LINEAR TECHNOLOGY LT5522 Technical data

LO INPUT POWER (dBm)
–11
0
G
C
, SSB NF (dB), IIP3 (dBm)
4
8
12
16
–9 –7 –5 –3
5522 TA01
–1 1
20
IIP3
24
22
IF = 140MHz LOW-SIDE LO T
A
= 25°C
V
CC
= 5V
2
6
10
14
18
–70
–60
LO-RF LEAKAGE (dBm)
–50
–40
–30
–20
–10
SSB NF
LO-RF
FEATURES
50 Single-Ended RF and LO Ports
High Input IP3: +25dBm at 900MHz
+21.5dBm at 1900MHz
Low Power Consumption: 280mW Typical
Integrated LO Buffer: Low LO Drive Level
High LO-RF and LO-IF Isolation
Wide RF Frequency Range: 0.4GHz to 2.7GHz*
Very Few External Components
Enable Function
4.5V to 5.25V Supply Voltage Range
16-Lead (4mm × 4mm) QFN Package
U
APPLICATIO S
Cellular, PCS and UMTS Band Infrastructure
CATV Downlink Infrastructure
2.4GHz ISM
High Linearity Downmixer Applications
LT5522
400MHz to 2.7GHz
High Signal Level
Downconverting Mixer
U
DESCRIPTIO
The LT®5522 active downconverting mixer is optimized for high linearity downconverter applications including cable and wireless infrastructure. The IC includes a high speed differential LO buffer amplifier driving a double-balanced mixer. The LO buffer is internally matched for wideband, single-ended operation with no external components.
The RF input port incorporates an integrated RF trans­former and is internally matched over the 1.2GHz to 2.3GHz frequency range with no external components. The RF input match can be shifted down to 400MHz, or up to
2.7GHz, with a single shunt capacitor or inductor, respec­tively. The high level of integration minimizes the total solution cost, board space and system-level variation.
The LT5522 delivers high performance and small size without excessive power consumption.
, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. *Operation over a wider frequency range is possible with reduced performance. Consult factory for information and assistance.
TYPICAL APPLICATIO
1850MHz
TO
1910MHz
U
LO INPUT
–5dBm
+
LO
LT5522
+
RF
LNA
Figure 1. High Signal Level Downmixer for Wireless Infrastructure
RF
CONTROL
EN V
BIAS/
CC1
LO
+
IF
2.7pF
100pF
IF
V
CC2
0.01µF 3.3µF
150nH
150nH
140MHz
5V
(TYP)
VGA
LTC1748
ADC
5522 F01
1.9GHz Conversion Gain, IIP3, SSB
NF and LO-RF Leakage vs LO Power
5522fa
1
LT5522
PACKAGE/ORDER I FOR ATIO
UU
W
WWWU
ABSOLUTE AXI U RATI GS
(Note 1)
Supply Voltage ...................................................... 5.5V
Enable Voltage ............................... – 0.3V to V
LO Input Power ............................................... +10dBm
+
LO
to LO– Differential DC Voltage ......................... ±1V
LO Input DC Common Mode Voltage ...................... ±1V
RF Input Power ................................................ +10dBm
RF+ to RF– Differential DC Voltage ........................ ±0.2V
RF Input DC Common Mode Voltage ...................... ±1V
Operating Temperature Range ................ –40°C to 85°C
Storage Temperature Range ................. –65°C to 125°C
Junction Temperature (T
).................................... 125°C
J
+ 0.3V
CC
TOP VIEW
NC
LO+LO–NC
16 15 14 13
GND
1NC
+
RF
2
RF
3
NC
4
5 6 7 8
EN
16-LEAD (4mm × 4mm) PLASTIC QFN
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
UF PACKAGE
T
= 125°C, θJA = 37°C/W
JMAX
ORDER PART NUMBER
17
V
12
+
IF
11
IF
10
GND
9
NC
CC1
CC2
V
UF PART MARKING
LT5522EUF 5522
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF
Lead Free Part Marking: http://www.linear.com/leadfree/
Consult LTC Marketing for parts specified with wider operating temperature ranges.
