LINEAR TECHNOLOGY LTC3713 Technical data

查询LTC3711EGN供应商
FEATURES
LTC3713
Low Input Voltage,
High Power, No R
SENSE
TM
Synchronous Buck DC/DC Controller
U
DESCRIPTIO
Very Low V
True Current Mode Control
5V Drive for N-Channel MOSFETs Eliminates
IN(MIN)
: 1.5V
Auxillary 5V Supply
No Sense Resistor Required
Uses Standard 5V Logic-Level N-Channel MOSFETs
Adjustable Current Limit
Adjustable Frequency
Switch t
2% to 90% Duty Cycle at 200kHz
0.8V ±1% Reference
Power Good Output Voltage Monitor
Programmable Soft-Start
Output Overvoltage Protection
Optional Short-Circuit Shutdown Timer
Small 24-Lead SSOP Package
ON(MIN)
< 100ns
U
APPLICATIO S
Telecom Card 3.3V, 2.5V, 1.8V Step-Down
Bus Termination (DDR memory, SSTL)
Synchronous Buck with General Purpose Boost
Low VIN Synchronous Boost
The LTC®3713 is a high current, high efficiency synchro­nous buck switching regulator controller optimized for use with very low input supply voltages. It operates from inputs as low as 1.5V and provides a regulated output voltage from 0.8V up to (0.9)VIN. The controller uses a valley current control architecture to enable high operat­ing frequencies without requiring a sense resistor. Operating frequency is selected by an external resistor and is compensated for variations in VIN and V
. The LTC3713
OUT
uses a pair of standard 5V logic-level N-channel external MOSFETs, eliminating the need for expensive P-channel or low threshold devices.
Discontinuous mode operation provides high efficiency operation at light loads. A forced continuous control pin reduces noise and RF interference, and can assist secondary winding regulation by disabling discontinuous operation when the main output is lightly loaded. Fault protection is provided by internal foldback current limit­ing, an output overvoltage comparator and an optional short-circuit shutdown timer.
, LTC and LT are registered trademarks of Linear Technology Corporation.
No R
is a trademark of Linear Technology Corporation.
SENSE
SHDN
330k
5.6k
10k
680pF
20k
0.1µF
12.1k
Figure 1. High Efficiency Step-Down Converter from 1.8V to 3.3V Input
I
ON
V
FB1
I
TH
RUN/SS PGOOD SGND
V
FB2
LTC3713
BOOST
SW1
SENSE
PGND
SENSE
INTV
SW2
TG
+
BG
CC
V
IN1
V
IN2
37.4k
0.33µF
4.7µF
U
CMDSH-3
10µF
MBR0520
M1
M2
L1
1.8µH
B340A
C
: PANASONIC EEFUEOD271R
OUT
4.7µH
L1: (A) PANASONIC ETQP6FIR8BFA
(B) TOKO D104C-1.8µH
M1, M2: (A) IRF7822, (B) IRF7811A
V
IN
1.8V TO 3.3V
22µF ×2
V
OUT
1.25V
OUT
10A
3713 F01a
+
C 270µF ×2
Efficiency vs Load Current
100
VIN = 2.5V
90
A
80 70 60 50 40
EFFICIENCY (%)
30 20 10
0
0.01
B
0.04 0.40
0.10 LOAD CURRENT (A)
1
3
12
7
15
3713 F01b
3713fa
1
LTC3713
WWWU
ABSOLUTE AXI U RATI GS
(Note 1)
Input Supply Voltage (V Boosted Topside Driver Supply Voltage
(BOOST) ............................................... 42V to – 0.3V
V
, ION, SW1, SENSE+ Voltages ............. 36V to –0.3V
IN1
RUN/SS, PGOOD Voltages......................... 7V to –0.3V
FCB, VON, V ITH, V
, SENSE– Voltages ..................... 2.7V to –0.3V
FB1
Voltages .......... INTVCC + 0.3V to –0.3V
RNG
SW2 Voltage ............................................. 36V to –0.4V
V
Voltage ................................................. V
FB2
SHDN Voltage ......................................................... 10V
TG, BG, INTVCC Peak Currents.................................. 2A
TG, BG, INTVCC RMS Currents ............................ 50mA
Operating Ambient Temperature
Range (Note 4) ................................... –40°C to 85°C
Junction Temperature (Note 2)............................ 125°C
Storage Temperature Range ................. –65°C to 150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
) .......................10V to – 0.3V
IN2
IN2
+ 0.3V
UU
W
PACKAGE/ORDER I FOR ATIO
TOP VIEW
RUN/SS
1 2
V
ON
3
PGOOD
4
V
RNG
5
FCB
6
I
TH
7
SGND1
8
I
ON
9
V
FB1
10
SHDN
11
SGND2
12
V
FB2
24-LEAD PLASTIC SSOP
T
JMAX
G PACKAGE
= 125°C, θJA = 130°C/W
BOOST
24
TG
23
SW1
22 21 20 19 18 17 16 15 14 13
SENSE SENSE PGND1 BG INTV V
IN1
V
IN2
PGND2 SW2
+
CC
Consult LTC Marketing for parts specified with wider operating temperature ranges.
