LOGIC L2330QC25, L2330QC20 Datasheet

DEVICES INCORPORATED
L2330
Coordinate Transformer
L2330
DEVICES INCORPORATED
FEATURES DESCRIPTION
❑❑
Rectangular-to-Polar or Polar-to-
❑❑
❑❑
Performs Direct Digital Synthesis
❑❑
(DDS) functions along with PM and FM Modulation
❑❑
24-Bit Polar Phase Angle Accuracy
❑❑ ❑❑
Replaces Fairchild TMC2330A
❑❑ ❑❑
120-pin PQFP
❑❑
The L2330 is a coordinate transformer that converts bidirectionally between Rectangular and Polar coordinates.
When in Rectangular-to-Polar mode, the L2330 is able to retrieve phase and magnitude information or backward map from a rectangular raster display to a radial data set.
When in Polar-to-Rectangular mode, the L2330 is able to execute direct digital waveform synthesis and modulation. Real-time image-space conversions are achieved from radi­ally-generated images, such as RADAR, SONAR, and ultrasound to raster display formats.
Functional Description
The L2330 converts bidirectionally between Rectangular (Cartesian) and Polar (Phase and Magnitude) coordi­nates. The user selects the numeric format. A valid transformed result is
Coordinate T ransformer
seen at the output after 22 clock cycles and will continue upon every clock cycle thereafter.
When in Rectangular-to-Polar mode, the user inputs a 16-bit Rectangular coordinate and the output generates a Polar transformation with 16-bit magnitude and 16-bit phase. The user may select the data format to be either two’s complement or sign-and­magnitude Cartesian data format. Polar Magnitude data is always in magnitude format only. Polar Phase Angle data is modulo 2π so it may be regarded as either unsigned or two’s complement format.
When in Polar-to-Rectangular mode, the user inputs 16-bit Polar Magnitude and 32-bit Phase data and the output generates a 16-bit Rectangular coordi­nate. The use may select the data format to be either two’s complement or sign-and-magnitude Cartesian data format.
L2330 BLOCK DIAGRAM
ENXR
XRIN
ENYP
YPIN
ACC
TCXY
RTP
CLK
15-0
1-0
31-0
1-0
16
32
OERX
2
2
POLAR
RECTANGULAR
16
16
RXOUT
OEPY
PYOUT
OVF
15-0
15-0
Special Arithmetic Functions
1
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
L2330
Coordinate T ransf ormer
L2330 FUNCTIONAL BLOCK DIAGRAM
15-0
XRIN
16
16
16
TCXY
RTP
16
16
OERX
ENXR ENYP
AM
TRANSFORM
*
PROCESSOR
YPIN
32
MC
31-0
Outputs
RXOUT15-0 — x-coordinate/Magnitude
1-0
ACC
1
32
2
ACC
0
Data Output
RXOUT15-0 is the 16-bit Cartesian x-coordinate/Polar Magnitude Data output port. When OERX is HIGH, RXOUT15-0 is forced into the high­impedance state.
32
PM
32
PYOUT15-0 — y-coordinate/Phase Angle
Data Output
PYOUT15-0 is the 16-bit Cartesian y-coordinate/Polar Phase Angle Data
FM
**
n
**
n
32
output port. When OEPY is HIGH, PYOUT15-0 is forced into the high­impedance state.
Controls
ENXR — x-coordinate/Magnitude Data
Input Enable
16
When ENXR is HIGH, XRIN is latched into the input register on the rising
16
edge of clock. When ENXR is LOW, the value stored in the register is
OEPY
unchanged.
RXOUT
15-0
REQUIRES 18 CYCLES TO COMPLETE AND IS FULLY PIPELINED* WHEN RTP IS HIGH ’n’ IS 16-BITS, WHEN RTP IS LOW ’n’ IS 24-BITS**
OVF
SIGNAL DEFINITIONS
Power
VCC and GND
+5V power supply. All pins must be connected.
Clock
CLK — Master Clock
The rising edge of CLK strobes all enabled registers.
PYOUT
15-0
Inputs
XRIN15-0 — x-coordinate/Magnitude
Data Input
XRIN15-0 is the 16-bit Cartesian x-coordinate/Polar Magnitude Data input port. XRIN15-0 is latched on the rising edge of CLK.
