LINEAR TECHNOLOGY LTC3714 Technical data

LTC3714
Intel Compatible,
Wide Operating Range, Step-Down Controller
FEATURES
True Current Mode with Ultrafast Transient
Stable with Ceramic C
t
ON(MIN)
< 100ns for Operation from High Input
OUT
Ranges
Supports Active Voltage Positioning
No Sense Resistor Required
5-Bit VID Programmable Output Voltage: 0.6V to 1.75V
Dual N-Channel MOSFET Synchronous Drive
Programmable Output Offsets
Power Good Output Voltage Monitor
Wide VIN Range: 4V to 36V
±1% 0.6V Reference
Adjustable Frequency
Programmable Soft-Start
Output Overvoltage Protection
Optional Short-Circuit Shutdown Timer
Forced Continuous Control Pin
Logic Controlled Micropower Shutdown: IQ 30µA
Available in 0.209" Wide 28-Lead SSOP Package
U
APPLICATIO S
Power Supply for Mobile Pentium® Processors and Transmeta Processors
Notebook and Portable Computers
with Internal Op Amp
U
DESCRIPTIO
The LTC®3714 is a synchronous step-down switching regulator controller for CPU power. An output voltage between 0.6V and 1.75V is selected by a 5-bit code (Intel mobile VID specification). The controller uses a constant on-time, valley current control architecture to deliver very low duty cycles without requiring a sense resistor. Oper­ating frequency is selected by an external resistor and is compensated for variations in VIN and V
Discontinuous mode operation provides high efficiency operation at light loads. A forced continuous control pin reduces noise and RF interference and can assist second­ary winding regulation by disabling discontinuous mode when the main output is lightly loaded. Internal op amp allows programmable offsets to the output voltage during power saving modes.
Fault protection is provided by internal foldback current limiting, an output overvoltage comparator and optional short-circuit shutdown timer. Soft-start capability for sup­ply sequencing is accomplished using an external timing capacitor. The regulator current limit level is user pro­grammable. Wide supply range allows operation from 4V to 36V at the input.
, LTC and LT are registered trademarks of Linear Technology Corporation.
Pentium is a registered trademark of Intel Corporation.
OUT
.
TYPICAL APPLICATIO
INTV
CC
C
SS
0.1µF
C
C
5-BIT
VID
*OPTIONAL
LTC3714
PGOOD
RUN/SS
I
TH
R
C
SGND
VID4 VID3 VID2 VID1 VID0
BOOST
INTV
SENSE
V
OSENSE
Figure 1. High Efficiency Step-Down Converter
PGND
R
ON
I
ON
V
IN
TG
SW
CB, 0.22µF
D CMDSH-3
CC
BG
+
B
C
VCC
4.7µF
M1 IRF7811 ×2
M2 IRF7811 ×3
0.003Ω*
L1
0.68µH
U
D1* UPS840
+
3714 F01
10µF 35V ×4
C
OUT
270µF 2V ×4
V
IN
5V TO 24V
V
OUT
0.6V TO 1.75V 23A
Transient Response of 8A to 23A Output Load Step
1.395V
V
OUT
(1.35V) 50mV/DIV
1.213V
23A
I
LOAD
10A/DIV
8A
20µs/DIV
3714 TA03
3714f
1
LTC3714
WWWU
ABSOLUTE AXI U RATI GS
(Note 1)
Input Supply Voltage (VIN), ION..................36V to –0.3V
Boosted Topside Driver Supply Voltage
(BOOST) ................................................... 42V to –0.3V
SW, SENSE Voltages ................................... 36V to –5V
EXTVCC, (BOOST – SW), RUN/SS, VID0-VID4,
PGOOD, FCB Voltages ............................... 7V to –0.3V
VON, V ITH, VFB, V
TG, BG, INTVCC, EXTVCC Peak Currents.................... 2A
TG, BG, INTVCC, EXTVCC RMS Currents .............. 50mA
OPVIN, OP+, OP Operating Ambient Temperature Range
LTC3714EG (Note 2) .......................... –40°C to 85°C
Junction Temperature (Note 3)............................ 125°C
Storage Temperature Range ................. –65°C to 150°C
Lead Temperature (Soldering, 10 sec)..................300°C
Voltages ................(INTVCC + 0.3V) to –0.3V
RNG
Voltages....................... 2.7V to –0.3V
OSENSE
.......................................................
