LINEAR TECHNOLOGY LT1813 Technical data

Application Note 79
INPUT
OUTPUT
AN79 F01
SETTLING TIME
SLEW
TIME
RING TIME
ALLOWABLE
OUTPUT
ERROR
BAND
DELAY TIME
September 1999
30 Nanosecond Settling Time Measurement for a Precision Wideband Amplifier
Quantifying Prompt Certainty
Jim Williams
Introduction
Settling Time Defined
Amplifier DC specifications are relatively easy to verify. Measurement techniques are well understood, albeit often tedious. AC specifications require more sophisticated approaches to produce reliable information. In particular, amplifier settling time is extraordinarily difficult to deter­mine. Settling time is the elapsed time from input applica­tion until the output arrives at and remains within a specified error band around the final value. It is usually specified for a full-scale transition. Figure 1 shows that settling time has three distinct components. The
time
is small and is almost entirely due to amplifier
delay
propagation delay. During this interval there is no output movement. During highest possible speed towards the final value.
slew time
the amplifier moves at its
Ring time
defines the region where the amplifier recovers from slewing and ceases movement within some defined error band. There is normally a trade-off between slew and ring time. Fast slewing amplifiers generally have extended ring times, complicating amplifier choice and frequency com-
Figure 1. Settling Time Components Include Delay, Slew and Ring Times. Fast Amplifiers Reduce Slew Time, Although Longer Ring Time Usually Results. Delay Time is Normally a Small Term
pensation. Additionally, the architecture of very fast ampli­fiers usually dictates trade-offs which degrade DC error
1
terms. Measuring anything at any speed requires care. Dynamic
measurement is particularly challenging. Reliable nano­second region settling time measurement constitutes a high order difficulty problem requiring exceptional care in approach and experimental technique.
, LTC and LT are registered trademarks of Linear Technology Corporation.
Note 1: This issue is treated in detail in latter portions of the text. Also see Appendix D “Practical Considerations for Amplifier Compensation.
Note 2: The approach used for settling time measurement and its description borrows heavily from a previous publication. See Reference 1.
2
AN79-1
Application Note 79
A PRECISION WIDEBAND DUAL AMPLIFIER WITH 30ns SETTLING TIME
Until recently, wideband amplifiers provided speed, but sacrificed precision, power consumption and, often, settling time. The LT®1813 dual op amp does not require this compromise. It features low offset voltage and bias current and high DC gain while operating at low supply current. Settling time is 30ns to 0.1% for a 5V step. The output will drive a 100 load to ±3.5V with ±5V supplies, and up to 100pF capacitive loading is permissible. The table below provides short form specifications.
LT1813 Short Form Specifications
CHARACTERISTIC SPECIFICATION
Offset Voltage 0.5mV Offset Voltage vs Temperature 10µV/°C Bias Current 1.5µA DC Gain 3000 Noise Voltage 8nV/√Hz Output Current 60mA Slew Rate 750V/µs Gain-Bandwidth 100MHz Delay 2.5ns Settling Time 30ns/0.1% Supply Current 3mA per Amplifier
Considerations for Measuring Nanosecond Region Settling Time
Historically, settling time has been measured with circuits similar to that in Figure 2. The circuit uses the “false sum node” technique. The resistors and amplifier form a bridge type network. Assuming ideal resistors, the amplifier output will step to –VIN when the input is driven. During slew, the settle node is bounded by the diodes, limiting voltage excursion. When settling occurs, the oscilloscope probe voltage should be zero. Note that the resistor divider’s attenuation means the probe’s output will be one­half of the actual settled voltage.
AN79-2
INPUT STEP TO OSCILLOSCOPE
POSITIVE INPUT
FROM PULSE
GENERATOR
Figure 2. Popular Summing Scheme for Settling Time Measurement Provides Misleading Results. Pulse Generator Posttransition Aberrations Appear at Output. 10× Oscilloscope Overdrive Occurs. Displayed Information Is Meaningless
AMPLIFIER
+
+V
REF
OUTPUT TO OSCILLOSCOPE
AN79 F02
Application Note 79
active 1× FET probe will work, but another issue remains. The clamp diodes at the settle node are intended to reduce
swing during amplifier slewing, preventing excessive os­cilloscope overdrive. Unfortunately, oscilloscope overdrive recovery characteristics vary widely among different types and are not usually specified. The Schottky diodes’ 400mV drop means the oscilloscope will undergo an unaccept­able overload, bringing displayed results into question.