YPIN31-0 — y-coordinate/Phase Angle
Data Input
YPIN31-0 is the 32-bit Cartesian y-coordinate/Polar Phase Angle Data input port. When RTP is HIGH, the input accumulators should not be used. When ACC is LOW, the upper 16 bits of YPIN are the input port and the lower 16 bits become “don’t cares”. YPIN31-0 is latched on the rising edge of CLK.
ENYP1-0 — y-coordinate/Phase Angle
Data Input Control
ENYP1-0 is the 2-bit y-coordinate/ Phase Angle Data Input Control that determines four modes as shown in
TABLE 1. REGISTER OPERATION
ENYP1-0 MC
0 0 Hold Hold 0 1 Load Hold 1 0 Hold Load 1 1 Clear Load
TABLE 2. ACCUMULATOR CONTROL
ACC1-0 Configuration
0 0 No accumulation (normal operation) 0 1 PM accumulator path enabled 1 0 FM accumulator path enabled 1 1 Logical OR of PM and FM (Nonsensical)
Special Arithmetic Functions
2
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
L2330
Coordinate Transformer
Table 1. ‘M’ is the Modulation Register and ‘C’ is the Carrier Register as shown in the Functional Block Diagram.
RTP — Rectangular-to-Polar
When RTP is HIGH, Rectangular-to­Polar conversion mode is selected. When RTP is LOW, Polar-to-Rectan­gular conversion mode is selected.
FIGURE 1A.INPUT FORMATS
XRIN YPIN
15 14 13 2 1 0 2152142
15 14 13 2 1 0
NS 2142
13
13
ACC1-0 — Accumulator Control
ACC1-0 is the 2-bit accumulator control that determines four modes as shown in Table 2. Changing of the internal phase Accumulator structure is very useful when RTP is LOW allowing for waveform synthesis and modulation. ACC1-0 set to ‘00’ is most commonly used when RTP is HIGH
(RTP = 0)
Fract. Unsigned Mag./Two's Comp.Integer Unsigned Magnitude
22212
0
Integer Signed Magnitude (RTP = 1, TCXY = 0)
22212
0
31 30 29 2 1 0
*±202–12
–2
31 30 29 18 17 16
NS 2142
13
unless performing backward mapping from Cartesian to Polar coordinates.
TCXY — Data Input/Output Format
Select
When TCXY is HIGH, two’s comple­ment format is selected. When TCXY is LOW, sign-and-magnitude format is selected.
–292–302–31
2
22212
0
Integer Two's Complement (RTP = 1, TCXY = 1)
15 14 13 2 1 0
–2152142
13
22212
0
31 30 29 18 17 16
–2152142
13
22212
(RTP = 0)
Fractional Unsigned Magnitude
15 14 13 2 1 0
202–12
–2
–132–142–15
2
Fract. Unsigned Mag./Two's Comp.
31 30 29 2 1 0
*±202–12
–2
–292–302–31
2
Fractional Signed Magnitude (RTP = 1, TCXY = 0)
15 14 13 2 1 0
NS 2–12
–2
–132–142–15
2
31 30 29 18 17 16
NS 2–12
–2
–132–142–15
2
Fractional Two's Complement (RTP = 1, TCXY = 1)
15 14 13 2 1 0
–202–12
*±20 denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π and phase accumulator is modulo 232, this bit may be regarded as ±π. NS denotes negative sign. (i.e. '1' negates the number)
–2
–132–142–15
2
31 30 29 18 17 16
–202–12
–2
–132–142–15
2
0
Special Arithmetic Functions
3
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
L2330
Coordinate T ransf ormer
OVF — Overflow Flag
OVF will go HIGH on the clock the magnitude of either of the current Cartesian coordinate outputs exceed the maximum range. OVF will return LOW on the clock that the Cartesian output value(s) return within range. An overflow condition can only occur when RTP is LOW.
FIGURE 1B.OUTPUT FORMATS
RXOUT PYOUT
15 14 13 2 1 0
NS 2142
15 14 13 2 1 0
–2152142
13
13
OERX — x-coordinate/Magnitude Data
Output Enable
When OERX is LOW, RXOUT15-0 is enabled for output. When OERX is HIGH, RXOUT15-0 is placed in a high-impedance state.
