)
14 13 12 2 1 0
22212
0
14213212
2
Offset Binary (OBIQ = 1)
15 14 13 2 1 0
22212
0
NS 2
14213
22212
22212
0
0
Special Arithmetic Functions
3
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
L2340
Digital Synthesizer
Circle Test
When performing a coordinate transformation, inaccuracies are introduced by a combination of quantization and approximation errors. The accuracy of a coordinate transformer is dependent on the word length used for the input variables, the word length used for internal calculations, as well as the number of iterations or steps per­formed. Truncation errors are due to the finite word length and ap­proximation errors are due to the finite number of iterations. For example, in the case of performing a polar-to-rectangular transformation, the accuracy of the rotation will be determined by how closely the input rotation angle was approximated by the summation of sub-rotation angles.
In this study, we compare how accurately a coordinate transformer with a 16-bit internal processor versus a 24-bit internal processor can calculate all the coordinates of a circle. By setting the radius to 7FFFH, θ is incremented using the accumulator of the L2340 in steps of 0000 4000H until all the points of a full circle are calculated into rectan­gular coordinates.
error will introduce noise when performing waveform sythesis, modulation, and demodulation.
Data values for Figure 2 and Figure 3 are shown in Table 3. By looking at these values, we observe the step resolution on a 16-bit internal processor is not 1 unit in the x and y. In most cases, the minimum step resolution is 2 units in the x and y. On the other hand, step resolution on a 24-bit internal processor is 1 unit in the x and y thus resulting in greater accuracy.
The minimum theoretical angle resolution that could be produced is
0.00175° when x = 7FFFH and y = 1H. A 16-bit internal processor can produce a minimum angle resolu­tion of only 0.00549° and will not be able to properly calculate the theoretical minimum angle resolu­tion. On the other hand, a 24-bit internal processor can produce a minimum angle resolution of
0.00002° and could therefore prop­erly calculate the theoretical mini­mum angle resolution.
FIGURE 2. CIRCLE TEST RESULT NEAR 45° (16-BIT INTERNAL PROCES-
SOR)
23200
23190
23180
23170
Y
23160
23150
23140
23140 23150 23160 23170 23180 23190 23200
X
The resulting rectangular coordi­nates were plotted and graphed. A graphical representation of the resulting vectors for both 16-bit and 24-bit internal processors are com­pared at 45°. Theoretically, a perfect circle is the desired output but when the resulting vectors from a coordinate transformer with 16-bit internal processor are graphed and displayed as shown in Figure 2, we see significant errors due to the inherent properties of a digital synthesizer. In comparison, the 24­bit internal processor proves to be significantly more accurate than a 16-bit internal processor due to minimization of truncation errors. In many applications, this margin of
FIGURE 3. CIRCLE TEST RESULT NEAR 45° (24-BIT INTERNAL PROCES-
SOR)
23200
23190
23180
23170
Y
23160
23150
23140
23140 23150 23160 23170 23180 23190 23200
X
Special Arithmetic Functions
4
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
TABLE 3. RESULTANT DATA VALUES OF CIRCLE TEST NEAR 45°
16-bit Internal Processor 24-bit Internal Processor
x x (HEX) y y (HEX) x x (HEX) y y (HEX)
23201 5AA1 23139 5A63 23199 5A9F 23140 5A64 23199 5A9F 23141 5A65 23198 5A9E 23141 5A65 23199 5A9F 23141 5A65 23198 5A9E 23141 5A65 23199 5A9F 23141 5A65 23197 5A9D 23142 5A66 23199 5A9F 23141 5A65 23197 5A9D 23142 5A66 23197 5A9D 23143 5A67 23196 5A9C 23143 5A67 23197 5A9D 23143 5A67 23196 5A9C 23143 5A67 23197 5A9D 23143 5A67 23195 5A9B 23144 5A68 23197 5A9D 23143 5A67 23194 5A9A 23145 5A69 23195 5A9B 23145 5A69 23194 5A9A 23145 5A69 23195 5A9B 23145 5A69 23194 5A9A 23145 5A69 23195 5A9B 23145 5A69 23193 5A99 23146 5A6A 23195 5A9B 23145 5A69 23192 5A98 23147 5A6B 23192 5A98 23148 5A6C 23191 5A97 23148 5A6C 23192 5A98 03148 5A6C 23191 5A97 23148 5A6C 23192 5A98 23148 5A6C 23191 5A97 23148 5A6C 23192 5A98 23148 5A6C 23190 5A96 23149 5A6D 23190 5A96 23150 5A6E 23189 5A95 23150 5A6E 23190 5A96 23150 5A6E 23189 5A95 23150 5A6E 23190 5A96 23150 5A6E 23189 5A95 23150 5A6E 23190 5A96 23150 5A6E 23188 5A94 23151 5A6F 23187 5A93 23152 5A70 23187 5A93 23152 5A70 23187 5A93 23152 5A70 23186 5A92 23153 5A71 23187 5A93 23152 5A70 23186 5A92 23153 5A71 23187 5A93 23152 5A70 23186 5A92 23153 5A71 23185 5A91 23154 5A72 23185 5A91 23154 5A72 23185 5A91 23154 5A72 23184 5A90 23155 5A73 23185 5A91 23154 5A72 23184 5A90 23155 5A73 23185 5A91 23154 5A72 23184 5A90 23155 5A73 23183 5A8F 23156 5A74 23183 5A8F 23156 5A74
L2340
Digital Synthesizer
Special Arithmetic Functions
5
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
