Linear Technology LTC3725, LTC3706 Quick Start Manual

Page 1
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
DESCRIPTION
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
LTC3725/LTC3706
Demonstration circuit 888A-B is a high power iso­lated synchronous forward converter featuring the LTC3725 and LTC3706. When powered from a 36­72V input, a single DC888A-B provides an isolated 5V at 40A in a quarter-brick footprint. If higher out­put current is required, multiple DC888A boards may be stacked together using on-board connectors for a complete PolyPhase current sharing solution. The converter operates at 250kHz and achieves efficiency up to 93.5% with synchronous output rectifiers.
pler feedback, providing fast transient response with a minimum amount of output capacitance. Additional DC888A versions include DC888A-A (3.3V at 50A) and DC888A-C (12V at 20A). The simple architecture can be easily modified to meet different input and output voltage requirements.
Design files for this circuit board are available. Call the LTC factory.
, LTC and LT are registered trademarks of Linear Technology Corporation.
Secondary-side control eliminates complex optocou-
Table 1. Performance Summary (TA = 25°C)
PARAMETER CONDITION VALUE
Minimum Input Voltage 36V
Maximum Input Voltage 72V
Output Voltage V
Maximum Output Current 200LFM 40A
Typical Output Ripple V
Output Regulation Over All Input Voltages and Output Currents ±1% (Reference)
VIN = 36V to 72V, I
OUT
VIN = 48V, I
OUT
= 0A to 40A 5V
OUT
= 40A, 250kHz < 60mV
OUT
P–P
Load Transient Response
Nominal Switching Frequency 250kHz
Efficiency VIN = 36V, I
Isolation BASIC 1500VDC
Size Component Area x Top x Bottom Component Height 2.3” x 1.45” x 0.4” x 0.075”
Peak Deviation with 20A to 40A Load Step (10A/us) ±250mV
Settling Time •50us
= 28A 93.5% Typical
OUT
OPERATING PRINCIPLES – SINGLE PHASE
The LTC3706 secondary side controller is used on the secondary and the LTC3725 smart driver with self­starting capability is used on the primary. When an input voltage is applied, the LTC3725 (U1 in Figure
15), which is powered through R29 and Q28, begins a controlled soft-start of the output voltage by switch­ing MOSFETs Q9 and Q11. As the output voltage be­gins to rise, the LTC3706 secondary controller is quickly powered up via D24, Q29, C67, and Q27. The
LTC3706 then assumes control of the output voltage by sending encoded PWM gate pulses to the LTC3725 primary driver via signal transformer, T2. The LTC3725 then operates as a simple driver receiv­ing both input signals and bias power through T2. The transition from primary to secondary control oc­curs seamlessly at a fraction of the output voltage. From that point on, operation and design simplifies to that of a simple buck converter. The LTC3706 regu-
1
Page 2
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
lates by observing the output voltage directly result­ing in superior output voltage regulation and transient
response.
OPERATING PRINCIPLES – POLYPHASE
The LTC3725 and LTC3706 allow the user to develop modular power supply “building blocks” that can be added as power/current requirements increase. Con­necting two DC888A power supplies in a PolyPhase configuration has several advantages. By distributing power across multiple high power/current supplies, heat is also distributed, reducing individual compo­nent temperatures. Each parallel module develops equal output currents so that electrical and thermal stresses are shared, increasing reliability. Multi-phase operation and Shared input and output filtering result in fewer/smaller input/output capacitors and induc­tors for a given voltage/current ripple or transient re­sponse.
In PolyPhase systems, one power supply is config­ured as a “master” and one as a “slave”. The master communicates switching frequency via the PT+ pin to
FS/SYNC pin of the slave (Figures 19 and 20). The relative clock phase of each stage is determined by the slave. The master’s voltage error amplifier’s out­put (ITH pin) controls the output current of all the phases via the ITH pin voltage which is distributed to each slave’s unity-gain differential amplifier.
Several of the signals that are shared between the master and the slave are of a bidirectional nature. A fault on either phase can be communicated to the op­posite phase via the primary side SS/FLT pin inter­connection or the secondary side RUN/SS intercon­nection. Sharing Vcc on the secondary side ensures the master, which initially develops this bias voltage, and slave power up simultaneously. Each phase then contributes to the shared Vcc bus. Finally, the input voltage (Vin) and output voltage (Vout) busses are interconnected to allow for load sharing.
OPTIONAL POLYPHASE SETUP
Only minor modifications and minimal interconnec­tions are needed to implement PolyPhase with the DC888. See component changes list (Figure 18) and schematics (Figures 21 and 22) for the required elec­trical changes to master and slave units. After the modifications are done, the boards are then stacked one on top of another (Figure 23). J1 and P1 headers interconnect small signals and E1, E2, E3, and E4 stand offs provide interconnection for the power sig­nals.
QUICK START PROCEDURE
Demonstration Circuit 888A-B is easy to set up to evaluate the performance of the LTC3725 and LTC3706. Refer to Figure 1 for proper equipment setup. Follow the procedure below:
The DC888 was designed primarily to demonstrate the chipset’s single phase operation and therefore be further optimized for PolyPhase applications. A small resistor can be placed between the R76/D27 junction and C70/U2-16 junction to reduce already small PWM jitter associated with separate master and slave ground planes. Another optimization can result from combining each individual phase’s input/output filter components into one shared input/output filter.
NOTE:
When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the scope probe. Measure the output (or input) voltage ripple by touching the probe tip and probe
2
Page 3
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
ground directly across the +Vout and –Vout (or +Vin and –Vin) terminals. See 0 for proper scope probe technique.
1.
The optional input LC filter stage (C2/L5) lowers ac input rms current. A power supply’s complete in­put filter must have output impedance that is less than the converter input impedance to assure sta­bility. This may require a damping impedance. (See Linear Technology Application Note AN19 for a discussion of input filter stability.) A source with a 50mOhm or higher ESR at the filter resonant fre­quency is one way of providing damping for the fil­ter elements provided on the DC888A. For bench testing, adding an 82uF electrolytic capacitor such as a Sanyo 100MV82AX to the input terminals will provide suitable damping and ripple current capa­bility. The values selected have a filter resonant frequency that is below the converter switching frequency, thus avoiding high circulating currents in the filter.