DC ELECTRICAL CHARACTERISTICS
(Test circuit shown in Figure 2) VCC = 5VDC, EN = high, TA = 25°C,
unless otherwise noted. (Note 3)
PARAMETER CONDITIONS MIN TYP MAX UNITS Power Supply Requirements (VCC)
Supply Voltage 4.5 5 5.25 VDC Supply Current VCC = 5V 56 68 mA Shutdown Current EN = Low 100 µA
Enable (EN) Low = Off, High = On
Input High Voltage (On) 3 VDC Input Low Voltage (Off) 0.3 VDC Enable Pin Input Current EN = 5VDC 55 75 µA Turn On Time 3 µs Turn Off Time 5 µs
AC ELECTRICAL CHARACTERISTICS
PARAMETER CONDITIONS MIN TYP MAX UNITS
RF Input Frequency Range Shunt Capacitor on Pin 3 (Low Band) 400 MHz
No External Matching (Mid Band) 1200 to 2300 MHz
Shunt Inductor on Pin 3 (High Band) 2700 MHz LO Input Frequency Range No External Matching 400 2700 MHz IF Output Frequency Range Requires Appropriate IF Matching 0.1 to 1000 MHz RF Input Return Loss ZO = 50 15 dB LO Input Return Loss ZO = 50 13 dB IF Output Return Loss ZO = 50 18 dB LO Input Power –10 –5 0 dBm RF to LO Isolation 50MHz to 2700MHz >45 dB
(Notes 2, 3) (Test circuit shown in Figure 2).
5522fa
2
LT5522
AC ELECTRICAL CHARACTERISTICS
= 25°C, PRF = –7dBm (–7dBm/tone for 2-tone IIP3 tests, f = 1MHz), fLO = fRF – 140MHz, PLO = –5dBm, IF output measured at
T
A
Cellular/PCS/UMTS downmixer application: VCC = 5V, EN = high,
140MHz, unless otherwise noted. (Notes 2, 3) (Test circuit shown in Figure 2).
PARAMETER CONDITIONS MIN TYP MAX UNITS
Conversion Gain RF = 450MHz, High Side LO –2.0 dB
RF = 900MHz –0.5 dB
RF = 1800MHz –2 –0.2 dB
RF = 1900MHz –0.1 dB
RF = 2100MHz 0.2 dB
RF = 2450MHz –0.7 dB Conversion Gain vs Temperature TA = –40° C to 85°C –0.02 dB/°C Input 3rd Order Intercept RF = 450MHz, High Side LO 22.3 dBm
RF = 900MHz 25.0 dBm
RF = 1800MHz 21.8 dBm
RF = 1900MHz 21.5 dBm
RF = 2100MHz 20.0 dBm
RF = 2450MHz 16.8 dBm Single Sideband Noise Figure (Note 4) RF = 900MHz 12.5 dB
RF = 1800MHz 13.9 dB
RF = 2100MHz 14.3 dB
RF = 2450MHz 15.6 dB LO to RF Leakage fLO = 400MHz to 2700MHz ≤–50 dBm LO to IF Leakage fLO = 400MHz to 2700MHz ≤–49 dBm 2RF-2LO Output Spurious Product (fRF = fLO + fIF/2) 900MHz: fRF = 830MHz at –12dBm –73 dBc
1900MHz: f 3RF-3LO Output Spurious Product (fRF = fLO + fIF/3) 900MHz: fRF = 806.67MHz at –12dBm –72 dBc
1900MHz: fRF = 1806.67MHz at –12dBm –65 dBc Input 1dB Compression RF = 450MHz, High Side LO 12.0 dBm
RF = 900MHz 10.8 dBm
RF = 1900MHz 8.0 dBm
= 1830MHz at –12dBm –60 dBc
RF
1150MHz CATV infrastructure application: VCC = 5V, EN = high, TA = 25°C, RF input = 1150MHz at –12dBm (–12dBm/tone for 2-tone IIP3 tests, f = 1MHz), LO input swept from 1200MHz to 2200MHz, P
= –5dBm, IF output measured from 50MHz to 1050MHz unless
LO
otherwise noted. (Note 3) (Test circuit shown in Figure 3).
PARAMETER CONDITIONS MIN TYP MAX UNITS
Conversion Gain fLO = 1650MHz, fIF = 500MHz –0.6 dB Input 3rd Order Intercept fLO = 1650MHz, fIF = 500MHz 23 dBm Single Sideband Noise Figure (Note 4) fLO = 1650MHz, fIF = 500MHz 14.3 dB LO to RF Leakage fLO = 1200MHz to 2200MHz ≤– 51 dBm LO to IF Leakage fLO = 1200MHz to 2200MHz ≤– 45 dBm 2RF – LO Output Spurious Product PRF = –12dBm (Single Tone), 50MHz ≤ fIF 900MHz –63 dBc 2RF1 – LO Output Spurious Product 2 –68 dBc 2RF2 – LO Output Spurious Product –68 dBc (RF1 + RF2) – LO Output Spurious Product –63 dBc RF Input Return Loss 950MHz to 1350MHz, ZO = 50 >15 dB LO Input Return Loss 1200MHz to 2200MHz, ZO = 50 13 dB IF Output Return Loss 50MHz to 1050MHz, ZO = 50 10 dB
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: 450MHz, 900MHz and 2450MHz performance measured with the following external RF input matching. 450MHz: C5 = 8.2pF, 5mm away from Pin 3 on the 50 input line. 900MHz: C5 = 2.2pF at Pin 3. 2450MHz: L3 = 3.9nH at Pin 3. See Figure 2.