3
At 0.1% resolution (5mV at the output—2.5mV at the oscilloscope), the oscilloscope typically undergoes a 10× overdrive at 10mV/DIV, and the desired 2.5mV baseline is unattainable. At nanosecond speeds, the measurement becomes hopeless with this arrangement. There is clearly no chance of measurement integrity.
The preceding discussion indicates that measuring ampli­fier settling time requires an oscilloscope that is somehow immune to overdrive and a “flat-top” pulse generator. These become the central issues in wideband amplifier settling time measurement.
The only oscilloscope technology that offers inherent overdrive immunity is the classical sampling ‘scope.
4
Unfortunately, these instruments are no longer manufac­tured (although still available on the secondary market). It is possible, however, to construct a circuit that borrows the overload advantages of classical sampling ‘scope technology. Additionally, the circuit can be endowed with
features particularly suited for measuring nanosecond range settling time.
The “flat-top” pulse generator requirement can be avoided by switching current, rather than voltage. It is much easier to gate a quickly settling current into the amplifier’s summing node than to control a voltage. This makes the input pulse generator’s job easier, although it still must have a rise time of 1 nanosecond or less to avoid measure­ment errors.
5
Practical Nanosecond Settling Time Measurement
Figure 3 is a conceptual diagram of a settling time mea­surement circuit. This figure shares attributes with Figure␣ 2, although some new features appear. In this case, the oscilloscope is connected to the settle point by a
Note 3: For a discussion of oscilloscope overdrive considerations, see Appendix A, “Evaluating Oscilloscope Overdrive Performance.”
Note 4: Classical sampling oscilloscopes should not be confused with modern era digital sampling ‘scopes that have overdrive restrictions. See Appendix A, “Evaluating Oscilloscope Overload Performance” for comparisons of various type ‘scopes with respect to overdrive. For detailed discussion of classical sampling ‘scope operation see References 16 through 19 and 22 through 24. Reference 17 is noteworthy; it is the most clearly written, concise explanation of classical sampling instruments the author is aware of—a 12-page jewel.
Note 5: Subnanosecond rise time pulse generators are considered in Appendix B, “Subnanosecond Rise Time Pulse Generators for the Rich and Poor.”
+V
CURRENT
SWITCH
INPUT FROM
PULSE
GENERATOR
Figure 3. Conceptual Arrangement is Insensitive to Pulse Generator Aberrations and Eliminates Oscilloscope Overdrive. Switch at Input Gates Current Step to Amplifer. Second Switch is Controlled by Delayed Pulse Generator, Preventing Oscilloscope from Monitoring Settle Node Until Settling is Nearly Complete
AMPLIFIER
+
SETTLE NODE
–V
REF
DELAYED
PULSE
GENERATOR
SWITCH
AN79 F03
OUTPUT TO OSCILLOSCOPE
AN79-3
Application Note 79
switch. The switch state is determined by a delayed pulse generator, which is triggered from the input pulse. The delayed pulse generator’s timing is arranged so that the switch does not close until settling is very nearly complete. In this way the incoming waveform is sampled in time, as well as amplitude. The oscilloscope is never subjected to overdrive—no off-screen activity ever occurs.
A switch at the amplifier’s summing junction is controlled by the input pulse. This switch gates current to the amplifier via a voltage-driven resistor. This eliminates the “flat-top” pulse generator requirement, although the switch must be fast and devoid of drive artifacts.