2.
Set an input power supply to a voltage of 36V. Make sure that it is capable of 36V to 72V at a cur­rent supplying capability of at least 8A per number of phases being tested. Then, turn off the supply.
3.
With power off, connect the supply to the input terminals +Vin and –Vin.
a.
Input voltages lower than 36V can keep the con­verter from turning on due to the undervoltage lockout feature of the LTC3725.
b.
If efficiency measurements are desired, an am­meter capable of measuring at least 8Adc per phase can be put in series with the input supply
in order to measure the DC888A-B’s input cur­rent.
c.
A voltmeter with a capability of measuring • 72V can be placed across the input to get an accurate input voltage measurement.
4.
Turn on the power at the input.
NOTE:
Make sure that the input voltage •72V.
5.
Check for the proper output voltage of 5V.
6.
Turn off the power at the input.
7.
Once the proper output voltages are established, connect a variable load capable of sinking 40A per phase at 5V to the output terminals +Vout and – Vout. Set current to 0A.
a.
If efficiency measurements are desired, an am­meter or a resistor current shunt that is capable of handling at least 40Adc per phase can be put in series with the output load in order to meas­ure the DC888A-B’s output current.
b.
A voltmeter with a capability of measuring at least 5V can be placed across the output termi­nals in order to get an accurate output voltage measurement.
8.
Turn on the power at the input.
NOTE:
If there is no output, disconnect the load to
verify that the load is not set too high.
9.
Once the proper output voltage is established, ad­just the load within the operating range and ob­serve the output voltage regulation, ripple voltage, efficiency and other desired parameters.
3
Page 4
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
VIN
GND
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 1. Proper Measurement Equipment Setup
Figure 2. Measuring Input or Output Ripple
4
Page 5
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
MEASURED DATA
Figures 3 through 14 are measured data for a typical DC888A-B. Figures 15 through 23 consist of schematics, bill of materials, and a picture.
Figure 3. Efficiency
Figure 4. Output Voltage Ripple (48Vin, 40A, Single Phase)
5
Page 6
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 5. Load Transient Response (48Vin, 20A to 40A to 20A at 10A/us, Single Phase)
Figure 6. Loop Response (48Vin, 4A & 40A, Single Phase)
6
Page 7
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 7. Turn-on (48Vin, 40A, Single Phase)
Figure 8. Turn-on (48Vin, 80A, PolyPhase)
7
Page 8
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 9. Transient Sharing of Inductor Current (48Vin, 30A to 60A, PolyPhase)
Figure 10. Transient Sharing of Inductor Current (48Vin, 60A to 30A, PolyPhase)
8
Page 9
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 11. Temp Data (48Vin, 40A, 200LFM airflow – top)
Figure 12. Temp Data (48Vin, 40A, 200LFM airflow – bottom)
9
Page 10
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 13. Temp Data (48Vin, 36A, 0LFM airflow – top)
Figure 14. Temp Data (48Vin, 36A, 0LFM airflow – bottom)
10
Page 11
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
+Vout
5Vo@40A
C31, C33, C68
6.3V
PSLV0J227M12
+
+VOUT
L6
-VOUT
1/4W
1/4W
R23
R24
6.8
6.8
C51
2.2n
100V
A
T1
1
PA0954(4:4:1:1)
22n
C34
PA1382.650
Vaux
Q13
Q12
Q23
R75
510
Q14
Q15
B
Si7336ADP
72
4113 8105
6
Q11
Q9
Si7450DP
Q8
-VOUT
T3
CT02-100
34
R76
1k
1 2
R84
D27
IS+
BAS21
-Vout
R41
4.42K
C77
2.2uF
220u
-VOUT
25V
C67
10uF
Vsg
Si7336ADP
SW
Q24
C69
2.2n
100V
C66
200V
1.5n
R48
R3
100
8.06
VCC
Q27
SG
