LINEAR TECHNOLOGY LT5520 Technical data

查询LT5520EUF供应商
FEATURES
Wide RF Output Frequency Range: 1.3GHz to 2.3GHz
15.9dBm Typical Input IP3 at 1.9GHz
On-Chip RF Output Transformer
No External LO or RF Matching Required
Single-Ended LO and RF Operation
Integrated LO Buffer: –5dBm Drive Level
Low LO to RF Leakage: – 41dBm Typical
Wide IF Frequency Range: DC to 400MHz
Enable Function with Low Off-State Leakage Current
Single 5V Supply
Small 16-Lead QFN Plastic Package
U
APPLICATIO S
Wireless Infrastructure
Cable Downlink Infrastructure
Point-to-Point Data Communications
High Linearity Frequency Conversion
LT5520
1.3GHz to 2.3GHz High Linearity
Upconverting Mixer
U
DESCRIPTIO
The LT®5520 mixer is designed to meet the high linearity requirements of wireless and cable infrastructure trans­mission applications. A high-speed, internally matched, LO amplifier drives a double-balanced mixer core, allow­ing the use of a low power, single-ended LO source. An RF output transformer is integrated, thus eliminating the need for external matching components at the RF output, while reducing system cost, component count, board area and system-level variations. The IF port can be easily matched to a broad range of frequencies for use in many different applications.
The LT5520 mixer delivers 15.9dBm typical input 3rd order intercept point at 1.9GHz with IF input signal levels of –10dBm. The input 1dB compression point is typically 4dBm. The IC requires only a single 5V supply.
, LTC and LT are registered trademarks of Linear Technology Corporation.
TYPICAL APPLICATIO
5V
DC
1µF 1000pF
EN V
BIAS
+
IF
IF
Figure 1. Frequency Conversion in Wireless Infrastructure Transmitter
INPUT
BPF
IF
4:1
LO INPUT
–5dBm
220pF
220pF
100
15pF
100
(OPTIONAL)
CC1VCC2VCC3
85
+
LO
RF Output Power and Output IM3 vs
39nH
10pF
+
RF
RF
BPF
PA
OUTPUT
RF
GND
5pF5pF
LT5520
LO
5520 F01
IF Input Power (Two Input Tones)
10
0 –10 –20 –30 –40 –50
, IM3 (dBm/TONE)
OUT
–60
P
–70 –80 –90
–16
P
OUT
PLO = –5dBm
IM3
–12
–8
IF INPUT POWER (dBm/TONE)
f f f f T
–4
= 1760MHz
LO
= 140MHz
IF1
= 141MHz
IF2
= 1900MHz
RF
= 25°C
A
0
4
5520 • F01b
5520f
1
LT5520
16 15 14 13
5 6 7 8
TOP VIEW
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
EXPOSED PAD IS GND (PIN 17),
MUST BE SOLDERED TO PCB
9
10
11
12
4
3
2
1
EN
V
CC1VCC2VCC3
GND
IF
+
IF
GND
GND RF
+
RF
GND
GND
LO–LO+GND
17
WW
W
ABSOLUTE AXI U RATI GS
U
UUW
PACKAGE/ORDER I FOR ATIO
(Note 1)
Supply Voltage ....................................................... 5.5V
Enable Voltage ............................. –0.3V to (V
+ 0.3V)
CC
LO Input Power (Differential).............................. 10dBm
ORDER PART
NUMBER
LT5520EUF
RF+ to RF– Differential DC Voltage...................... ±0.13V
RF Output DC Common Mode Voltage ......... –1V to V
CC
IF Input Power (Differential) ............................... 10dBm
IF+, IF– DC Currents.............................................. 25mA
LO+ to LO– Differential DC Voltage .......................... ±1V
LO Input DC Common Mode Voltage............ –1V to V
CC
UF PART
MARKING
5520
Operating Temperature Range .................–40°C to 85°C
T
= 125°C, θJA = 37°C/W
Storage Temperature Range ................. –65°C to 125°C
Junction Temperature (TJ)....................................125°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
JMAX
ELECTRICAL CHARACTERISTICS
PARAMETER CONDITIONS MIN TYP MAX UNITS
IF Input Frequency Range DC to 400 MHz LO Input Frequency Range 900 to 2700 MHz RF Output Frequency Range 1300 to 2300 MHz
1900MHz Application: VCC = 5VDC, EN = High, TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.76GHz at –5dBm, RF output measured at 1900MHz, unless otherwise noted. Test circuit shown in Figure 2. (Notes 2, 3)
PARAMETER CONDITIONS MIN TYP MAX UNITS
IF Input Return Loss ZO = 50, with External Matching 20 dB LO Input Return Loss ZO = 50 16 dB RF Output Return Loss ZO = 50 20 dB LO Input Power –10 to 0 dBm Conversion Gain –1 dB Input 3rd Order Intercept –10dBm/Tone, f = 1MHz 15.9 dBm Input 2nd Order Intercept –10dBm, Single-Tone 45 dBm LO to RF Leakage –41 dBm LO to IF Leakage –35 dBm Input 1dB Compression 4 dBm IF Common Mode Voltage Internally Biased 1.77 V Noise Figure Single Side Band 15 dB
DC ELECTRICAL CHARACTERISTICS
(Test Circuit Shown in Figure 2) VCC = 5VDC, EN = High , TA = 25°C (Note 3), unless otherwise noted.