Integer Signed Magnitude (RTP = 0, TCXY = 0)
22212
0
Integer Two's Complement (RTP = 0, TCXY = 1)
22212
0
15 14 13 2 1 0
NS 2142
13
15 14 13 2 1 0
–2152142
13
OEPY — y-coordinate/Phase Angle Data
Output Enable
When OEPY is LOW, PYOUT15-0 is enabled for output. When OEPY is HIGH, PYOUT15-0 is placed in a high-impedance state.
22212
22212
0
0
(RTP = 1)
Fract. Unsigned Mag./Two's Comp.Integer Unsigned Magnitude
15 14 13 2 1 0 2152142
13
22212
0
15 14 13 2 1 0
*±202–12
–2
–132–142–15
2
Fractional Signed Magnitude (RTP = 0, TCXY = 0)
15 14 13 2 1 0
NS 2–12
–2
–132–142–15
2
15 14 13 2 1 0
NS 2–12
–2
–132–142–15
2
Fractional Two's Complement (RTP = 0, TCXY = 1)
15 14 13 2 1 0
–202–12
–2
–132–142–15
2
15 14 13 2 1 0
–202–12
–2
–132–142–15
2
(RTP = 1)
Fract. Unsigned Mag./Two's Comp.Fractional Unsigned Magnitude
15 14 13 2 1 0
202–12
*±20 denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π and phase accumulator is modulo 232, this bit may be regarded as ±π NS denotes negative sign. (i.e. '1' negates the number)
–2
–132–142–15
2
15 14 13 2 1 0
*±202–12
–2
–132–142–15
2
.
Special Arithmetic Functions
4
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
L2330
Coordinate Transformer
Conversion Ranges
The L2330 supports 16-bit unsigned radii and 16-bit signed Cartesian coordinates. Since the 16-bit rectangular coordinate space does not completely cover the polar space defined by 16-bit radii, certain values of “r” will not map correctly. This condition is indicated by the overflow (OVF) flag.
In Polar-to-Rectangular conversions, no overflow occurs for r 32767 (7FFFH). Overflow will always occur when r > 46341 (B505H). Note that in signed magnitude mode r = 46340 (B504H) will also cause an overflow. For 32767 r 46340, overflow may occur depend­ing on the exact values of r and θ. Figure 2 shows, for the first quadrant, these three regions: A = no overflow (correct conversion), B = possible overflow, C = overflow. The other quadrants are mapped in a similar manner.
complement number system is not symmetric about zero. For example, if the X or Y component of the input is –32768 (8000H), no overflow occurs. But if the X or Y component of the input is +32768, overflow does occur.
FIGURE 2. CONVERSION RANGES
π/2
65535
32767
When converting from Rectangular-to­Polar, if both inputs are zero the radius is zero but the angle is not defined. The L2330 will output 4707H in this case. Since the angle is not defined for a zero length vector, this is not an error.
C
B
When in signed magnitude mode, the overflows on the other three quadrants are the same as in the first. This occurs because the signed magnitude number system is symmetric about zero. For example, if a given r and angle θ cause an overflow, the same r will cause an overflow for the angles -θ, π+θ , π-θ.
However, when in two’s complement mode, the overflows aren’t quite the same. This occurs because the two’s
A
y
r
θ
x
32767
65535
Special Arithmetic Functions
5
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
L2330
Coordinate T ransf ormer
Internal Precision
When performing a coordinate transformation, inaccuracies are introduced by a combination of quantization and approximation errors. The accuracy of a coordinate transformer is dependent on the word length used for the input variables, the word length used for internal calculations, as well as the number of iterations or steps per­formed. Truncation errors are due to the finite word length, and approximation errors are due to the finite number of iterations. For example, in the case of performing a polar-to-rectangular transformation, the accuracy of the rotation will be determined by how closely the input rotation angle was approximated by the summation of sub-rotation angles.