IS+
-VOUT
VCC
D26
CMPSH1-4
Q25
FMMT718
15m
R53
R52
6.8
1/4W
-VOUT
6.8
R51
1/4W
1.5W
R58
C27
100pF
R29
100K
Q28
FDC2512
11
-VOUT
4
24
FCX491A
18
19
1
16
C70
3.3n
IS-
15
20
FG
2
12
C71
8
T2
5
C72
0.1uF
5.1K
4
IS
10
7
3
8
6
10
VS-
VS+
MODE
VCC
NDRV
VIN
SG
IS+
U2
LTC3706EGN
SW
PT+
PT-
22
21
1uF
1
634
C100
150pF
C101
R101
100
470pF
FB/IN+
GATE
U1
NDRV
LTC3725EMSE
ULVO
VCC
2
1
R46
604
Vsg
Q32
FMMT619
FMMT718
FB
VSOUT
9
3.3n
C79
9.1K
R68
C75
ITH
PHASE
FS/SYNC
REGSD
SLP
PGOOD
RUN/SS
PGND
GND
5
FS/IN-
GND
PGND
VSLMT
SSFL T
C24
100p
7
5
R69
13
17
14
3
8
23
12
R63
C29
110K
R66
100K
C78
10nF
SW
100K
11
6
9
Q29
10nF
1uF
VCC
Q31
MMBT2907A
150
R81
R82
-VOUT
-VOUT
C30
C83
10pF
Q30
2N7002
D29
Si2303BDS
750
R78
BAS21
C85
0.1uF
R79
68K
R80
100K
C84
0.1uF
Q26
-VOUT
R56
100
150
C86
68pF
SG
250V
2.2nF
-VOUT
Vaux
+VOUT
L1
100uH
D2
CMPSH1-4
C3-C5
3 X 2.2uF
100V
L5
0.68uH C2
2.2uF
100V
+Vin
-Vin
36V-72Vin
C55
1nF
D24
CMPSH1-4
R18
365K
NOTE:
C2-C5 2.2uF,100V Murata GRM32ER72A225K
L5 VISHAY IHLP2525CZERR68M01
T2 Pulse PA1954NL
R22
15.0K
D1
CMPSH1-4
C
1
T4
4
A
D
3
6
DA2318-ALC
B
Figure 15. Single Phase Schematic
11
Page 12
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
SSS
SYNC
-ITH
+ITH
7
8
7
J1-7
+VPKS
-VPKS
J1-5
P1-5
J1-6
6
5
TO CONFIGURE
FOR POLYPHASE
*
+Vout
E3
C68
+
+
E7
C31
+
+VOUT
C33
+
C34
2
*
L6
4 1
5
Vaux
*
Q12
Q13
-VOUT
1/4W
1/4W
R24
R23
*
*
R75
*
Q14
Q15
C51
100V
*
B
A
72
*
T1
4113 8105
1
*
Q11
Q8
Q9
Si7450DP
-VOUT
T3
CT02-100
34
1 2
L5
+Vin
R84
*
D27
IS+
BAS21
C5
2.2uF
100V
C4
2.2uF
100V
C3
2.2uF
100V
0.68uH C2
2.2uF
100V
E1
36V-72Vin
-Vout
E4
*
-
*
-VOUT
*
*
*
C67
25V
Vsg
4
4
4
5
1
5
1
5
1
Q23
23
678
23
678
23
678
SW
510
4
4
4
Q24
5
1
5
1
5
1
23
678
23
678
23
678
C69
100V
*
C66
6
200V
*
2 3
6 7 8
2 3
6 7 8
2 3
6 7 8 5
1
5
1
5
1
4
4
4
R3
0
100
R49
R76
*
-VIN
E2
-Vin
6
5
E8
FMMT718
R48
*
P1-6
R59
R60
OPT
OPT
VCC
*
R41
OPT
C74
6
10
11
FB
VS-
VS+
MODE
4
VCC
24
FCX491A
1
18
Q27
2 3
19
SG
1
SG
16
IS+
C70
-VOUT
*
IS-
15
VCC
CMPSH1-4
D26
Q25
*
R52
*
R51
1.5W
C27
100pF
20
FG
2
12
R53
1/4W
1/4W
C71
8
-VOUT
T2
5
C100
C72
0.1uF
5.1K
R58
4
IS
10
7
R29
100K
3
8
3
Q28
FDC2512
4 1 2 5 6
R18
1
1
J1-1
-VIN
TO CONFIGURE
FOR POLYPHASE
VSOUT
VCC
NDRV
ITH
PHASE
VIN
FS/SYNC
REGSD
IS+
U2
LTC3706EGN
SLP
PGOOD
RUN/SS
SW
PGND
GND
PT+
PT-
22
21
1uF
1
634
opt.
C82
150pF
C101
100
R101
470pF
opt.
C81
5
FS/IN-
FB/IN+
GATE
NDRV
VCC
P1-1
GND
PGND
U1
VSLMT
LTC3725EMSE
ULVO
SSFLT
2
1
365K
2
2
J1-2
P1-2
SSP
P1-7
C77
2.2uF
OPT
R62
604
R46
9
R64
OPT
*
R68
7
5
0
R70
R67
opt.
R69
VCC
13
17
R66
100K
14
3
C78
8
23
12
R63
100K
11
6
9
C29
10nF
C24
1uF
1nF
C55
R22
15.0K
9
9
8
J1-9
J1-8
R71
OPT
*
C79
C75
110K
10nF
-VOUT
D30
SW
C83
10pF
D29
BAS21
3 1
Q29
T4 connection for A-B & A-C
10
P1-9
P1-8
R73
OPT
R72
R74
OPT
*
*
*
36V
D31
2 3
1
Q30
2N7002
*
R78
32
1
Si2303BDS
R79
68K
R80
100K
C84
0.1uF
D24
CMPSH1-4
C
D
3
1
T4
6
4
B
A
-VOUT
11
10
11
J1-11
J1-10
OPT
-VOUT
C85
0.1uF
P1-11
P1-10
J1-4
J1-3
4
3
-VOUT
P1-3
P1-4
3
4
Vsg
Q32
FMMT718
Q26
VCC
FMMT619
-VOUT
*
R102
Q31
MMBT2907A
150
R81
Vaux
L1
D1
C
T4
T4 connection for A-A
A
100
R56
150
R82
C86
68pF
SG
-VOUT
C30
250V
2.2nF
-VIN
C2-C5 2.2uF,100V Murata GRM32ER72A225K
NOTE:
L5 VISHAY IHLP2525CZERR68M01
+VOUT
*
R108
100uH
D2
CMPSH1-4
4
1
*
R107
CMPSH1-4
D
6
3
DA2318-ALC
B
T1
PA0950(6:6:1:1)
PA0955(6:6:2:1)
PA0954(4:4:1:1)
03.3V@50A
0
opt.
R108
0
opt.
opt.DC888A-A
R107
opt.
240
opt.
330
R84C51,C69
2.2K
1.0K
39012V@20A
750
620
R78
R76
8.06
9.53
7.50
R68 R102
6.2K
9.1K
9.1K
R48
0.015
0.010
0.015
R41
11.5K
2.74K
4.42K
10
6.8
5.1
R23,R24,R51,R52
opt.
Q23,Q24
Si7336ADP
Si7336ADP
Q12-Q15
HAT2244WP
opt.
Q8
Si7450DP
Si7450DP
L6
PA1494.242470pF
PA1382.650
PA1382.650
opt.
opt.
D31
MMBZ5258B
opt.
opt.