PARAMETER CONDITIONS MIN TYP MAX UNITS Enable (EN) Low = Off, High = On
Turn-On Time (Note 4) 2 µs Turn-Off Time (Note 4) 6 µs Input Current V
2
DC
ENABLE
= 5V
DC
110 µA
5520f
LT5520
DC ELECTRICAL CHARACTERISTICS
(Test Circuit Shown in Figure 2) VCC = 5VDC, EN = High , TA = 25°C (Note 3), unless otherwise noted.
PARAMETER CONDITIONS MIN TYP MAX UNITS
Enable = High (On) 3V Enable = Low (Off) 0.5 V
Power Supply Requirements (VCC)
Supply Voltage 4.5 to 5.25 V Supply Current V
CC
= 5V
DC
60 70 mA
Shutdown Current EN = Low 1 100 µA
DC
DC
DC
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: External components on the final test circuit are optimized for operation at f
= 1900MHz, f
RF
= 1.76GHz and f
LO
= 140MHz.
IF
Note 3: Specifications over the –40°C to 85°C temperature range are assured by design, characterization and correlation with statistical process controls.
Note 4: Turn-On and Turn-Off times are based on the rise and fall times of the RF output envelope from full power to –40dBm with an IF input power of –10dBm.
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Supply Current vs Supply Voltage
66
64
62
60
58
56
SUPPLY CURRENT (mA)
54
52
50
4.0 4.25
TA = 85°C
4.5 5.04.75
SUPPLY VOLTAGE (V)
TA = 25°C
TA = –40°C
5.25
5.5 4.0 4.25 4.5 5.04.75
5520 • GO1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
SHUTDOWN CURRENT (µA)
0.2
0.1
(Test Circuit Shown in Figure 2)
Shutdown Current vs Supply Voltage
TA = 85°C
TA = 25°C
TA = –40°C
0
SUPPLY VOLTAGE (V)
5.25
5.5
5520 • GO2
VCC = 5VDC, EN = High, TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.76GHz at –5dBm, RF output measured at 1900MHz, unless otherwise noted. For 2-tone inputs: 2nd IF input = 141MHz at –10dBm. (Test Circuit Shown in Figure 2.)
Conversion Gain and SSB Noise Figure vs RF Output Frequency
18
HIGH SIDE LO
16 14 12 10
8 6
GAIN, NF (dB)
4 2
0 –2 –4
1300 1300
LOW SIDE LO
SSB NF
GAIN
LOW SIDE AND HIGH SIDE LO
1500
RF OUTPUT FREQUENCY (MHz)
1700
1900
23002100
2500
5520 • GO3
IIP3 and IIP2 vs RF Output Frequency
32 30 28 26 24 22
IIP3 (dBm)
20
IIP3
18 16 14 12
LOW SIDE LO
HIGH SIDE LO
1700
1500 2300
RF OUTPUT FREQUENCY (MHz)
LOW SIDE LO
HIGH SIDE LO
2100
1900
IIP2
5520 • GO4
2500
55 50 45 40 35 30 25 20 15 10 5
IIP2 (dBm)
LO-RF Leakage vs RF Output Frequency
–10
–20
–30
HIGH SIDE LO
–40
LO LEAKAGE (dBm)
–50
LOW SIDE LO
–60
1300 1500 2300
1700
RF OUTPUT FREQUENCY (MHz)
1900
2100
2500
5520 • GO5
5520f
3
LT5520
UW
TYPICAL PERFOR A CE CHARACTERISTICS
VCC = 5VDC, EN = High , TA = 25°C, IF input = 140MHz at –10dBm, LO input = 1.76GHz at –5dBm, RF output measured at 1900MHz, unless otherwise noted. For 2-tone inputs: 2nd IF Input = 141MHz at –10dBm. (Test Circuit Shown in Figure 2.)