0V to 18V
UU
W
PACKAGE/ORDER I FOR ATIO
TOP VIEW
1
BG
2
PGND
3
SENSE
4
SW
5
TG
6
BOOST
7
VID0
8
VID1
9
VID2
10
RUN/SS
11
V
ON
12
PGOOD
13
V
RNG
14
I
TH
28-LEAD PLASTIC SSOP
T
JMAX
G PACKAGE
= 125°C, θJA = 130°C/W
INTV
28
CC
V
27
IN
EXTV
26
CC
VID4
25
VID3
24
V
23
OSENSE
VFB
22
I
21
ON
FCB
20
SGND
19
OPOUT
18
+
OP
17
OP
16
OPV
15
IN
Consult LTC Marketing for parts specified with wider operating temperature ranges.
ORDER PART
NUMBER
LTC3714EG
ELECTRICAL CHARACTERISTICS
The denotes specifications which apply over the full operating
temperature range, otherwise specifications are TA = 25°C. VIN = 15V unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Main Control Loop
I
Q
V
FB
V
FB(LINEREG)
V
FB(LOADREG)
g
m(EA)
V
FCB
I
FCB
t
ON
t
ON(MIN)
t
OFF(MIN)
V
SENSE(MAX)
V
SENSE(MIN)
V
FB(OV)
V
FB(UV)
V
RUN/SS(ON)
Input DC Supply Current Normal 900 2000 µA Shutdown Supply Current 15 30 µA
Feedback Reference Voltage ITH = 1.2V (Note 4) 0.594 0.600 0.606 V Feedback Voltage Line Regulation VIN = 4V to 30V (Note 4), ITH = 1.2V 0.002 %/V Feedback Voltage Load Regulation ITH = 0.5V to 1.9V (Note 4) –0.05 –0.3 % Error Amplifier Transconductance ITH = 1.2V (Note 4) 1.4 1.7 2 ms Forced Continuous Threshold 0.57 0.6 0.63 V Forced Continuous Current V
= 0.6V –1 –2 µA
FCB
On-Time ION = 60µA, VON = 1.5V 200 250 300 ns Minimum On-Time ION = 180µA, VON = 0V 50 100 ns Minimum Off-Time ION = 60µA, VON = 1.5V 250 400 ns Maximum Current Sense Threshold V
Minimum Current Sense Threshold V
= 1V, VFB = 0.56V 113 133 153 mV
RNG
= 0V, VFB = 0.56V 79 93 107 mV
V
RNG
= INTVCC, VFB = 0.56V 158 186 214 mV
V
RNG
= 1V, VFB = 0.64V –67 mV
RNG
V
= 0V, VFB = 0.64V –33 mV
RNG
= INTVCC, VFB = 0.64V –93 mV
V
RNG
Output Overvoltage Fault Threshold 7.5 10 12.5 % Output Undervoltage Fault Threshold 340 400 460 mV RUN Pin Start Threshold 0.8 1.5 2 V
3714f
2
LTC3714
ELECTRICAL CHARACTERISTICS
The denotes specifications which apply over the full operating
temperature range, otherwise specifications are TA = 25°C. VIN = 15V unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
RUN/SS(LE)
V
RUN/SS(LT)
I
RUN/SS(C)
I
RUN/SS(D)
V
IN(UVLO)
V
IN(UVLOR)
TG R
UP
TG R
DOWN
BG R
UP
BG R
DOWN
TG t
r
TG t
f
BG t
r
BG t
f
Internal VCC Regulator
V
INTVCC
V
LDO(LOADREG)
V
EXTVCC
V
EXTVCC
V
EXTVCC(HYS)
PGOOD Output
V
FBH
V
FBL
V
FB(HYS)
V
PGL
VID DAC
V
VID(T)
I
VID(PULLUP)
V
VID(PULLUP)
I
VID(LEAK)
R
VID
V
OSENSE
RUN Pin Latchoff Enable Threshold RUN/SS Pin Rising 4 4.5 V RUN Pin Latchoff Threshold RUN/SS Pin Falling 3.5 4.2 V Soft-Start Charge Current –0.5 –1.2 –3 µA Soft-Start Discharge Current 0.8 1.8 3 µA Undervoltage Lockout Threshold VIN Falling 3.4 3.9 V Undervoltage Lockout Threshold VIN Rising 3.5 4 V TG Driver Pull-Up On Resistance TG High 2 3 TG Driver Pull-Down On Resistance TG Low 2 3 BG Driver Pull-Up On Resistance BG High 3 4 BG Driver Pull-Down On Resistance BG Low 1 2 TG Rise Time C TG Fall Time C BG Rise Time C BG Fall Time C