Figure 4 is a more complete representation of the settling time scheme. Figure 3’s blocks appear in greater detail and some new refinements show up. The amplifier sum­ming area is unchanged. Figure 3’s delayed pulse genera­tor has been split into two blocks; a delay and a pulse generator, both independently variable. The input step to the oscilloscope runs through a section that compensates for the propagation delay of the settling time measure-
ment path. The most striking new aspect of the diagram are the diode bridge switches. Borrowed from classical sampling oscilloscope circuitry, they are the key to the measurement. The diode bridge’s inherent balance elimi­nates charge injection based errors. It is far superior to other electronic switches in this character
istic. Any other high speed switch technology contributes excessive out­put spikes due to charge-based feedthrough. FET switches are not suitable because their gate-channel capacitance permits such feedthrough. This capacitance allows gate­drive artifacts to corrupt switching, defeating the switches purpose.
The diode bridge’s balance, combined with matched, low capacitance monolithic diodes and high speed switching, yields clean switching. The input-driven bridge switches current into the amplifier’s summing point very quickly, with settling inside a few nanoseconds. The diode clamp to ground prevents excessive bridge drive swings and ensures that input pulse characteristics are irrelevant.
TIME-CORRECTED INPUT STEP TO OSCILLOSCOPE
OUTPUT TO OSCILLOSCOPE SETTLE NODE
()
2
INPUT FROM
PULSE
GENERATOR
VARIABLE
DELAY
+V
–V
+V
REF
OUTPUT
AMPLIFIER
+
DELAYED
PULSE GENERATOR
0V TO 10V TRANSITION
SETTLE
R
NODE
R
VARIABLE WIDTH
PULSE GENERATOR
DELAY COMPENSATION
SAMPLING
BRIDGE DRIVER
×1
BRIDGE SWITCHING
CONTROL
SAMPLING
BRIDGE SWITCH
AN79 F04
Figure 4. Block Diagram of Settling Time Measurement Scheme. Diode Bridge Switches Input Current to Amplifier. Second Diode Bridge Switch Minimizes Switching Feedthrough, Preventing Oscilloscope Overdrive. Input Step Time Reference is Compensated for Test Circuit Delays
AN79-4
Application Note 79
Figure 5 details considerations for the output diode bridge switch. This bridge requires considerable attention to achieve desired performance. The monolithic bridge diodes tend to cancel each other’s temperature coeffi­cient—drift is only about 100µV/°C—but a DC balance is required to minimize offset.
DC balance is achieved by trimming the bridge on-current for zero input-output offset voltage. Two AC trims are required. The “AC balance” corrects for diode and layout capacitive imbalances and the “skew compensation” cor­rects for any timing asymmetry in the nominally comple­mentary bridge drive. These AC trims compensate small dynamic imbalances, minimizing parasitic bridge outputs.
ON
OFF
+
V
V
AC BALANCE
ALL DIODES = CA3039
MONOLITHIC ARRAY
INPUT
DC BALANCE
SKEW COMPENSATION
OUTPUT
AN79 F05
The input pulse triggers the C2-C3 based delayed pulse generator. This circuitry is arranged to produce a delayed (controllable by the 10k potentiometer) pulse whose width (controllable by the 2k potentiometer) sets diode bridge on-time. If the delay is set appropriately, the oscilloscope will not see any input until settling is nearly complete, eliminating overdrive. The sample window width is ad­justed so that all remaining settling activity is observable. In this way the oscilloscope’s output is reliable and mean­ingful data may be taken. The delayed generator’s output is level shifted by the Q1-Q4 transistors, providing comple­mentary switching drive to the bridge. The actual switch­ing transistors, Q1-Q2, are UHF types, permitting true differential bridge switching with less than 1ns of time
7
skew. Figure 7 shows circuit waveforms. Trace A is the time-
corrected input pulse, trace B the amplifier output, trace C the sample gate and trace D the settling time output. When the sample gate goes low, the bridge switches cleanly, and the last 10mV of slew are easily observed. Ring time is also clearly visible, and the amplifier settles nicely to final value. When the sample gate goes high, the bridge switches off, with only millivolts of feedthrough. Note that there is no off-screen activity at any time—the oscilloscope is never subjected to overdrive.