D30
BAS21
C79
4.7nFDC888A-C
4.7nF
3.3nF
C75
47pF
T2 Pulse PA1954NL
-VOUT
100pF
C70
3.3nF
3.3nF
10nF
C67
10uF
4.7uF
10uF
1.0nF
4.7nF
2.2nF
C66
680pF
1.5nF
1.5nF
C34
22uF
10uF
22uF
opt
C33
220uF, 4V
220uF, 6.3V
C31,C68
68uF, 16V
Vout/Iout
VER SION TABLE
5.0V@40A
*
VERSION
DC888A-B
Figure 16. Full Single Phase Schematic
12
Page 13
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Qty Reference Part Description Manufacturer / Part #
REQUIRED CIRCUIT COMPONENTS1
3 C3,C4,C5 CAP., X7R, 2.2uF, 100V, 20%, 1210 Murata, GRM32ER72A225K 2 C24,C71 CAP., X7R, 1.0uF, 16V 10%, 0805 TAIYO YUDEN, EMK212BJ105KG 1 C27, CAP., C0G, 100pF, 50V, 10%, 0603 AVX, 06035A101KAT2A 2 C29,C78 CAP., X7R, 10nF, 50V, 10%, 0603 AVX, 06035C103KAT2A 1 C30 CAP., X7R, 2.2nF, 250V, 10%, 1812 Murata, GA343QR7GD222KW01L 3 C31,C33,C68 NeoCap., 220uF, 6.3V, 20%, V case NEC Tokin, TEPSLV0J227M(12)12R 1 C34 CAP., X5R, 22uF, 6.3V, 20%, 1206 TDK, C3216X5R0J226M 2 C51,C69 CAP., C0G, 2.2nF, 100V, 5%, 1206 Murata, GRM3195C2A222JA01D 1 C66 CAP., C0G, 1.5nF, 200V, 10%, 1206 AVX, 12062A152KAT2A 1 C67 CAP., X7R, 10uF, 25V, 10%, 1210 Taiyo Yuden, TMK325BJ106KN 1 C70 CAP., X7R, 3.3nF, 50V, 10%, 0603 AVX, 06035C332KAT2A 1 C75 CAP., C0G, 100pF, 25V, 10%, 0603 AVX, 06033A101KAT2A 1 C79 CAP., X7R, 3.3nF, 50V, 10%, 0603 AVX, 06035C332KAT2A 1 C55 CAP., C0G, 1nF, 25V, 10%, 0603 AVX, 06033A102KAT2A 1 C77 CAP., X7R, 2.2uF, 16V, 20%, 1206 AVX, 1206YD225MAT2A 1 C72 CAP., X7R, 0.1uF, 25V, 10%, 0805 AVX, 08053C104KAT2A 1 C83 CAP., C0G, 10pF, 50V, 10%, 0603 AVX, 06035A100KAT2A 2 C84,C85 CAP., X7R, 0.1uF, 50V, 10%, 0603 TDK, C1608X7R1H104K 1 C86 CAP., C0G, 68pF, 25V, 10%, 0603 AVX, 06033A680KAT2A 1 C100 CAP., C0G, 150pF, 25V, 10%, 0603 AVX, 06033A151KAT2A 1 C101 CAP., C0G, 470pF, 25V, 10%, 0603 AVX, 06033A471KAT2A 4 D1,D2,D24,D26 Diode Schottky, CMPSH1-4, 40V, SOT23 CENTRAL SEMI., CMPSH1-4-LTC 2 D27,D29 Diode, BAS21 SOT23 Diodes Inc., BAS21 1 L1 INDUCTOR, 100uH, DO1606T Coilcraft, DO1606T-104MLC 1 L6 INDUCTOR, PLANAR, 0.65uH PULSE, PA1382.650 2 Q11,Q9,Q8 FET, N-CH., Si7450DP, Powerpak SO-8 VISHAY, Si7450DP 6 Q12,Q13,Q14,Q15,Q23,Q24 FET, N-CH., Si7336ADP, Powerpak SO-8 VISHAY, Si7336ADP-T1-e3 2 Q25,Q26 TRANSISTOR, NPN, FMMT718, SOT23 ZETEX, FMMT718 1 Q27 TRANSISTOR, NPN, FCX491A, SOT89 ZETEX, FCX491A 1 Q28 FET, N-CH, FDC2512, SUPERSOT-6 Fairchild, FDC2512_NL 1 Q29 FET, P-CH, 30-V(D-S) SOT-23 VISHAY, Si2303BDS-T1-E3 1 Q30 1 Q31 1 Q32 3 R3,R56,R101 RES., CHIP, 100, 1/16W, 5%, 0603 VISHAY, CRCW0603100RJNEA 1 R18 RES., CHIP, 365K, 1/8W, 1%, 0805 VISHAY, CRCW0805365KFKEA 1 R22 RES., CHIP, 15.0K, 1/16W, 1%, 0603 VISHAY, CRCW060315K0FKEA 4 R23,R24,R51,R52 RES., CHIP, 6.8, 1/4W, 5%, 1206 VISHAY, CRCW12066R80JNEA 1 R41 RES., CHIP, 4.42K, 1/16W, 1%, 0603 VISHAY, CRCW06034K42FKEA 1 R48 RES., CHIP, 0.015, 1.5W, 2%, 2512 IRC, LRC-LRF2512-01-R015-G 1
R68 1 R76 RES., CHIP, 8.06, 1/16W, 1%, 0805 1 R78 RES., CHIP, 750, 1/16W, 5%, 0603
N-MOSFET, 2N7002 SOT23 Diodes Inc., 2N7002-7-F TRANSISTOR, PNP, SOT-23 DIODES., MMBT2907A-7-F TRANSISTOR, NPN, SOT-23
RES., CHIP, 9.1K, 1/16W, 5%, 0603
ZETEX, FMMT619
VISHAY, CRCW06039K10JNEA VISHAY, CRCW08058R06FNEA VISHAY, CRCW0603750RJNEA