Conversion Gain and SSB Noise Figure vs LO Input Power
16 14 12 10
GAIN (dB)
–2 –4
8 6 4 2 0
–16
TA = 85°C
TA = 25°C
GAIN
TA = –40°C
TA = 85°C
–12
LO INPUT POWER (dBm)
TA = 25°C
–8
IIP3 and IIP2 vs LO Input Power
50 45 40
IIP2
35 30 25
IIP3
20
IIP3, IIP2 (dBm)
15 10
5 0
–16
LOW SIDE LO
HIGH SIDE LO
HIGH SIDE LO
LOW SIDE LO
–8
–12
LO INPUT POWER (dBm)
–4
SSB NF
TA = –40°C
5520 • G06
04
5520 • G09
IIP3 and IIP2 vs LO Input Power
20 18 16 14
NF (dB)
12 10 8 6 4 2 0
40–4
50
TA = 25°C
45 40 35
IIP2
30 25
IIP3
20
IIP3, IIP2 (dBm)
15 10
5 0
–12
–16
TA = 85°C
TA = –40°C
TA = 25°C, TA = –40°C
TA = 85°C
–8
LO INPUT POWER (dBm)
–4
04
5520 • G07
RF Output Power and Output IM3 vs IF Input Power (Two Input Tones)
10
0
TA = –40°C
–10 –20
P
OUT
–30 –40 –50
, IM3 (dBm/TONE)
P
OUT
–60 –70 –80 –90
TA = –40°C
IM3
–12
–16
IF INPUT POWER (dBm/TONE)
TA = 85°C
–8
TA = 25°C
TA = 85°C
–4
04
5520 • G10
LO-RF Leakage vs LO Input Power
–10
–20
–30
TA = –40°C
–40
LO LEAKAGE (dBm)
TA = 25°C
–50
–60
–16
–8
–12
LO INPUT POWER (dBm)
–4
RF Output Power and Output IM2 vs IF Input Power (Two Input Tones)
10
0
–10
–20
–30
–40
, IM2 (dBm/TONE)
–50
OUT
P
–60
–70
–80
TA = –40°C
P
OUT
IM2
TA = 85°C
–12
–16
IF INPUT POWER (dBm/TONE)
TA = 85°C
–8
TA = 25°C
TA = –40°C
–4
TA = 85°C
04
5520 • G08
TA = 25°C
04
5520 • G11
Conversion Gain vs IF Input Power (One Input Tone)
4 3 2
TA = –40°C
1 0
–1
GAIN (dB)
–2 –3 –4 –5 –6
–16
TA = 25°C
–8
–12
IF INPUT POWER (dBm)
4
TA = 85°C
–4
04
5520 • G12
IF, LO and RF Port Return Loss vs Frequency
0
–5
–10
–15
RETURN LOSS (dB)
–20
–25
0
LO PORT
IF PORT
500
RF PORT
1000 1500 2000
FREQUENCY (MHz)
2500 3000
5520 • G13
Conversion Gain, IIP3 and IIP2 vs Supply Voltage
8
LOW SIDE LO
7 6 5 4 3
GAIN (dB)
2 1 0
GAIN
–1 –2
4.0 4.25 4.5 5.04.75
HIGH SIDE LO
LOW SIDE LO
LOW SIDE AND HIGH SIDE LO
SUPPLY VOLTAGE (V)
HIGH SIDE LO
5.25
IIP2
IIP3
5520 • G14
50 45 40 35 30 25 20 15 10 5 0
5.5
5520f
IIP3, IIP2 (dBm)
Loading...
+ 8 hidden pages