2-Tone 2nd Order Spurious Outputs
RF1 = 1147MHz, RF2 = 1153MHz, –15dBm/Tone
LO = 1650MHz, Spurs at 644MHz, 656MHz and 650MHz
Note 3: Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.
Note 4: SSB Noise Figure measurements performed with a small-signal noise source and bandpass filter on RF input, and no other RF signal applied.
5522fa
3
LT5522
WU
TYPICAL AC PERFOR A CE CHARACTERISTICS
V
= 5V, EN = High, TA = 25°C, PRF = –7dBm (–7dBm/tone for 2-tone IIP3 tests, ∆f = 1MHz), PLO = –5dBm, IF output measured
CC
at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2).
Mid-band RF (no external RF matching)
Conv Gain, IIP3 and SSB NF vs RF Frequency (Low Side LO)
23
21
19
17
15
13
TA = 25°C
11
= 140MHz
f
IF
9
7
5
AND SSB NF (dB), IIP3 (dBm)
C
G
3
1
–1
1300
1500
IIP3
SSB NF
G
C
1900
1700
RF FREQUENCY (MHz)
Conv Gain and IIP3 vs Temperature (RF = 1800MHz)
22
20
18
16
14
12
10
8
(dB), IIP3 (dBm)
C
6
G
4
2
0
= 140MHz
f
IF
–2
–50
–25
IIP3
G
LOW SIDE LO HIGH SIDE LO
C
TEMPERATURE (°C)
LOW SIDE LO HIGH SIDE LO
02550
2100
75 100
5522 G01
5522 G04
2300
Conv Gain, IIP3 and SSB NF vs RF Frequency (High Side LO) LO Leakage vs LO Frequency
23
21
19
17
15
13
11
9
7
5
AND SSB NF (dB), IIP3 (dBm)
C
G
3
1
–1
1300
1500
IIP3
SSB NF
G
C
1900
1700
RF FREQUENCY (MHz)
Conv Gain, IIP3 and SSB NF vs LO Power (RF = 1800MHz)
22
20
18
16
14
12
10
8
6
4
AND SSB NF (dB), IIP3 (dBm)
C
G
2
0
–2
–11
IIP3
SSB NF
G
C
–7 –5 –3
–9
LO INPUT POWER (dBm)
TA = 25°C
= 140MHz
f
IF
2100
f
= 1660MHz
LO
= 140MHz
f
IF
2300
5522 G02
25°C 85°C –40°C
–1 1
5522 G05
–30
TA = 25°C
–35
= 140MHz
f
IF
–40
–45
–50
–55
–60
–65
–70
LO LEAKAGE (dBm)
–75
–80
–85
–90
1100
1300
LO-RF
LO-IF
1900
1700
1500
LO FREQUENCY (MHz)
Conv Gain and IIP3 vs Supply Voltage (RF = 1800MHz)
22
20
18
16
14
12
10
8
(dB), IIP3 (dBm)
C
6
G
4
G
2
0
–2
4.5
IIP3
C
4.75 SUPPLY VOLTAGE (V)
5 5.25
2100
2300
5522 G03
25°C 85°C –40°C
fLO = 1660MHz
= 140MHz
f
IF
5522 G06
2500
5.5
Conv Gain and IIP3 vs Temperature (RF = 2100MHz)
20
18
LOW SIDE LO
16
IIP3
14
12
10
8
(dB), IIP3 (dBm)
6
C
G
4
G
C
2
0
= 140MHz
f
IF
–2
–50
–25
HIGH SIDE LO
LOW SIDE LO HIGH SIDE LO
02550
TEMPERATURE (°C)
4
75 100
5522 G07
Conv Gain, IIP3 and SSB NF vs LO Power (RF = 2100MHz)
20
18
IIP3
16
14
12
10
8
6
4
AND SSB NF (dB), IIP3 (dBm)
G
C
C
2
G
0
–2
–11
–9
SSB NF
–7 –5 –3
LO INPUT POWER (dBm)
f
= 1960MHz
LO
= 140MHz
f
IF
25°C 85°C –40°C
–1 1
5522 G08
IF OUT, 2 × 2 and 3 × 3 Spurs vs RF Input Power (Single Tone)
10
0
–10
–20
–30
–40
–50
–60
OUTPUT POWER (dBm)
–70
–80
–90
–21
IF OUT
(RF = 1900MHz)
(RF = 1806.67MHz)
–15–18
–9–12
RF INPUT POWER (dBm)
3RF-3LO
–3 0 6
–6
2RF-2LO (RF = 1830MHz)
TA = 25°C
= 1760MHz
f
LO
= 140MHz
f
IF
3
5522 G09
5522fa
9
WU
TYPICAL AC PERFOR A CE CHARACTERISTICS
(L3 = 3.9nH) V measured at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2).