ORDER PART
NUMBER
LTC3713EG
ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are TA = 25°C. V
The denotes specifications which apply over the full operating
= 15V, V
IN1
= 1.5V unless otherwise noted.
IN2
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Buck Regulator
I
Q(VIN1)
Input DC Supply Current (V Normal 900 2000 µA
IN1
)
Shutdown Supply Current 15 30 µA
V
FB1
I
FB1
V
FB1(LINEREG)
V
FB1(LOADREG)
g
m(EA)
V
FCB
I
FCB
t
ON
t
ON(MIN)
t
OFF(MIN)
V
SENSE(MAX)
V
SENSE(MIN)
V
FB1(OV)
V
FB1(UV)
V
RUN/SS(ON)
V
RUN/SS(LE)
V
RUN/SS(LT)
Feedback Reference Voltage ITH = 1.2V (Note 3) 0.792 0.800 0.808 V Feedback Current (Note 3) –5 ±50 nA Feedback Voltage Line Regulation V
= 4V to 30V, ITH = 1.2V (Note 3) 0.002 %/V
IN1
Feedback Voltage Load Regulation ITH = 0.5V to 1.9V (Note 3) –0.05 –0.3 % Error Amplifier Transconductance ITH = 1.2V (Note 3) 1.4 1.7 2 mS Forced Continuous Threshold 0.76 0.8 0.84 V Forced Continuous Pin Current V
= 0.8V –1 –2 µA
FCB
On-Time ION = 60µA, VON = 1.5V 200 250 300 ns
I
= 30µA, VON = 1.5V 400 500 600 ns
ON
Minimum On-Time ION = 180µA 50 100 ns Minimum Off-Time 250 400 ns Maximum Current Sense Threshold V
V
– V
PGND
SW
Minimum Current Sense Threshold V
– V
V
PGND
SW
V V
V V
RNG RNG RNG
RNG RNG RNG
= 1V, V
FB1
= 0V, V
FB1
= INTVCC, V = 1V, V
FB1
= 0V, V
FB1
= INTVCC, V
= 0.76V 113 133 153 mV = 0.76V 79 93 107 mV
= 0.76V 158 186 214 mV
FB1
= 0.84V –67 mV = 0.84V –47 mV
= 0.84V –93 mV
FB1
Output Overvoltage Fault Threshold 5.5 7.5 9.5 % Output Undervoltage Fault Threshold 520 600 680 mV RUN Pin Start Threshold 0.8 1.5 2 V RUN Pin Latchoff Enable Threshold RUN/SS Pin Rising 4 4.5 V RUN Pin Latchoff Threshold RUN/SS Pin Falling 3.5 4.2 V
3713fa
2
LTC3713
ELECTRICAL CHARACTERISTICS
temperature range, otherwise specifications are TA = 25°C. V
The denotes specifications which apply over the full operating
= 15V, V
IN1
= 1.5V unless otherwise noted.