In this study, we examine the effectiveness of 16-bit internal precision versus 24-bit internal precision. 10,000 random Rectangu­lar coordinates were converted to Polar and back to Rectangular. The resulting Rectangular coordinates from this double conversion were then compared to the original
Rectangular coordinates input to the device. These vectors, with maxi­mum word width of 16-bits, were sent through a 16-bit internal processor versus a 24-bit internal processor. The Rectangular coordi­nates were limited to the following conditions:
–32769<x<32768 –32769<y<32768
Using the 16-bit internal processor, the resulting Rectangular coordinates were compared to the original Rectangular coordinates (see Table 3). Using the 24­bit internal processor, the resulting
Rectangular coordinates were com­pared to the original Rectangular coordinates (see Table 3). By way of comparison between the 16-bit internal processor and the 24-bit internal processor, we find that the 24-bit internal processor is significantly more accurate. This accuracy is due to internal word length. During coordi­nate transformation, the number of bits truncated within a 24-bit internal processor are much smaller than in a 16-bit internal processor resulting in smaller error.
TABLE 3. DOUBLE CONVERSION ERROR
Error Internal 16-bit Internal 24-bit
Mean Error (X) 0.0216 –0.0118 Mean Error (Y) –0.0036 –0.0028 Mean Absolute Error (X) 1.5736 0.5116 Mean Absolute Error (Y) 1.0756 0.5160 Root Mean Square Error (X) 2.0168 0.7664 Root Mean Square Error (Y) 1.4356 0.7738 Max Error (X) 6.0/–7.0 3.0/–3.0 Max Error (Y) 5.0/–5.0 3.0/–3.0 Standard Deviation of Error (X) 2.0168 0.7664 Standard Deviation of Error (Y) 1.4357 0.7739
Special Arithmetic Functions
6
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
L2330
Coordinate Transformer
Circle Test
When performing a polar-to-rectangu­lar transformation, a 24-bit internal processor proves to be significantly more accurate than a 16-bit internal processor.
In this study, we compare how accu­rately a coordinate transformer with a 16-bit internal processor versus a 24-bit internal processor can calculate all the coordinates of a circle. By setting the radius to 7FFFH (maximum before overflow), θ is incremented using the accumulator of the L2330 in steps of 0000 4000H until all the points of a full circle are calculated into rectangular coordinates.
The resulting rectangular coordinates were plotted and graphed. A graphical representation of the resulting vectors for both 16-bit and 24-bit internal processors are compared near 45°. Theoretically, a perfect circle is the desired output but when the resulting vectors from a coordinate transformer with 16-bit internal processor are graphed and displayed as shown in Figure 3, we see significant errors due to the inherent properties of a digital coordinate transformation system. In comparison, the 24-bit internal proces­sor proves to be significantly more accurate than a 16-bit internal processor due to minimization of truncation errors. In many applications, this margin of error is of great significance especially when being used in applica­tions such as medical ultrasound or modulation techniques.
step resolution on a 24-bit internal processor is 1 unit in the x and y thus resulting in greater accuracy.
The minimum theoretical angle resolu­tion that could be produced is 0.00175° when x = 7FFFH and y = 1H. A 16-bit internal processor can produce a minimum angle resolution of only
0.00549° and will not be able to prop­erly calculate the theoretical minimum angle resolution. On the other hand, a 24-bit internal processor can produce a minimum angle resolution of 0.00002° and could therefore properly calculate the theoretical minimum angle resolu­tion.