L2340
Digital Synthesizer
MAXIMUM RATINGS
Storage temperature ........................................................................................................... –65°C to +150°C
Operating ambient temperature........................................................................................... –55°C to +125°C
VCC supply voltage with respect to ground............................................................................ –0.5 V to +7.0V
Input signal with respect to ground ............................................................................... –0.5 V to VCC + 0.5 V
Signal applied to high impedance output ...................................................................... –0.5 V to VCC + 0.5 V
Output current into low outputs............................................................................................................. 25 mA
Latchup current ............................................................................................................................... > 400 mA
OPERATING CONDITIONS
Active Operation, Commercial 0°C to +70°C 4.75 V VCC 5.25 V Active Operation, Military –55°C to +125°C 4.50 V VCC 5.50 V
ELECTRICAL CHARACTERISTICS
Above which useful life may be impaired (Notes 1, 2, 3, 8)
To meet specified electrical and switching characteristics
Mode Temperature Range (Ambient) Supply Voltage
Over Operating Conditions (Note 4)
Symbol Parameter Test Condition Min Typ Max Unit
VOH Output High Voltage VCC = Min., IOH = –2.0 mA 2.4 V VOL Output Low Voltage VCC = Min., IOL = 4.0 mA 0.4 V VIH Input High Voltage 2.0 VCC V V IL Input Low Voltage (Note 3) 0.0 0.8 V IIX Input Current Ground VIN VCC (Note 12) ±10 µA IOZ Output Leakage Current Ground VOUT VCC (Note 12) ±10 µA ICC1 VCC Current, Dynamic (Notes 5, 6) 95 mA ICC2 VCC Current, Quiescent (Note 7) 5mA CIN Input Capacitance TA = 25°C, f = 1 MHz 10 pF COUT Output Capacitance TA = 25°C, f = 1 MHz 10 pF
Special Arithmetic Functions
6
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
1234567890123456789012345678901212345678901234
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1234567890123456789012345678901212345678901234
1234567890123456789012345678901
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1234567890123456789012345678901
3
3
SWITCHING CHARACTERISTICS
L2340
Digital Synthesizer
COMMERCIAL OPERATING RANGE (0°C to +70°C)
Symbol Parameter Min Max Min Max Min Max
tCYC Cycle Time 50 25 20 tPWL Clock Pulse Width Low 10 8 7 tPWH Clock Pulse Width High 8 7 6 tS Input Setup Time 12 7 6 tH Input Hold Time 1 0 1 tD Output Delay 22 18 16 tENA Three-State Output Enable Delay (Note 11) 13 13 13 tDIS Three-State Output Disable Delay (Note 11) 13 13 13
MILITARY OPERATING RANGE (–55°C to +125°C)
Symbol Parameter Min Max Min Max Min Max
tCYC Cycle Time 50 25 20 tPWL Clock Pulse Width Low 11 9 7 tPWH Clock Pulse Width High 8 7 6 tS Input Setup Time 13 7 6 tH Input Hold Time 2 2 1 tD Output Delay 25 20 18 tENA Three-State Output Enable Delay (Note 11) 15 14 13 tDIS Three-State Output Disable Delay (Note 11) 15 14 13
Notes 9, 10 (ns)
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
23456789012345678901234567890
Notes 9, 10 (ns)
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
50
50
L2340–
*
25
*
20
L2340–
*
25
*
20
*
234567890123456789012
234567890123456789012
*DISCONTINUED SPEED GRADE
7
Special Arithmetic Functions
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
SWITCHING WAVEFORMS:NO ACCUMULATION
L2340
Digital Synthesizer
01232223
CLK
t
H
t
S
OBIQ
FM, PM
ENA
ENP
1-0
AM
14-0
PH
31-0
I
15-0
Q
15-0
00 00 00
EN EN EN
A B C
SWITCHING WAVEFORMS:PHASE MODULATION
CLK
OBIQ
FM, PM
ENA
0123422
00 01
01 01
24
t
t
PWL
CYC
t
PWH
D
t
f(A) f(B)
23
01
24 25
AM
ENP
PH
14-0
1-0
31-0
15-0
I
Q
15-0
R
10
C
01 01 01
I J K
01
L
C + I 2C + J 3C + K 4C + L
Special Arithmetic Functions
8
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
S1
I
OH
I
OL
V
TH
C
L
DUT
OE
0.2 V
t
DIS
t
ENA
0.2 V
1.5 V 1.5 V
3.5V Vth
1
Z
0
Z
Z
1
Z
0
1.5 V
1.5 V
0V Vth
VOL*
V
OH
*
V
OL
*
V
OH
*
Measured V
OL
with IOH = –10mA and IOL = 10mA
Measured V
OH
with IOH = –10mA and IOL = 10mA
NOTES
L2340
Digital Synthesizer
1. Maximum Ratings indicate stress specifications only. Functional oper­ation of these products at values be­yond those indicated in the Operating Conditions table is not implied. Expo­sure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this spec­ification include internal circuitry de­signed to protect the chip from damag­ing substrate injection currents and ac­cumulations of static charge. Never­theless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above
VCC will be clamped beginning at –
0.6 V and VCC + 0.6 V. The device can withstand indefinite operation with in­puts in the range of –0.5 V to +7.0 V. Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA.