IN2
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
I
RUN/SS(C)
I
RUN/SS(D)
UVLO V UVLOR V TG R
UP
TG R
DOWN
BG R
UP
BG R
DOWN
TG t
r
TG t
f
BG t
r
BG t
f
Soft-Start Charge Current V Soft-Start Discharge Current V
Undervoltage Lockout V
IN1
Undervoltage Lockout Release V
IN1
= 0V –0.5 –1.2 –3 µA
RUN/SS
= 4.5V, VFB = 0V 0.8 1.8 3 µA
RUN/SS
Falling 3.4 3.9 V
IN1
Rising 3.5 4 V
IN1
TG Driver Pull-Up On Resistance TG High 2 3 TG Driver Pull-Down On Resistance TG Low 2 3 BG Driver Pull-Up On Resistance BG High 3 4 BG Driver Pull-Down On Resistance BG Low 1 2 TG Rise Time C TG Fall Time C BG Rise Time C BG Fall Time C
= 3300pF 20 ns
LOAD
= 3300pF 20 ns
LOAD
= 3300pF 20 ns
LOAD
= 3300pF 20 ns
LOAD
Internal VCC Regulator
V
INTVCC
V
LDO(LOADREG)
Internal VCC Voltage 6V < VIN < 30V 4.7 5 5.3 V Internal VCC Load Regulation ICC = 0mA to 20mA –0.1 ±2%
PGOOD Output
VVV
V
PGL
FB1H FB1L FB(HYS)
PGOOD Upper Threshold V PGOOD Lower Threshold V PGOOD Hysteresis V PGOOD Low Voltage I
Rising 5.5 7.5 9.5 %
FB1
Falling – 5.5 –7.5 –9.5 %
FB1
Returning 1 2 %
FB1
= 5mA 0.15 0.4 V
PGOOD
Boost Regulator
V
IN2(MIN)
V
IN2(MAX)
I
Q(VIN2)
Minimum Operating Voltage 0.9 1.5 V Maximum Operating Voltage 10 V Input DC Supply Current (V
IN2
)
Normal 3 4.5 mA Shutdown 0.01 1 µA
V
FB2
V
Feedback Voltage 0°C to 70°C 1.205 1.23 1.255 V
FB2
–40°C to 85°C 1.200 1.260 V
I
VFB2
V
FB2(LINEREG)
f
BOOST
DC
BOOST(MAX)
I
LIM(BOOST)
V
CESAT(BOOST)
I
SWLKG(BOOST)
V
SHDN(HIGH)
V
SHDN(LOW)
I
SHDN
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: TJ is calculated from the ambient temperature TA and power dissipation PD as follows:
LTC3713EG: T
Note 3: The LTC3713 is tested in a feedback loop that adjusts V
V
Pin Bias Current 27 80 nA
FB2
BOOST Reference Line Regulation 1.5V ≤ VIN 10V 0.02 0.2 %/V BOOST Switching Frequency 0°C to 70°C 1.0 1.4 1.8 MHz
–40°C to 85°C
0.9 1.9 MHz
BOOST Maximum Duty Cycle 82 86 % BOOST Switch Current Limit (Note 5) 500 800 mA BOOST Switch V
CESAT
ISW = 300mA 300 350 mV BOOST Switch Leakage Current VSW = 5V 0.01 1 µA SHDN Input Voltage High 1 V SHDN Input Voltage Low 0.3 V SHDN Pin Bias Current V
= 3V 25 50 µA
SHDN
= 0V 0.01 0.1 µA
V
SHDN
achieve a specified error amplifier output voltage (ITH). Note 4: The LTC3713E is guaranteed to meet performance specifications
from 0°C to 70°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation
= TA + (PD • 130°C/W)
J
to
FB
with statistical process controls. Note 5: Current limit guaranteed by design and/or correlation to static test.