FIGURE 3. CIRCLE TEST RESULT NEAR 45° (16-BIT INTERNAL PROCESSOR)
23200
23190
23180
23170
Y
23160
23150
23140
23140 23150 23160 23170 23180 23190 23200
X
FIGURE 4. CIRCLE TEST RESULT NEAR 45° (24-BIT INTERNAL PROCESSOR)
23200
23190
23180
23170
Y
23160
Data values for Figure 3 and Figure 4 are shown in Table 4. By looking at these values, we observe the step resolution on a 16-bit internal processor is not 1 unit in the x and y. In most cases, the minimum step resolution is 2 units in the x and y. On the other hand,
23150
23140
23140 23150 23160 23170 23180 23190 23200
X
Special Arithmetic Functions
7
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
TABLE 4. R ESULTANT DATA VALUES OF CIRCLE TEST NEAR 45°
16-bit Internal Processor 24-bit Internal Processor
x x (HEX) y y (HEX) x x (HEX) y y (HEX)
23201 5AA1 23139 5A63 23199 5A9F 23140 5A64 23199 5A9F 23141 5A65 23198 5A9E 23141 5A65 23199 5A9F 23141 5A65 23198 5A9E 23141 5A65 23199 5A9F 23141 5A65 23197 5A9D 23142 5A66 23199 5A9F 23141 5A65 23197 5A9D 23142 5A66 23197 5A9D 23143 5A67 23196 5A9C 23143 5A67 23197 5A9D 23143 5A67 23196 5A9C 23143 5A67 23197 5A9D 23143 5A67 23195 5A9B 23144 5A68 23197 5A9D 23143 5A67 23194 5A9A 23145 5A69 23195 5A9B 23145 5A69 23194 5A9A 23145 5A69 23195 5A9B 23145 5A69 23194 5A9A 23145 5A69 23195 5A9B 23145 5A69 23193 5A99 23146 5A6A 23195 5A9B 23145 5A69 23192 5A98 23147 5A6B 23192 5A98 23148 5A6C 23191 5A97 23148 5A6C 23192 5A98 03148 5A6C 23191 5A97 23148 5A6C 23192 5A98 23148 5A6C 23191 5A97 23148 5A6C 23192 5A98 23148 5A6C 23190 5A96 23149 5A6D 23190 5A96 23150 5A6E 23189 5A95 23150 5A6E 23190 5A96 23150 5A6E 23189 5A95 23150 5A6E 23190 5A96 23150 5A6E 23189 5A95 23150 5A6E 23190 5A96 23150 5A6E 23188 5A94 23151 5A6F 23187 5A93 23152 5A70 23187 5A93 23152 5A70 23187 5A93 23152 5A70 23186 5A92 23153 5A71 23187 5A93 23152 5A70 23186 5A92 23153 5A71 23187 5A93 23152 5A70 23186 5A92 23153 5A71 23185 5A91 23154 5A72 23185 5A91 23154 5A72 23185 5A91 23154 5A72 23184 5A90 23155 5A73 23185 5A91 23154 5A72 23184 5A90 23155 5A73 23185 5A91 23154 5A72 23184 5A90 23155 5A73 23183 5A8F 23156 5A74 23183 5A8F 23156 5A74
L2330
Coordinate T ransf ormer
Special Arithmetic Functions
8
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
L2330
Coordinate Transformer
MAXIMUM RATINGS
Storage temperature ........................................................................................................... –65°C to +150°C
Operating ambient temperature........................................................................................... –55°C to +125°C
VCC supply voltage with respect to ground............................................................................ –0.5 V to +7.0V
Input signal with respect to ground ............................................................................... –0.5 V to VCC + 0.5 V
Signal applied to high impedance output ...................................................................... –0.5 V to VCC + 0.5 V
Output current into low outputs............................................................................................................. 25 mA
Latchup current ............................................................................................................................... > 400 mA
OPERATING CONDITIONS
Active Operation, Commercial 0°C to +70°C 4.75 V VCC 5.25 V Active Operation, Military –55°C to +125°C 4.50 V VCC 5.50V
ELECTRICAL CHARACTERISTICS
Above which useful life may be impaired (Notes 1, 2, 3, 8)
To meet specified electrical and switching characteristics
Mode Temperature Range (Ambient) Supply Voltage
Over Operating Conditions (Note 4)
Symbol Parameter Test Condition Min Typ Max Unit