13
Page 14
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 17. Bill of Materials (Single Phase)
1
R84 1 R29 RES., CHIP, 100K, 1/8W, 5%, 0805 VISHAY, CRCW0805100KJNEA 1 R46 RES., CHIP, 604, 1/16W, 1%, 0603 VISHAY, CRCW0603604RFKEA 1 R53 RES., CHIP, 12, 1/16W, 5%, 0603 VISHAY, CRCW060312R0JNEA 1 R58 RES., CHIP, 5.1K, 1/16W, 5%, 0603 VISHAY, CRCW06035K10JNEA 3 R63,R66,R80 RES., CHIP, 100K, 1/16W, 5%, 0603 VISHAY, CRCW0603100KJNEA 1 R69 RES., CHIP, 110K, 1/16W, 5%, 0603 1 R75 RES., CHIP, 510, 1/16W, 5%, 0603 VISHAY, CRCW0603510RJNEA 1 R79 RES., CHIP, 68K, 1/8W, 5%, 0603 VISHAY, CRCW060368K0JNEA 2
R81,R82 1 T1 TRANSFORMER, PLANAR, 4:4:1:1 PULSE, PA0954 1 T2 TRANSFORMER, PA1954NL PULSE, PA1954NL 1 T3 TRANSFORMER, CT02-100 ICE Components., CT02-100 1 T4 TRANSFORMER, 1.5 : 1 Coilcraft, DA2318-ALC 1 U1 I.C. LTC3725EMSE, MS10E LINEAR TECH., LTC3725EMSE#PBF 1 U2 I.C. LTC3706EGN, SSOP-24GN LINEAR TECH., LTC3706EGN#PBF
ADDITIONAL DEMO BOARD CIRCUIT COMPONENTS2
1 C2 CAP., X7R, 2.2uF, 100V, 20%, 1210 Murata, GRM32ER72A225K 0 C74(opt) CAP., 0603 0 C81,C82(opt.) CAP., 0603 0 D30 (opt) Diode, SOT23 0 D31 (opt) Diode, SOT23 1 L5 INDUCTOR, 0.68uH, VISHAY, IHLP-2525CZERR68M01 e3 0 Q8(opt) FET, N-CH., SO-8 2 R49,R70 RES., CHIP, 0, 1/16W, 0603 VISHAY, CRCW06030000Z0EA
R59,R60.R62,R64,R67,R71 0
-R74(opt) 0 R102,R107(opt) 1 R108 2 E1,E2 TESTPOINT, TURRET, .094" MILL-MAX, 2501-2-00-80-00-00-07-0 2 E8,E7 TESTPOINT, TURRET, .061" MILL-MAX, 2308-2-00-80-00-00-07-0 2 E3,E4 STUD PEM, KFH-032-6 4 E3,E4(2 EACH) NUT, BRASS, #10-32 ANY 2 E3,E4 WASHER, STAR #10 BRASS NICKEL ANY 2 E3,E4 Ring, Lug Ring # 10 KEYSTONE 8205 1 J1 HEADER, SMD, single row, 2mm Comm Com, 2SMD1-140/335/180-11G2 1 P1 SOCKET, SMD, single row, 2mm COMM COM, 1309-11G2
Notes:
1. Required Circuit Components are those parts that are required to implement the circuit function
2. Additional Demo Board Circuit Components are those parts that provide added functionality for the demo
board but are or may not be required in the actual circuit.
RES., CHIP, 1.0K, 1/16W, 5%, 0805
RES., CHIP, 150, 1/16W, 5%, 0603
RES., 0603
RES., 0603 RES., CHIP, 0, 1/16W, 0603 VISHAY, CRCW06030000Z0EA
VISHAY, CRCW08051K00JNEA
VISHAY, CRCW0603110KJNEA
VISHAY, CRCW0603150RJNEA
Figure 17. Bill of Materials (Single Phase) (cont’d)
14
Page 15
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Ref
Des C29 10nF 4.7nF C70 3.3nF 15nF C78 10nF 4.7nF R71 OPT
MASTER
R72 OPT
R74 OPT C29 10nF 4.7nF C70 3.3nF 15nF C78 10nF 4.7nF C79 3.3nF open R41 R46 R59 OPT R60 OPT R62 OPT
SLAVE
R63 R64 OPT R67 OPT R68 R69 R70 R73 OPT
Single
Phase PolyPhase
0 0
0
4.42k 604
100k
9.1k
110k
0
open open
0 0 0
open
0 0
open open open
0
Figure 18. Single Phase to PolyPhase Electrical Component Changes
15
Page 16
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
E4
+Vout
5Vo
-Vout
E3
E3
E4
3
4
4
3
-Vout (to -Vout SLV)
+Vout (to +Vout SLV)
-VPKS (to -VPKS SLV)
P1-6
P1-5
5
5
J1-5
+VPKS (to +VPKS SLV)
P1-7
6
7
8
7
6
+ITH (to +ITH SLV)
J1-6
8
-ITH (to -ITH SLV)
J1-7
J1-8
P1-9
P1-8
9
10
9
10
SSS (to SSS SLV)
J1-9
SYNC (to SYNC SLV)
R41
4.42K
R46
604
P1-11
P1-10
11
11
-VOUT (to SLV)