3713fa
3
LTC3713
DUTY CYCLE (%)
10 20 30 40 50 60 70 80
CURRENT LIMIT (mA)
3713 G06
1000
900
800
700
600
500
400
300
200
70°C
25°C
–40°C
LOAD CURRENT (A)
0.01
0
EFFICIENCY (%)
10
30
40
50
100
70
0.09
0.8
3
3713 G10
20
80
90
60
0.05
0.4
7
VIN = 3.3V
VIN = 2.5V
FIGURE 1 CIRCUIT (B)
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Transient Response
V
OUT
100mV/DIV
I
L
5A/DIV
LOAD STEP 0A TO 6A V
= 3.3V
IN
= 1.25V
V
OUT
FCB = 0V FIGURE 1 CIRCUIT
50µs/DIV 3713 G01
Boost Converter Oscillator Frequency vs Temperature
2.00
1.75
1.50
1.25
1.00
0.75
0.50
SWITCHING FREQUENCY (MHz)
0.25
VIN = 5V
VIN = 1.5V
0
–50 –25 0 25 50 75 100
TEMPERATURE (°C)
3713 G04
Transient Response (Discontinuous Mode)
V
OUT
100mV/DIV
I
L
5A/DIV
LOAD STEP 600mA TO 6A V
= 3.3V
IN
= 1.25V
V
OUT
FCB = INTV FIGURE 1 CIRCUIT
SHDN Pin Current vs V
50
TA = 25°C
40
30
20
10
SHDN PIN BIAS CURRENT (µA)
0
012345
50µs/DIV 3713 G02
CC
SHDN
SHDN PIN VOLTAGE (V)
3713 G05
V
OUT
500mV/DIV
5A/DIV
Start-Up from Shutdown
I
L
VIN = 3.3V V
= 1.25V
OUT
L = 1.8µH
= 540µF
C
OUT
LOAD = 0.2
500µs/DIV
Boost Converter Current Limit vs Duty Cycle
3713 G03
V
, Feedback Pin Voltage
FB2
1.25
1.24
1.23
1.22
FEEDBACK PIN VOLTAGE (V)
1.21
1.20
4
–50
–25 0 25 50 75 100
TEMPERATURE (°C)
VOLTAGE
3713 G07
Efficiency vs Load Current (Discontinuous Mode)
100
90
VIN = 2.5V
80
70
60
EFFICIENCY (%)
50
40
30
0.01
0.04 0.07 0.1
VIN = 3.3V
0.4 41
LOAD CURRENT (A)
Efficiency vs Load Current (Force Continuous)
FIGURE 1 CIRCUIT (B)
0.7 7 10
1713 G09
3713fa
UW
VFB (V)
0
0
MAXIMUM CURRENT SENSE THRESHOLD (mV)
25
50
75
100
125
150
V
RNG
= 1V
0.2 0.4 0.6 0.8
3713 G16
TEMPERATURE (°C)
–50 –25
100
MAXIMUM CURRENT SENSE THRESHOLD (mV)
120
150
0
50
75
3713 G19
110
140
130
25
100
125
V
RNG
= 1V
TYPICAL PERFOR A CE CHARACTERISTICS
LTC3713
Load Regulation
0
–0.1
–0.2
–0.3
(%)
OUT
–0.4
V
–0.5
–0.6
–0.7
0
2
1
389764 LOAD CURRENT (A)
On-Time vs VON Voltage
1000
ON-TIME (ns)
800
600
400
I
ION
= 30µA
FIGURE 1 CIRCUIT
3713 G11
Frequency vs Input Voltage
350
300
0
1.5
LOAD = 6A
2.0 2.5
LOAD = 0A
FIGURE 1 CIRCUIT
3.5 4.5 5.0
3.0 4.0
INPUT VOLTAGE (V)
3713 G12
250
200
150
FREQUENCY (kHz)
100
50
105
On-Time vs Temperature
300
I
= 30µA
ION
250
200
150
ON-TIME (ns)
100
On-Time vs ION Current
10k
1k
ON-TIME (ns)
100
10
1
ION CURRENT (µA)
Current Limit Foldback
V
= 0V
VON
10 100
3713 G13
200
0
0
1
VON VOLTAGE (V)
2
3
3713 G14
Maximum Current Sense Threshold vs V
300
250
200
150
100
50
MAXIMUM CURRENT SENSE THRESHOLD (mV)
0
0.5
0.75
1.0 1.25 1.5
V
RNG
VOLTAGE (V)
RNG
Voltage
1.75 2.0
3713 G17
50
0
–50
–25 0
TEMPERATURE (°C)
50 100 125
25 75
Maximum Current Sense Threshold vs RUN/SS Voltage
150
125
100
MAXIMUM CURRENT SENSE THRESHOLD (mV)
= 1V
V
RNG
75
50
25
0
1.5
2 2.5 3 3.5
RUN/SS VOLTAGE (V)
3713 G15
Maximum Current Sense Threshold vs Temperature
3713 G18
3713fa
5
LTC3713
TEMPERATURE (C)
–50
2.0
UNDERVOLTAGE LOCKOUT THRESHOLD (V)
2.5
3.0
3.5
4.0
–25 0 25 50