Internal VCC Voltage 6V < VIN < 30V, V Internal VCC Load Regulation ICC = 0mA to 20mA, V EXTVCC Switchover Voltage ICC = 20mA, V EXTVCC Switch Drop Voltage ICC = 20mA, V
= 3300pF 20 ns
LOAD
= 3300pF 20 ns
LOAD
= 3300pF 20 ns
LOAD
= 3300pF 20 ns
LOAD
= 4V 4.7 5 5.3 V
EXTVCC
= 4V –0.1 ±2%
EXTVCC
Rising 4.5 4.7 V
EXTVCC
= 5V 150 300 mV
EXTVCC
EXTVCC Switchover Hysteresis 200 mV
PGOOD Upper Threshold VFB Rising 7.5 10 12.5 % PGOOD Lower Threshold VFB Falling –7.5 –10 –12.5 % PGOOD Hysteresis VFB Returning 1 2.5 % PGOOD Low Voltage I
= 1mA 0.15 0.4 V
PGOOD
VID0-VID4 Logic Threshold Voltage 0.4 1.2 2 V VID0-VID4 Pull-Up Current V VID0-VID4 Pull-Up Voltage V VID0-VID4 Leakage Current V Resistance from V
OSENSE
to V
FB
DAC Output Accuracy V
to V
VID0
VID0
VID0
= 0V –2.5 µA
VID4
to V
Open 4.5 V
VID4
to V
VID4
= 5V, V
= 0V 0.01 1 µA
RUN/SS
61014 K
Programmed from –0.45 0 0.25 %
OSENSE
0.6V to 1.75V (Note 5)
VIN = 5V unless otherwise noted.
Internal Op Amp
V
OS
I
OS
I
B
Input Offset Voltage 400 1000 µV Input Offset Current 410 nA Input Bias Current 45 80 nA
CMRR Common Mode Rejection Ratio VCM = 0V to (VCC – 1V) 100 dB
= 0V to 18V 80 dB
V
CM
3714f
3
LTC3714
ELECTRICAL CHARACTERISTICS
The denotes specifications which apply over the full operating
temperature range, otherwise specifications are TA = 25°C. VIN = 5V unless otherwise noted.
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
PSRR Power Supply Rejection Ratio OPVIN = 3V to 12.5V, OP A
VOL
V
OL
V
OH
I
SC
I
S
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: The LTC3714E is guaranteed to meet performance specifications
from 0°C to 70°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.
Note 3: T
dissipation P
LTC3714EG: TJ = TA + (PD • 130°C/W)
Large-Signal Voltage Gain OPVIN = 5V, OP Output Voltage Swing LOW OPVIN = 5V, I Output Voltage Swing HIGH OPVIN = 5V, I Short-Circuit Current Short to GND 30 mA
Short to OPV
Supply Current 170 300 µA
is calculated from the ambient temperature TA and power
J
as follows:
D
= 500mV to 4.5V, RL = 10k 1500 V/mV
OUT
= 5mA 165 500 mV
SINK
SOURCE
IN
= VO = 1V 100 dB
OUT
= 5mA 4.5 4.87 V
40 mA
Note 4: The LTC3714 is tested in a feedback loop that adjusts V
achieve a specified error amplifier output voltage (I
Note 5: The LTC3714 VID DAC is tested in a feedback loop that adjusts
V
to achieve a specified feedback voltage (VFB = 0.6V) for each DAC
OSENSE
VID code.
).