J1-10
J1-11
C77
C31, C33, C68
PSLV0J227M12
220u
+VOUT
6.3V
+
22n
C34
-VOUT
2.2uF
-VOUT
VCC
4
24
FCX491A
25V
C67
MASTER
L6
PA1382.650
1/4W
R23
R24
6.8
Q12
-VOUT
1/4W
6.8
R75
10uF
-VPKS
+VPKS
Vaux
Vsg
Q13
Q23
Si7336ADP
SW
510
Q27
-VOUT
CMPSH1-4
D26
Q14R76
Q15
B
4113 8105
R84
D27
Q24
Q25
FMMT718
6.8
R52
Si7336ADP
C69
2.2n
100V
6
C66
200V
1.5n
Q11
Q9
Si7450DP
Q8
-VOUT
1k
BAS21
R3
100
8.06
IS+
1/4W
6.8
R51
1/4W
R48
15m
1.5W
C27
100pF
C51
2.2n
100V
A
72
T1
1
PA0954(4:4:1:1)
T3
CT02-100
34
1 2
18
19
1
SG
16
IS+
C70
15n
15
VCC
20
2
12
R53
SYNC
C71
8
-VOUT
T2
5
C72
0.1uF
5.1K
R58
IS
10
7
R29
100K
3
Q28
FDC2512
C3-C5
100V
3 X 2.2uF
R18
L5
0.68uH C2
2.2uF
100V
+Vin
-Vin
36V-72Vi n
L5 VISHAY IHLP2525CZERR68M01
NOTE:
C2-C5 2.2uF,100V Murata GRM32ER72A225K
1
1
T2 Pulse PA1954NL
+Vin (to SLV)
365K
E1
E2
2
2
-Vin (to SLV)
E1
E2
6
10
11
IS-
4
8
FB
VS-
VS+
MODE
VSOUT
9
VCC
NDRV
VIN
SG
IS+
U2
SW
FG
PT+
22
1uF
1
634
C100
150pF
C101
470pF
FB/IN+
GATE
U1
NDRV
VCC
-VIN (to SLV)
+ITH
ITH
PHASE
FS/SYNC
REGSD
LTC3706EGN
SLP
PGOOD
RUN/SS
PGND
GND
PT-
21
R101
100
5
FS/IN-
GND
PGND
VSLMT
LTC3725EMSE
ULVO
SSFLT
2
1
SSP
C24
C55
R22
P1-1
1
1
SSP (to SSP SLV)
J1-1
C79
9.1K
R68
C75
100p
7
5
R69
13
17
14
3
8
23
12
R63
15.0K
110K
100K
R66
C78
4.7nF
SSS
100K
11
6
Q29
9
C29
4.7n
1uF
1nF
P1-2
2
2
J1-2
VCC
3.3n
-ITH
R81
-VOUT
SW
C83
10pF
D29
R78
BAS21
Si2303BDS
R79
68K
R80
100K
C84
0.1uF
D24
CMPSH1-4
Vsg
Q32
Q26
FMMT718
FMMT619
-VOUT
Q31
MMBT2907A
150
R82
-VOUT
C30
Q30
2N7002
750
C85
0.1uF
100
R56
150
C86
68pF
SG
250V
2.2nF
-VOUT
Vaux
+VOUTB
L1
100uH
D2
CMPSH1-4
D1
CMPSH1-4
C
T4
A
D
3
1
6
4
DA2318-ALC
Figure 19. PolyPhase Master Schematic
16
Page 17
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
E4
E3
E3
+Vout
5Vo
-Vout
E4
4
3
4
3
-Vout (to -Vout SLV)
+Vout (to +Vout SLV)
-VPKS ( to -VPKS SLV)
P1-6
P1-5
6
5
6
5
+ITH (to +ITH SLV)
J1-6
J1-5
+VPKS (to +VPKS SLV)
P1-8
P1-7
8
7
7
8
-ITH (to -ITH SLV)
J1-7
J1-8
P1-9
9
10
9
10
SSS (to SSS SLV)
SYNC (to SYNC SLV)
J1-9
-ITH
VCC
C77
C31, C33, C68
220u
6.3V
PSLV0J227M12
+
+VOUT
22n
C34
-VOUT
25V
C67
SLAVE
L6
PA1382.650
1/4W
R23
R24
6.8
Q12
-VOUT
1/4W
6.8
R75
C51
2.2n
100V
B
A
72
T1
4113 8105
1
PA0954(4:4:1:1)
Q11
Q9
Q8
-VOUT
T3
CT02-100
34
1k
1 2
R84
D27
BAS21
10uF
-VPKS
+VPKS
Vaux
Vsg
Q13
Q14
Si7450DP
R76
Si7336ADP
Q23
SW
510
Q15
Q24
Si7336ADP
C69
2.2n
100V
6
1.5n
C66
200V
8.06
IS+
D26
Q25
FMMT718
R52
R51
R48
15m
1.5W
C27
R3
100
2.2uF
-VOUT
VCC
Q27
-VOUT
CMPSH1-4
6.8
1/4W
6.8
1/4W
100pF
4
24
FCX491A
18
19
1
SG
16
IS+
C70
15n
15
VCC
20
2
12
R53
C71
-VOUT
T2
5
C72
5.1K
R58
10
7
R29
100K
3
Q28
FDC2512
C3-C5
3 X 2.2uF
100V
L5
0.68uH C2
2.2uF
100V
+Vin
-Vin
36V-72Vi n
L5 VISHAY IHLP2525CZERR68M01
T2 Pulse PA1954NL
C2-C5 2.2uF,100V Murata GRM32ER72A225K
NOTE:
+Vin (to SLV)
R18
E1
1
1
2
2
-Vin (to SLV)
E1
E2
+ITH
6
10
11
IS-
8
0.1uF
4
IS
8
365K
E2
FB
VS-
VS+
MODE
VSOUT
9
VCC
NDRV
ITH
PHASE
VIN
SG
IS+
SW
FG
22
634
C100
FB/IN+
GATE
NDRV
VCC
FS/SYNC
REGSD
U2
LTC3706EGN
SLP
PGOOD
RUN/SS
PGND
GND
PT-
PT+
21
1uF
1
150pF
C101
R101
100
470pF
5
FS/IN-
GND
PGND
U1
VSLMT
LTC3725EMSE
ULVO
SSFL T
2
1
SSP
C24
C55
R22
P1-1
1
1
-VIN (to SLV) SSP (to SSP SLV)
J1-1
100p
C75
7
5