3713 G27
75 100 125
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Feedback Reference Voltage vs Temperature
0.82
0.81
0.80
0.79
FEEDBACK REFERENCE VOLTAGE (V)
0.78 –50
–25 0 25 50
TEMPERATURE (°C)
Current Sense Threshold vs I Voltage
300
200
100
0
–100
CURRENT SENSE THRESHOLD (mV)
V
RNG
75 100 125
3713 G20
TH
2V
=
1.4V
1V
0.7V
0.5V
Error Amplifier gm vs Temperature
2.0
1.8
1.6
(mS)
m
g
1.4
1.2
1.0 –50 –25
0
TEMPERATURE (°C)
50
25
FCB Pin Current vs Temperature
0
–0.25
–0.50
–0.75
–1.00
FCB PIN CURRENT (µA)
–1.25
INTVCC Load Regulation
0
–0.1
–0.2
(%)
CC
–0.3
INTV
–0.4
100
125
3713 G21
75
–0.5
10
0
INTVCC LOAD CURRENT (mA)
30
40
20
50
3713 G22
RUN/SS Pin Current vs Temperature
3
2
PULL-DOWN CURRENT
1
0
FCB PIN CURRENT (µA)
–1
PULL-UP CURRENT
–200
0
6
1.0 1.5 2.0
0.5 ITH VOLTAGE (V)
RUN/SS THRESHOLD (V)
2.5 3.0
3713 G23
RUN/SS Latchoff Thresholds vs Temperature
5.0
4.5
LATCHOFF ENABLE
4.0
3.5
3.0 –50
LATCHOFF THRESHOLD
–25 0 25 50
TEMPERATURE (°C)
–1.50
–50
–25 0
75 100 125
3713 G26
50 100 125
25 75
TEMPERATURE (°C)
3713 G24
–2
–50 –25
0
TEMPERATURE (°C)
Undervoltage Lockout Threshold vs Temperature
50
25
75
100
125
3713 G25
3713fa
LTC3713
U
UU
PI FU CTIO S
RUN/SS (Pin 1): Run Control and Soft-Start Input. A capacitor to ground at this pin sets the ramp time to full output current (approximately 3s/µF) and the time delay for overcurrent latchoff (see Applications Information). Forcing this pin below 0.8V shuts down the device.
VON (Pin 2): On-Time Voltage Input. Voltage trip point for the on-time comparator. Tying this pin to the output voltage makes the on-time proportional to V comparator input defaults to 0.7V when the pin is grounded,
2.4V when the pin is tied to INTVCC. PGOOD (Pin 3): Power Good Output. Open-drain logic
output that is pulled to ground when the output voltage is not within ±7.5% of the regulation point.
V
(Pin 4): Sense Voltage Range Input. The voltage at
RNG
this pin is ten times the nominal sense voltage at maxi­mum output current and can be set from 0.5V to 2V by a resistive divider from INTVCC. The nominal sense voltage defaults to 70mV when this pin is tied to ground, 140mV when tied to INTVCC.
FCB (Pin 5): Forced Continuous Input. Tie this pin to ground to force continuous synchronous operation at low load, to INTVCC to enable discontinuous mode operation at low load or to a resistive divider from a secondary output when using a secondary winding.
I
(Pin 6): Current Control Threshold and Error Amplifier
TH
Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.8V corresponding to zero sense voltage (zero current).
SGND (Pins 7, 11): Signal Ground. All small-signal com­ponents and compensation components should connect to this ground, which in turn connects to PGND at one point.
ION (Pin 8): On-Time Current Input. Tie a resistor from V to this pin to set the one-shot timer current and thereby set the switching frequency.