TH
to
FB
4
3714f
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Transient Response
Transient Response
(Discontinuous Mode)
LTC3714
Start-Up
V
OUT
50mV/DIV
I
L
5A/DIV
LOAD STEP 0A TO 10A V
= 15V
IN
= 1.5V
V
OUT
FCB = 0V FIGURE 1 CIRCUIT
Efficiency vs Load Current
95
90
85
80
EFFICIENCY (%)
75
70
0
VIN = 8.5V
VIN = 15V
VIN = 24V
V
= 1.35V
OUT
FREQUENCY = 300kHz FIGURE 1 CIRCUIT
3 6 9 12 15 18 21
LOAD CURRENT (A)
20µs/DIV
3714 G03
3714 G01
V
OUT
50mV/DIV
5A/DIV
I
L
LOAD STEP 1A TO 10A V
= 15V
IN
= 1.5V
V
OUT
FCB = INTV FIGURE 1 CIRCUIT
CC
20µs/DIV
3714 G02
RUN/SS
2V/DIV
V
OUT
500mV/DIV
5A/DIV
I
L
VIN = 15V V R
OUT LOAD
= 1.25V
= 0.125
Efficiency vs Input Voltage Frequency vs Input Voltage
100
90
80
EFFICIENCY (%)
70
60
0
I
= 10A
OUT
I
OUT
I
OUT
5101520
INPUT VOLTAGE (V)
= 1A
= 23A
25 30
3714 G04
300
FCB = 0V FIGURE 1 CIRCUIT
280
260
240
FREQUENCY (kHz)
220
200
5
10
INPUT VOLTAGE (V)
50ms/DIV 3714 G19
I
= 10A
OUT
I
= 0A
OUT
15
20
3714 G05
25
Load Regulation
0
–0.1
(%)
–0.2
OUT
V
–0.3
–0.4
0
2
4
LOAD CURRENT (A)
FIGURE 1 CIRCUIT
NO AVP
6
8
3714 G06
Current Sense Threshold
ITH Voltage vs Load Current
2.5 FIGURE 1 CIRCUIT
2.0
1.5
CONTINUOUS
VOLTAGE (V)
1.0
TH
I
0.5
0
10
0
MODE
DISCONTINUOUS MODE
5
LOAD CURRENT (A)
10
15
3714 G07
vs ITH Voltage
300
200
100
0
–100
CURRENT SENSE THRESHOLD (mV)
–200
0
1.0 1.5 2.0
0.5 ITH VOLTAGE (V)
RNG
=
2V
1.4V
1V
0.7V
0.5V
2.5 3.0
3714 G08
3714f
V
5
LTC3714
TEMPERATURE (°C)
–50
ON-TIME (ns)
200
250
300
25 75
3714 G22
150
100
–25 0
50 100 125
50
0
I
ION
= 30µA
V
VON
= 0V
UW
TYPICAL PERFOR A CE CHARACTERISTICS
On-Time vs ION Current
10k
1k
ON-TIME (ns)
100
10
1
ION CURRENT (µA)
Maximum Current Sense
Threshold vs V
300
250
200
150
100
50
V
= 0V
VON
10 100
3714 G20
Voltage
RNG
On-Time vs VON Voltage On-Time vs Temperature
1000
I
= 30µA
ION
800
600
400
ON-TIME (ns)
200
0
0
1
VON VOLTAGE (V)
Maximum Current Sense
Threshold vs RUN/SS Voltage
150
125
100
= 1V
V
RNG
75
50
25
2
3
3714 G21
Maximum Current Sense
Threshold vs Temperature
150
V
= 1V
RNG
140
130
120
110
MAXIMUM CURRENT SENSE THRESHOLD (mV)
0
0.5
0.75
1.0 1.25 1.5 V
VOLTAGE (V)
RNG
Feedback Reference Voltage
vs Temperature
0.62
0.61
0.60
6
0.59
FEEDBACK REFERENCE VOLTAGE (V)
0.58 –50
–25 0 25 50
TEMPERATURE (°C)
1.75 2.0
3714 G10
MAXIMUM CURRENT SENSE THRESHOLD (mV)
0
75 100 125
3714 G12
1.5
2 2.5 3 3.5
RUN/SS VOLTAGE (V)
MAXIMUM CURRENT SENSE THRESHOLD (mV)
3714 G23
100
–50 –25
0
TEMPERATURE (°C)
Error Amplifier gm vs Temperature
2.0
1.8
1.6
(mS)
m
g
1.4
1.2
1.0 –50 –25
0
TEMPERATURE (°C)
50
25
50
25
75
100
75
125
3714 G13
100
125
3714 G11
3714f
TEMPERATURE (°C)
–50 –25
0
EXTV
CC
SWITCH RESISTANCE ()
4
10
0
50
75
3714 G14
2
8
6
25
100
125
UW
TYPICAL PERFOR A CE CHARACTERISTICS
LTC3714