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except
tDIS test), and input levels of nominally
0 to 3.0 V. Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs ca­pable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1 µF ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the ±200mV level from the measured steady-state output voltage with ±10mA loads. The balancing volt­age, VTH, is set at 3.5 V for Z-to-0 and 0-to-Z tests, and set at 0 V for Z­to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
FIGURE A. OUTPUT LOADING CIRCUIT
FIGURE B. THRESHOLD LEVELS
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
2
NCV F
where
4
N = total number of device outputs C = capacitive load per output V = supply voltage F = clock frequency
6. Tested with all outputs changing ev­ery cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of
VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a min­imum or maximum value. Input re­quirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the exter­nal system must supply at least that much time to meet the worst-case re­quirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
9
Special Arithmetic Functions
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
ORDERING INFORMATION
L2340
Digital Synthesizer
120-pin
V
CC
Q Q
GND
Q Q Q
V
CC
OEQ GND GND
CLK
GND OBIQ ENP
GND ENP
PM FM
CC
V PH PH PH PH PH PH PH
GND
PH PH
Q5Q6GND
Q7Q8Q9GND
120
119
118
1
4
2
3
3 4
2
5
1
6
0
7 8 9 10 11 12 13 14
0
15 16
1
17 18 19 20
0
21
1
22
2
23
3
24
4
25
5
26
6
27 28
7
29
8
30
117
3132333435363738394041424344454647484950515253545556575859
Q10Q11Q12VCCQ13Q14Q15GND
116
115
114
113
112
111
110
109
GND
108
107
106
105
Top
View
I0I1VCCI2I3I4GND
104
103
999897969594939291
102
101
100
I5I6I7GND
I8I9V
CC
90
I
10
89
I
11
88
GND
87
I
12
86
I
13
85
I
14
V
84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
60
CC
I
15
GND OEI
CC
V GND AM AM GND AM AM AM AM AM AM AM GND AM AM AM GND AM AM V
CC
14 13
12 11 10 9 8 7 6
5 4 3
2 1
Speed
20 ns
9
10
CC
PH
V
GND
PH
PH11PH12PH13PH14PH15PH16PH
0°C to +70°C — COMMERCIAL SCREENING
17
CC
V
20
PH18PH19PH
GND
21PH22PH23
PH
CC
V
Plastic Quad Flatpack
(Q1)
L2340QC20
PH24PH25PH26PH27PH28PH29PH30PH
31
ENR
0
AM
Special Arithmetic Functions
10
08/16/2000–LDS.2340-E
DEVICES INCORPORATED
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
ORDERING INFORMATION
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
120-pin
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
12345
A
Q
7
Q
5
Q
B
Q
4
Q
3
Q
C
Q
2
Q
1
V
D
Q
0
OEQ
GND
E
GND
V
GND
F
GND
CLK
OBIQ
G
GND
0
1
ENP
ENP
H
V
FM
PM
J
PH
PH
1
0
PH
K
PH
4
PH
2
GND
L
GND
PH
PH
7
5
M
PH
PH
PH
9
6
N
PH
10
PH
8
PH
CC
CC
CC
6
Q
10
Q
12
Q
14
8
Q
9
Q
GND
11
GND
6
Q
GND
Q
13
GND
V
CC
KEY
Top View
Through Package
(i.e., Component Side Pinout)
3
CC
14
V
CC
PH
PH
GND
18
PH
19
PH
V
YPI
PH
13
PH
PH
16
15
PH
17
11
12
Discontinued Package
7 8 9 10 11
15
I
0
I
2
I
4
I
1
I
3
I
5
V
CC
GND
GND
V
GND
V
V
GND
AM
GND
GND
V
CC
27
PH
20
PH
23
PH
25
21
PH
22
PH
24
PH
PH
PH
V
31
28
ENA
PH
26
I
6
I
7
CC
CC
CC
CC
Ceramic Pin Grid Array
Speed
(G4)
0°C to +70°C — COMMERCIAL SCREENING
–55°C to +125°C — COMMERCIAL SCREENING
–55°C to +125°C — MIL-STD-883 COMPLIANT
Special Arithmetic Functions
11
Digital Synthesizer
12 13
I
8
I
10
I
9
I
12
I
11
I
13
I
14
I
15
GND
OEI
GND
AM
14
AM
12
AM
13
9
AM
10
AM
11
AM
7
AM
8
AM
5
AM
6
AM
3
AM
4
AM
1
AM
2
29
PH
30
AM
0
L2340
08/16/2000–LDS.2340-E
Loading...