V
(Pin 9): Error Amplifier Feedback Input. This pin
FB1
connects the error amplifier input to an external resistive divider from V
SHDN (Pin 10): Shutdown, Active Low. Tie to 1V or more to enable boost converter portion of the LTC3713. Ground to shut down.
OUT
.
OUT
. The
IN
V
(Pin 12): Boost Converter Feedback. The V
FB2
connected to INTVCC through a resistor divider to set the voltage on INTVCC. Set INTVCC voltage according to:
V
SW2 (Pin 13): Boost Converter Switch Pin. Connect inductor/diode for boost converter portion here. Minimize trace area at this pin to keep EMI down.
PGND (Pins 14, 19): Power Ground. Connect these pins closely to the source of the bottom N-channel MOSFET, the (–) terminal of C
V
IN2
Portion of LTC3713. Must be locally bypassed.
V
IN1
PGND with an RC filter (1, 0.1µF). INTVCC (Pin 17): Internal Regulator Output. The driver and
control circuits are powered from this voltage. Decouple this pin to power ground with a minimum of 4.7µF low ESR tantalum or ceramic capacitor.
BG (Pin 18): Bottom Gate Drive. Drives the gate of the bottom N-channel MOSFET between ground and INTVCC.
SENSE– (Pin 20): Negative Current Sense Comparator Input. The (–) input to the current comparator is normally connected to power ground unless using a resistive di­vider from INTVCC (see Applications Information).
SENSE+ (Pin 21): Positive Current Sense Comparator Input. The (+) input to the current comparator is normally connected to the SW1 node unless using a sense resistor (see Applications Information).
SW1 (Pin 22): Switch Node. The (–) terminal of the bootstrap capacitor CB connects here. This pin swings from a diode voltage drop below ground up to VIN.
TG (Pin 23): Top Gate Drive. Drives the top N-channel MOSFET with a voltage swing equal to INTVCC superim­posed on the switch node voltage SW1.
BOOST (Pin 24): Boosted Floating Driver Supply. The (+) terminal of the bootstrap capacitor CB connects here. This pin swings from a diode voltage drop below INTVCC up to V
IN
= 1.23V(1 + RF4/RF3)
INTVCC
and the (–) terminal of CIN.
VCC
(Pin 15): Input Supply Pin for Boost Converter
(Pin 16): Main Input Supply. Decouple this pin to
+ INTVCC.
FB2
pin is
3713fa
7
LTC3713
U
U
W
FU CTIO AL DIAGRA S
R
V
ON
2
tON = (10pF)
1.4V
V
RNG
4
0.7V
V
I
I
CMP
VON ION
2.4V0.7V
+
ON
I
8
ON
1µA
R SQ
20k
+
I
REV
×
3.3µA
V
V
0.8V REF
5V
REG
BOOST
24
TG
23
SW1
22
SENSE
21
INTV
17
BG
18
PGND1
19
SENSE
20
PGOOD
3
16
IN1
+
C
B
+
CC
C
VCC
FCB
5
4.7V
+
0.8V
+
F
FCNT
ON
SWITCH
LOGIC
SHDN
OV
IN
C
IN
M1
D
L1
B
+
M2
V
OUT
C
OUT
R2
V
OUT2
1
240k
I
THB
+ –
×4
V
IN2
R7 (EXTERNAL)
FB2 12
R8 (EXTERNAL)
V
0.8V
15
FB2
11
Q3
Q1
Q1
SGND2
0.8V
R5 40k
0.74V
RUN/SS
Σ
UV
OV
1.2µA
6V
C
COMPARATOR
A2
+
SHUTDOWN
+
+
0.86V
SS
FF
RQ
S
SGND1
DRIVER
V
FB1
9
7
3713 FD01
R1
SW2
13
Q3
+
0.15
14
PGND2
3713 FD02
3713fa
Q4
Q2
Q6
EA
+
R6 40k
Q2 x10
R3 30k
R4 140k
1V
Q5
R
C
C
C
RUN
SHDN
0.6V
RAMP
GENERATOR
1.4MHz
OSCILLATOR
1
SHDN
10
SS
+
+
0.6V
C
C1
I
6
TH
R
C
+
A1 g
m
8
Loading...
+ 16 hidden pages