Input and Shutdown Currents
vs Input Voltage
1200
1000
INPUT CURRENT (µA)
800
600
400
200
0
0
510
EXTVCC OPEN
SHUTDOWN
EXTVCC = 5V
15 25
INPUT VOLTAGE (V)
FCB Pin Current vs Temperature
0
–0.25
–0.50
–0.75
–1.00
FCB PIN CURRENT (µA)
–1.25
20 30 35
3714 G24
EXTVCC Switch Resistance
INTVCC Load Regulation
–0.1
–0.2
(%)
CC
–0.3
INTV
–0.4
–0.5
0
10
0
INTVCC LOAD CURRENT (mA)
30
40
20
50
3714 G25
60
50
SHUTDOWN CURRENT (µA)
40
30
20
10
0
vs Temperature
RUN/SS Pin Current
vs Temperature
3
2
PULL-DOWN CURRENT
1
0
FCB PIN CURRENT (µA)
–1
PULL-UP CURRENT
–1.50
5.0
4.5
4.0
3.5
RUN/SS THRESHOLD (V)
3.0
50 100 125
–50
–25 0
25 75
TEMPERATURE (°C)
RUN/SS Latchoff Thresholds
vs Temperature
LATCHOFF ENABLE
LATCHOFF THRESHOLD
–50
–25 0 25 50
TEMPERATURE (°C)
75 100 125
3714 G15
3714 G17
–2
–50 –25
0
TEMPERATURE (°C)
50
25
75
Undervoltage Lockout Threshold
vs Temperature
4.0
3.5
3.0
2.5
UNDERVOLTAGE LOCKOUT THRESHOLD (V)
2.0 –50
–25 0 25 50
TEMPERATURE (C)
75 100 125
100
125
3714 G16
3714 G18
3714f
7
LTC3714
UUU
PI FU CTIO S
BG (Pin 1): Bottom Gate Drive. Drives the gate of the
bottom N-channel MOSFET between ground and INTVCC.
PGND (Pin 2): Power Ground. Connect this pin closely to
the bottom of the sense resistor or if no sense resistor is used, to the source of the bottom N-channel MOSFET, the (–) terminal of C
SENSE (Pin 3): Current Sense Comparator Input. The (+)
input to the current comparator is normally connected to the SW node unless using a sense resistor (see Applica­tions Information).
SW (Pin 4): Switch Node. The (–) terminal of the bootstrap
capacitor CB connects here. This pin swings from a diode voltage drop below ground up to VIN.
TG (Pin 5): Top Gate Drive. Drives the top N-channel
MOSFET with a voltage swing equal to INTVCC superim­posed on the switch node voltage SW.
BOOST (Pin 6): Boosted Floating Driver Supply. The (+)
terminal of the bootstrap capacitor CB connects here. This pin swings from a diode voltage drop below INTVCC up to V
+ INTVCC.
IN
VID0-VID4 (Pins 7, 8, 9, 24, 25): VID Digital Inputs. The
voltage identification (VID) code sets the internal feedback resistor divider ratio for different output voltages as shown in Table 1. If unconnected, the pins are pulled high by internal 2.5µA current sources.
RUN/SS (Pin 10): Run Control and Soft-Start Input. A
capacitor to ground at this pin sets the ramp time to full output current (approximately 3s/µF) and the time delay for overcurrent latchoff (see Applications Information). Forcing this pin below 0.8V shuts down the device.
and the (–) terminal of CIN.
VCC
mum output current and can be set from 0.5V to 2V by a resistive divider from INTVCC. The sense voltage defaults to 70mV when this pin is tied to ground, 140mV when tied to INTVCC.