VCC
13
SYNC
17
R66
100K
14
3
8
23
12
4.7nF
C78
SSS
11
6
Q29
9
C29
4.7n
1uF
1nF
15.0K
P1-2
2
2
J1-2
VCC
Q31
150
R81
R82
-VOUT
-VOUT
C30
SW
C83
10pF
Q30
2N7002
D29
Si2303BDS
D24
750
R78
BAS21
C85
0.1uF
R79
68K
R80
100K
C84
0.1uF
CMPSH1-4
P1-11
P1-10
11
11
-VOUT (to SLV)
J1-10
J1-11
Vsg
Q32
FMMT619
FMMT718
Q26
-VOUT
MMBT2907A
100
R56
150
C86
68pF
SG
250V
2.2nF
-VOUT
Vaux
+VOUT
L1
100uH
D2
CMPSH1-4
D1
CMPSH1-4
C
T4
A
D
3
1
6
4
DA2318-ALC
B
Figure 20. PolyPhase Slave Schematic
17
Page 18
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
-VPKS (to -VPKS SLV)
+VPKS (to +VPKS SLV)
J1-5
P1-5
5
J1-6
6
5
6
P1-6
R59
R60
OPT
7
7
8
J1-7
P1-7
+ITH (to +ITH SLV)
-ITH (to -ITH SLV)
OPT
*
+Vout (to +Vout SLV)
E3
C68
+
+
E7
C31
+
+VOUT
C33
+
C34
2
*
L6
4 1
5
MASTER
1/4W
R23
R24
*
Vaux
*
Q23
Q12
Q13
-VOUT
1/4W
*
R75
510
*
Q14
Q15
C51
100V
*
B
A
72
*
T1
4113 8105
1
*
Q11
Q8
Q9
Si7450DP
1 2
L5
+Vin (to SLV)
-VOUT
T3
CT02-100
34
R84
*
D27
BAS21
IS+
C5
2.2uF
100V
C4
2.2uF
100V
C3
2.2uF
100V
0.68uH C2
2.2uF
100V
E1
E2
36V-72Vin
-Vout (to -Vout SLV)
E4
*
*
*
*
5
5
5 678
678
678
Q24
5
5
5 678
678
678
6
6 7 8
6 7 8
6 7 8 5
5
5
R76
*
-
E8
-VOUT
C67
25V
10uF
Vsg
4
4
4
1
1
1 23
23
23
SW
4
4
4
C69
*
C66
200V
*
4
4
4
0
R49
-VIN
-Vin (to SLV)
D26
CMPSH1-4
1
1
1 23
23
23
Q25
FMMT718
*
R52
*
100V
2 3
2 3
2 3 1
1
1
R51
R48
*
1.5W
R3
100
C27
100pF
C2-C5 2.2uF,100V Murata GRM32ER72A225K
NOTE:
L5 VISHAY IHLP2525CZERR68M01
T2 Pulse PA1954NL
*
R41
C74
OPT
6
10
11
VS-
VS+
MODE
4
VCC
Q27
2 3
SG
IS+
-VOUT
VCC
R53
1/4W
-VOUT
1/4W
R58
R29
100K
Q28
FDC2512
2 5 6
VCC
24
FCX491A
NDRV
18
1
VIN
19
SG
1
IS+
U2
16
LTC3706EGN
C70
*
IS-
15
SW
20
FG
2
12
T2
5
C72
5.1K
10
7
3
3
4 1
1
J1-1
-VIN (to SLV)
PT-
PT+
22
21
C71
1uF
8
1
634
C82
C100
150pF
0.1uF C101
R101
100
470pF
opt.
C81
4
FB/IN+
IS
GATE
U1
NDRV
LTC3725EMSE
ULVO
VCC
8
2
1
R18
365K
2
1
2
J1-2
P1-1
SSP (to SSP SLV)
C77
VCC
FB
VSOUT
ITH
PHASE
FS/SYNC
REGSD
SLP
PGOOD
RUN/SS
PGND
GND
opt.
5
FS/IN-
SSFL T
2.2uF
R62
OPT
R46
604
9
R64
OPT
*
R68
7
5
0
R70
R67
opt.
VCC
R69
13
17
R66
100K
14
3
C78
8
23
12
R63
100K
GND
11
PGND
6
VSLMT
9
C29
4.7nF
C24
1uF
C55
1nF
R22
15.0K
P1-2
9
8
J1-8
*
C79
110K
4.7nF
SW
C83
D29
9
J1-9
P1-8
R71
C75
3 1
T4 connection for A-B & A-C
P1-9
SSS (to SSS SLV)
SYNC (to SYNC SLV)
R73
OPT
0ohms
R72
R74
0ohms
*
-VOUT
*
D30
BAS21
Q29
*
36V
D31
2 3
-VOUT
1
10pF
Q30
2N7002
*
R78
32
1
Si2303BDS
R79
68K
R80
100K
C84
0.1uF
D24
CMPSH1-4
C
T4
D
3
1
6
4
B
A
11
10
10
J1-10
0ohms
VCC
C85
0.1uF
11
J1-11
-VOUT (to SLV)
P1-10
R81
T4 connection for A-A
P1-11
J1-3
J1-4
3
4
-VOUT
P1-4
P1-3
4
3
Vsg
Q32
FMMT718
FMMT619
Q26
*
R102
Q31
MMBT2907A
150
R56
100
150
R82
C86
68pF
SG
-VOUT
C30
250V
2.2nF
-VIN
Vaux
+VOUT
*
R108
L1
100uH
D2
R107
CMPSH1-4
D1
CMPSH1-4
C
T4
A
D
6
4
3
1
DA2318-ALC
B
T1
PA0955(6:6:2:1)240
PA0950(6:6:1:1)
PA0954(4:4:1:1)
0
0
opt.
R108
0
opt.
opt.
R107
opt.
opt.
R102
330
R84
2.2K
1.0K6.8
390
750
620
R78
R76
9.53
8.06
7.50
R68
9.1K
6.2K
9.1K
0.015
0.010
0.015
R41
4.42K
2.74K
11.5K
-VOUT
10
5.122uF
R23,R24,R51,R52
opt.
Q23,Q24
Si7336ADP
Si7336ADP
Q12-Q15
HAT2244WP
opt.
Q8
Si7450DP
Si7450DP
L6
PA1382.650
PA1494.242
PA1382.650
opt.
opt.
D31
MMBZ5258B
opt.
opt.