= 5V, EN = High, TA = 25°C, PRF = –7dBm (–7dBm/tone for 2-tone IIP3 tests, ∆f = 1MHz), PLO = –5dBm, IF output
CC
LT5522
Low-band RF (C5 = 2.2pF) and high-band RF
Low Band Conv Gain, IIP3 and SSB NF vs RF Frequency
18
16
HIGH SIDE LO
14
12
10
8
(dB)
C
G
6
4
–2
2
0
600
TA = 25°C
= 140MHz
f
IF
HIGH SIDE LO
LOW SIDE LO
G
C
700
RF FREQUENCY (MHz)
800
LOW SIDE LO
900 1000
1100
Low Band Conv Gain, IIP3 and SSB NF vs LO Power (RF = 900MHz)
17
15
13
11
9
7
(dB)
C
G
5
3
1
–1
–3
–11
SSB NF
G
C
–9
–7
LO INPUT POWER (dBm)
–5 –3
25°C 85°C –40°C
fLO = 760MHz
= 140MHz
f
IF
–1
IIP3
SSB NF
5522 G10
IIP3
5522 G13
17
26
24
15
13
22
SSB NF (dB), IIP3 (dBm)
20
11
9
18
7
16
(dB)
C
G
5
14
3
12
1
–1
–3
SSB NF (dB), IIP3 (dBm)
LO LEAKAGE (dBm)
1200
1
10
8
6
26
24
22
20
18
16
14
12
10
8
6
Low Band Conv Gain and IIP3 vs Temperature (RF = 900MHz)
LOW SIDE LO
HIGH SIDE LO
G
C
fIF = 140MHz
–25
–50
LOW SIDE LO
HIGH SIDE LO
25 50
0
TEMPERATURE (°C)
75
LO Leakage vs LO Frequency (Low Band RF Match)
–30
TA = 25°C
–35
= 140MHz
f
IF
= –5dBm
P
–40
LO
–45
–50
–55
–60
–65
–70
–75
–80
–85
–90
400
LO-IF
LO-RF
600
800
LO FREQUENCY (MHz)
1000
5522 G11
1200
IIP3
100
5522 G14
26
24
–10
22
–20
20
–30
IIP3 (dBm)
18
–40
16
–50
14
–60
12
–70
OUTPUT POWER (dBm)
10
–80
8
–90
6
–100
17
15
13
11
9
7
(dB)
C
G
5
3
1
–1
–3
1400
Low Band IF OUT, 2 × 2 and 3 × 3 Spurs vs RF Input Power (Single Tone)
10
0
IF OUT
(RF = 900MHz)
(RF = 806.67MHz)
–9
–15
–12–18
RF INPUT POWER (dBm)
3RF-3LO
–6
2RF-2LO (RF = 830MHz)
–3
0
TA = 25°C
= 760MHz
f
LO
3
6
9
5522 G12
12
Low Band Conv Gain and IIP3 vs Supply Voltage (RF = 900MHz)
IIP3
25°C 85°C –40°C
fLO = 760MHz
= 140MHz
f
IF
G
C
4.5
4.75 5 SUPPLY VOLTAGE (V)
5.25
5.5
5522 G15
26
24
22
20
IIP3 (dBm)
18
16
14
12
10
8
6
High Band Conv Gain, IIP3, SSB NF and LO Leakage vs RF Frequency
20
IIP3
18
16
14
12
10
8
6
4
AND SSB NF (dB), IIP3 (dBm)
C
2
G
0
–2
2200
SSB NF
LO-IF
G
C
2300
RF FREQUENCY (MHz)
2400
LO-RF
2500
TA = 25°C
= 140MHz
f
IF
LOW SIDE LO
2600
5522 G16
2700
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
High Band Conv Gain and IIP3 vs Temperature (RF = 2450MHz)
17
15
IIP3
13
LO LEAKAGE (dBm)
11
9
7
5
(dB), IIP3 (dBm)
C
G
3
G
1
–1
–3
–50
C
–25
fLO = 2310MHz f
25 50
0
TEMPERATURE (°C)
= 140MHz
IF
High Band Conv Gain, IIP3 and SSB NF vs LO Power (RF = 2450MHz)
18
IIP3
16
14
12
10
8
6
(dB), IIP3 (dBm)
C
G
4
2
G
C
0
100
–2
–11
–9
75
5522 G17
SSB NF
fLO = 2310MHz
= 140MHz
f
IF
–5 –3
–7
LO INPUT POWER (dBm)
25°C 85°C –40°C
–1
5522 G18
20
19
18
17
16
15
14
13
12
11
10
1
5522fa
SSB NF (dB)
5
Loading...
+ 11 hidden pages