I
(Pin 14): Current Control Threshold and Error Ampli-
TH
fier Compensation Point. The current comparator thresh­old increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.8V corresponding to zero sense voltage (zero current).
OPVIN (Pin 15): Internal Op Amp Supply. Connect to
INTVCC or a separate supply greater than 5V.
OP– (Pin 16): Negative Input of the Internal Op Amp. OP+ (Pin 17): Positive Input of the Internal Op Amp. OPOUT (Pin 18): Output of the Internal Op Amp. SGND (Pin 19): Signal Ground. All small-signal compo-
nents and compensation components should connect to this ground, which in turn connects to PGND at one point.
FCB (Pin 20): Forced Continous Input. Tie this pin to
ground to force continuous synchronous operation at low load, to INTVCC to enable discontinuous mode operation at low load or to a resistive divider from a secondary output when using a secondary winding.
ION (Pin 21): On-Time Current Input. Tie a resistor from
VIN to this pin to set the one-shot timer current and thereby set the switching frequency.
VFB (Pin 22): Error Amplifier Feedback Input. This pin
connects to both the error amplifier input and to the output of the internal resistive divider. It can be used to attach additional compensation components if desired.
VON (Pin 11): On-Time Voltage Input. Voltage trip point for
the on-time comparator. Tying this pin to the output voltage makes the on-time proportional to V comparator input defaults to 0.7V when the pin is grounded,
2.4V when the pin is tied to INTVCC.
PGOOD (Pin 12): Power Good Output. Open drain logic
output that is pulled to ground when the output voltage is not within ±10% of the regulation point.
V
(Pin 13): Sense Voltage Range Input. The voltage at
RNG
this pin is ten times the nominal sense voltage at maxi-
OUT
. The
8
V
OSENSE
voltage connects here to the input of the internal resistive feedback divider.
EXTVCC (Pin 26): External V
ceeds 4.7V, an internal switch connects this pin to INTV and shuts down the internal regulator so that controller and gate drive power is drawn from EXTVCC. Do not exceed 7V at this pin and ensure that EXTVCC < VIN.
VIN (Pin 27): Main Input Supply. Decouple this pin to
SGND with an RC filter (1, 0.1µF).
(Pin 23): Output Voltage Sense. The output
Input. When EXTVCC ex-
CC
CC
3714f
UUU
PI FU CTIO S
LTC3714
INTVCC (Pin 28): Internal 5V Regulator Output. The driver
and control circuits are powered from this voltage. De-
U
U
W
FU CTIO AL DIAGRA
R
ON
0.7V
11
1
tON = (10pF)
1.4V
V
RNG
13
0.7V
V
OST
ON
V
I
I
CMP
VON ION
2.4V
21
+
X
(0.5 TO 2)
I
20k
FCB
1µA
20
4.7V
+
0.6V
+
F
ON
R SQ
+
I
REV
couple this pin to power ground with a minimum of 4.7µF tantalum or other low ESR capacitor.
V
IN
C
IN
M1
L1
V
OUT
+
C
M2
OUT
FCNT
SHDN
V
0.6V REF
REG
27
IN
+
5V
BOOST
6
C
TG
B
5
SW
4
SENSE
3
INTV
CC
28
C
VCC
BG
1
PGND
2
PGOOD
12
EXTV
26
CC
ON
SWITCH
LOGIC
OV
240k
×5.3
3.3µA
V
OSENSE
1
Q4
Q2
Q6
Q3
Q1
+
0.8V
EA
+
0.6V
1V
Q5
+
OP AMP
0.4V
RUN
SHDN
RUN/SS
10
OPV
15
IN
OPOUT
18
SGND
19
SS
+
+
0.6V
C
C1
I
14
TH
R
C
+
OP
17
OP
16
UV
OV
1.2µA
0.54V
+
+
0.66V
6V
C
SS
R2 10k
5× (ALL VID PINS)
INTV
CC
VID
DAC
R1
22 19
FB
23
2.5µA
7
8
9
24
25
SGNDV
3714 FD
VID0
VID1
VID2
VID3
VID4
3714f
9
Loading...
+ 19 hidden pages