VOH Output High Voltage VCC = Min., IOH = –2.0 mA 2.4 V VOL Output Low Voltage VCC = Min., IOL = 4.0 mA 0.4 V VIH Input High Voltage 2.0 VCC V VIL Input Low Voltage (Note 3) 0.0 0.8 V IIX Input Current Ground VIN VCC (Note 12) ±10 µA IOZ Output Leakage Current Ground VOUT VCC (Note 12) ±10 µA ICC1 VCC Current, Dynamic (Notes 5, 6) 95 mA ICC2 VCC Current, Quiescent (Note 7) 5mA CIN Input Capacitance TA = 25°C, f = 1 MHz 10 pF COUT Output Capacitance TA = 25°C, f = 1 MHz 10 pF
Special Arithmetic Functions
9
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4
4
SWITCHING CHARACTERISTICS
L2330
Coordinate T ransf ormer
COMMERCIAL OPERATING RANGE (0°C to +70°C)
Symbol Parameter Min Max Min Max Min Max
tCYC Cycle Time 50 25 20 tPWL Clock Pulse Width Low 10 8 7 tPWH Clock Pulse Width High 8 7 6 tS Input Setup Time 12 7 6 tH Input Hold Time 1 0 0 tD Output Delay 22 18 16 tENA Three-State Output Enable Delay (Note 11) 13 13 13 tDIS Three-State Output Disable Delay (Note 11) 13 13 13
MILITARY OPERATING RANGE (–55°C to +125°C)
Symbol Parameter Min Max Min Max Min Max
tCYC Cycle Time 50 25 20 tPWL Clock Pulse Width Low 11 9 7 tPWH Clock Pulse Width High 8 7 6 tS Input Setup Time 13 7 6 tH Input Hold Time 2 2 1 tD Output Delay 25 20 18 tENA Three-State Output Enable Delay (Note 11) 15 14 13 tDIS Three-State Output Disable Delay (Note 11) 15 14 13
Notes 9, 10 (ns)
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
Notes 9, 10 (ns)
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
50
50
L2330–
*
25 20
L2330–
*
25
*
20
*
2345678901234567890123
2345678901234567890123
*DISCONTINUED SPEED GRADE
10
Special Arithmetic Functions
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
SWITCHING WAVEFORMS:NO ACCUMULATION
L2330
Coordinate Transformer
01232223
CLK
t
H
t
RTP
S
TCXY
ACC
ENXR
ENYP XRIN
YPIN
RXOUT PYOUT
1-0
1-0
15-0 31-0
15-0 15-0
00 00 00
EN EN EN
A B C
SWITCHING WAVEFORMS:PHASE MODULATION
CLK
RTP, TCXY
ACC
ENXR
1-0
0123422
00 01
01 01
24
t
t
PWL
CYC
t
PWH
D
t
f(A) f(B)
23
01
24 25
XRIN
ENYP
YPIN
RXOUT
PYOUT
15-0
31-0
15-0 15-0
R
1-0
10
C
01 01 01
I J K
01
L
C + I 2C + J 3C + K 4C + L
Special Arithmetic Functions
11
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
S1
I
OH
I
OL
V
TH
C
L
DUT
OE
0.2 V
t
DIS
t
ENA
0.2 V
1.5 V 1.5 V
3.5V Vth
1
Z
0
Z
Z
1
Z
0
1.5 V
1.5 V
0V Vth
VOL*
V
OH
*
V
OL
*
V
OH
*
Measured V
OL
with IOH = –10mA and IOL = 10mA
Measured V
OH
with IOH = –10mA and IOL = 10mA
NOTES
L2330
Coordinate T ransf ormer
1. Maximum Ratings indicate stress specifications only. Functional oper­ation of these products at values be­yond those indicated in the Operating Conditions table is not implied. Expo­sure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this spec­ification include internal circuitry de­signed to protect the chip from damag­ing substrate injection currents and ac­cumulations of static charge. Never­theless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above
VCC will be clamped beginning at –
0.6 V and VCC + 0.6 V. The device can withstand indefinite operation with in­puts in the range of –0.5 V to +7.0 V. Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA.
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except
tDIS test), and input levels of nominally
0 to 3.0 V. Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs ca­pable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1 µF ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the ±200mV level from the measured steady-state output voltage with ±10mA loads. The balancing volt­age, VTH, is set at 3.5 V for Z-to-0 and 0-to-Z tests, and set at 0 V for Z­to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
FIGURE A. OUTPUT LOADING CIRCUIT
FIGURE B. THRESHOLD LEVELS
4. Actual test conditions may vary from those designated but operation is guaranteed as specified.
5. Supply current for a given application can be accurately approximated by:
2
NCV F
where
4
N = total number of device outputs C = capacitive load per output V = supply voltage F = clock frequency