D30
BAS21
C79
4.7nF
3.3nF
4.7nF
C75
47pF
470pF
100pF
C70
10nF
15nF
2.2nF
4.7nF
1.0nF
C51,C69
C66
680pF
1.5nF
*
1.5nF
-VOUT
C34
22uF
10uF
opt
C33 R48
220uF, 4V
C31,C68
68uF, 16V
Vout/Iout
5.0V@40A
3.3V@50A 15nF
12V@20A
VERSION TABLE
*
VERSION
DC888A-C
DC888A-B 220uF, 6.3V
DC888A-A
Figure 21. Full PolyPhase Master Schematic
18
Page 19
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
9
7
+VPKS (to +VPKS MSTR)
J1-5
-VPKS (to -VPKS MSTR)
P1-5
J1-6
5
SLAVE
1/4W
R23
*
T3
1 2
L5
0.68uH
+Vin (to MSTR)
*
+Vout (to +Vout MSTR)
E3
C68
+
+
E7
C31
+
+VOUT
C33
+
C34
2
*
L6
4 1
5
Vaux
*
Q12
Q13
Q23
-VOUT
1/4W
R24
*
R75
510
*
Q14
Q24
Q15
C51
100V
*
B
A
72
*
T1
4113 8105
1
*
Q11
Q8
Q9
Si7450DP
-VOUT
CT02-100
34
R84
*
D27
IS+
BAS21
C5
2.2uF
100V
C4
2.2uF
100V
C3
2.2uF
100V
C2
2.2uF
100V
E1
E2
-Vout (to -Vout MSTR)
E4
*
-
*
-VOUT
*
*
*
C67
25V
Vsg
4
4
4
5
1
5
1
5
1 23
678
23
678
23
678
SW
4
4
4
5
1
5
1
5
1 23
678
23
678
23
678
C69
100V
*
C66
6
200V
*
2 3
6 7 8
2 3
6 7 8
2 3
6 7 8 5
1
5
1
5
1
4
4
4
R3
100
0
R49
R76
*
-VIN
36V-72Vin
NOTE:
C2-C5 2.2uF,100V Murata GRM32ER72A225K
-Vin (to MSTR)
L5 VISHAY IHLP2525CZERR68M01
6
5
6
P1-6
R59
R60
0ohms
E8
D26
CMPSH1-4
Q25
FMMT718
*
R52
*
R51
R48
*
1.5W
C27
100pF
T2 Pulse PA1954NL
*
R41
C74
OPT
11
VS-
MODE
4
VCC
Q27
2 3
SG
IS+
-VOUT
VCC
R53
1/4W
-VOUT
1/4W
R58
R29
100K
Q28
FDC2512
2 5 6
VCC
24
FCX491A
NDRV
1
18
VIN
19
SG
1
IS+
U2
16
LTC3706EGN
C70
*
IS-
15
SW
20
FG
2
PT+
22
12
C71
1uF
8
1
T2
634
5
C100
150pF
C72
0.1uF
5.1K C101
470pF
C81
4
FB/IN+
IS
10
GATE
U1
7
NDRV
3
VCC
8
3
1
-VIN (to MSTR)
1
4 1
R18
365K
1
J1-1
P1-1
SSP (to SSP MSTR)
J1-7
+ITH (to +ITH MSTR)
0ohms
VCC
R62
6
10
FB
VS+
VSOUT
9
R64
ITH
7
PHASE
5
VCC
FS/SYNC
13
REGSD
17
SLP
14
PGOOD
3
RUN/SS
8
PGND
23
GND
12
PT-
21
opt.
C82
R63
100K
R101
100
opt.
5
FS/IN-
GND
11
PGND
6
VSLMT
LTC3725EMSE
9
SSFLT
ULVO
C29
2
C24
1uF
C55
1nF
R22
15.0K
2
2
P1-2
J1-2
8
8
7
P1-7
J1-8
-ITH (to -ITH MSTR)
C77
2.2uF
0ohms
R46
604
0ohms
*
*
C79
R68
0
R70
R67
0ohms
R69
110K
R66
100K
C78
4.7nF
SW
C83
D29
4.7nF
9
J1-9
P1-8
R71
C75
3 1
T4 connection for A-B & A-C
P1-9
OPT
R72
OPT
R73
0ohms
*
-VOUT
*
D30
D31
1
10pF
Q30
R78
BAS21
32
Q29
Si2303BDS
R79
68K
C84
D24
CMPSH1-4
C
1
T4
4
A
10
10
J1-10
SSS (to SSS MSTR)
SYNC (to SYNC MSTR)
R74
OPT
VCC
R81
*
36V
2 3
-VOUT
2N7002
*
1
C85
0.1uF
R80
100K
0.1uF
D
3
6
T4 connection for A-A
B
11
11
-VOUT (to MSTR)
J1-11
P1-10
L1
D1
C
P1-11
J1-3
J1-4
3
4
-VOUT
P1-3
P1-4
3
Vsg
Q32
Q26
FMMT718
FMMT619
*
R102
Q31
MMBT2907A
150
R56
100
150
R82
C86
68pF
SG
-VOUT
C30
250V
2.2nF
-VIN
Vaux
+VOUT
*
R108
100uH
D2
R107
CMPSH1-4
CMPSH1-4
D
6
4
T4
3
1
DA2318-ALC
A
B
T1
PA0950(6:6:1:1)
PA0955(6:6:2:1)
4
-VOUT
*
PA0954(4:4:1:1)
0
0
opt.10uF
R108
0
opt.
opt.
R107
opt.
opt.
240
R102
330
R84
1.0K
390
620
750
R78
R76
8.06
9.53
R48
0.015
0.010
0.015
6.8
5.1 2.2K
10
R23,R24,R51,R52
opt.
Q23,Q24
Si7336ADP
Si7336ADP15nF
Q12-Q15C75
HAT2244WP
opt.
Q8
Si7450DP
Si7450DP
L6
PA1382.650
PA1494.242
PA1382.650
opt.
opt.220uF, 6.3V
D31
MMBZ5258B
opt.
opt.
D30
BAS21DC888A-C
47pF
470pF
100pF
C70
15nF
10nF
4.7nF
2.2nF
C51,C69
C66
680pF 7.50
1.5nF
1.5nF
C34
22uF
22uF
-VOUT
opt 1.0nF
C33
220uF, 4V
C31,C68
68uF, 16V
Vout/Iout
VER SIO N TABLE
5.0V@40A
12V@20A
3.3V@50A
*
VERSION
DC888A-A
DC888A-B
Figure 22. Full PolyPhase Slave Schematic
19
Page 20
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-B
36V-72VIN, ISOLATED SYNCHRONOUS FORWARD
Figure 23. Picture of two DC888A’s configured for PolyPhase
20
Loading...