6. Tested with all outputs changing ev­ery cycle and no load, at a 20 MHz clock rate.
7. Tested with all inputs within 0.1 V of
VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a min­imum or maximum value. Input re­quirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the exter­nal system must supply at least that much time to meet the worst-case re­quirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
12
Special Arithmetic Functions
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
ORDERING INFORMATION
120-pin
PYOUT5PYOUT6GND
PYOUT7PYOUT8PYOUT9GND
PYOUT10PYOUT11PYOUT12VCCPYOUT13PYOUT14PYOUT15GND
OVF
RXOUT0RXOUT1VCCRXOUT2RXOUT3RXOUT4GND
Coordinate Transformer
RXOUT5RXOUT6RXOUT7GND
RXOUT8RXOUT9V
CC
L2330
V PYOUT PYOUT
GND PYOUT PYOUT PYOUT
V
OEPY
GND
RTP CLK
GND
TCXY
ENYP
GND
ENYP
ACC ACC
V YPIN YPIN YPIN YPIN YPIN YPIN YPIN
GND YPIN YPIN
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
CC
1
4
2
3
3 4
2
5 6
1
7
0
8
CC
9 10 11 12 13 14 15
0
16 17
1
18
0
19
1
20
CC
21
0
22
1
23
2
24
3
25
4
26
5
27
6
28 29
7
30
8
3132333435363738394041424344454647484950515253545556575859
9
10
CC
V
GND
YPIN
YPIN
YPIN11YPIN12YPIN13YPIN14YPIN15YPIN16YPIN
17
CC
V
Top
View
YPIN18YPIN19YPIN
103
20
21
GND
YPIN22YPIN
YPIN
999897969594939291
102
101
100
23
CC
V
YPIN24YPIN25YPIN26YPIN27YPIN28YPIN29YPIN30YPIN
31
60
0
ENXR
XRIN
90
RXOUT RXOUT GND RXOUT RXOUT RXOUT V
CC
RXOUT GND OERX
CC
V XRIN XRIN XRIN GND XRIN XRIN XRIN XRIN XRIN XRIN XRIN GND XRIN XRIN XRIN GND XRIN XRIN V
CC
10 11
12 13 14
15
15 14 13
12 11 10 9 8 7 6
5 4 3
2 1
89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
Speed
25 ns 20 ns
Plastic Quad Flatpack
(Q1)
0°C to +70°C — COMMERCIAL SCREENING
L2330QC25 L2330QC20
Special Arithmetic Functions
13
09/27/2001–LDS.2330-E
DEVICES INCORPORATED
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ORDERING INFORMATION
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
120-pin
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
23456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012
Speed
0°C to +70°C — COMMERCIAL SCREENING
–55°C to +125°C — COMMERCIAL SCREENING
–55°C to +125°C — MIL-STD-883 COMPLIANT
12345
A
PYO
7
PYO
PYO
5
B
PYO
4
PYO
PYO
3
C
PYO
2
PYO
1
V
D
PYO
0
OEPY
GND
E
GND
V
RTP
F
GND
CLK
TCXY
G
GND
0
1
ENYP
ENYP
H
V
ACC
ACC
1
0
J
YPI
1
YPI
0
YPI
K
YPI
4
YPI
2
GND
L
GND
YPI
YPI
7
5
M
YPI
YPI
YPI
9
6
N
YPI
10
YPI
8
YPI
CC
CC
CC
6
7 8 9 10 11
PYO
10
PYO
12
PYO
14
8
PYO
9
PYO
6
GND
GND
PYO
PYO
V
CC
OVF
13
GND
11
KEY
Top View
Through Package
(i.e., Component Side Pinout)
3
CC
14
V
CC
YPI
YPI
GND
18
YPI
19
YPI
V
YPI
YPI
13
YPI
11
YPI
12
16
15
YPI
17
Discontinued Package
Ceramic Pin Grid Array
(G4)
14
L2330
Coordinate T ransf ormer
12 13
15
RXO
0
RXO
2
RXO
4
RXO
6
RXO
8
RXO
10
RXO
1
RXO
3
RXO
5
RXO
7
RXO
9
RXO
12
V
CC
GND
GND
V
CC
RXO
11
RXO
13
GND
RXO
14
RXO
15
V
CC
GND
OERX
XRI
XRI
XRI
XRI
XRI
XRI
XRI
YPI
XRI
15
14
12
XRI
13
10
XRI
11
7
XRI
8
5
XRI
6
3
XRI
4
1
XRI
2
30
XRI
0
09/27/2001–LDS.2330-E
V
CC
GND
XRI
9
GND
GND
V
CC
27
YPI
20
YPI
23
YPI
25
21
YPI
22
YPI
24
YPI
YPI
YPI
V
31
CC
28
ENXR
YPI
26
29
Special Arithmetic Functions
Loading...