+
V
V ON
OFF
Figure 5. Diode Sampling Bridge Switch Trims Include AC and DC Balance and Switch Drive Timing Skew
Detailed Settling Time Circuitry
Figure 6 is a detailed schematic of the settling time measurement circuitry. The input pulse switches the input bridge and is also routed to the oscilloscope via a delay­compensation network. The delay network, composed of a fast comparator and an adjustable RC network, compen­sates the oscilloscope’s input step signal for the 6ns delay through the circuit’s measurement path.6 The amplifier’s output is compared against the 5V reference via the summing resistors. The 5V reference also furnishes the bridge input current, making the measurement ratiometric. The –5V reference supply pulls a current from the sum­ming point, allowing the amplifier a 5V step from 2.5V to –2.5V. The clamped settle node is unloaded by A1, which drives the sampling bridge.
Note 6: See Appendix C, “Measuring and Compensating Settling Circuit Delay.”
Note 7: The bridge switching scheme was developed at LTC by George Feliz.
Note 8: In this and all following photos, settling time is measured from the onset of the time-corrected input pulse. Additionally, settling signal amplitude is calibrated with respect to the amplifier, not the sampling bridge output. This eliminates ambiguity introduced by the summing resistor’s ÷ 2 ratio.
AN79-5
Application Note 79
+
AC
BALANCE
2.5k
TIME-CORRECTED
INPUT STEP TO
OSCILLOSCOPE
VIA HP-1120A
FET PROBE
SAMPLING BRIDGE
1k
SAMPLING
BRIDGE
DRIVER
8
1.1k
Q1
Q4
11
10
13
8
7
96
Q3
5pF
3pF
0.1µF
10pF
10µF
510
100
100
2k
SAMPLE
WINDOW
WIDTH
10pF
Q2
CA3039
ARRAY
13
–5V
–5V
–5V
SKEW COMP
2.5k
2
7
11
10
4
3
5
2.2k
1.1k
5V
2.2k
10µF
1µF
0.1µF
470
560
51
820 51
680
500
BASELINE
ZERO
5V
OUTPUT TO
OSCILLOSCOPE
VIA HP-1120A
FET PROBE
+
+
A1
LT1813
+
C1
1/2 LT1720
LT1813
0.1µF10µF
+
: 1N4148
: 1N5711
DIODE BRIDGES: HARRIS CA3039M
* = 1% FILM RESISTOR
Q1, Q2: MRF-501
Q3, Q4: LM3045 ARRAY
USE IN-LINE COAXIAL TERMINATOR FOR
PULSE GENERATOR INPUT. DO NOT MOUNT
50 RESISTOR ON BOARD
DERIVE 5V AND –5V SUPPLIES FROM
±15V.
USE LT317A FOR 5V, LT1175-5 FOR –5V
CONSTRUCTION IS CRITICAL—SEE TEXT
+
1µF
+
5V
DELAY COMPENSATION = 6ns
2k
2k
SAMPLE DELAY/WINDOW GENERATOR
SAMPLE GATE LINE
5V
3.9pF
DELAY
COMP
2k
2k
1k
10k
SAMPLE
DELAY
AN79 F06
909Ω*
499Ω*
2pF TO 8pF (SEE TEXT)
200
SETTLE
NODE
SETTLE
NODE
ZERO
1k*
7
8
2pF
11
5V
CURRENT
SWITCH
–5V
AMPLIFIER
UNDER TEST
–5V
430Ω*
1k*
270
50
2
10
4
CA3039
ARRAY
PULSE
GENERATOR
INPUT
3
5
+
C3
1/2 LT1720
+
C2
+
13
–5V
INLINE
TERMINATION
(SEE TEXT
AND NOTES)
1/2 LT1720
430Ω*
ttention to Layout
AN79-6
Figure 6. Detailed Schematic of Settling Time Measurement Circuit Closely Follows Block Diagram. Optimum Performance Requires A
Application Note 79
A = 2V/DIV B = 2V/DIV
C = 5V/DIV
D = 20mV/DIV
20ns/DIV
Figure 7. Settling Time Circuit Waveforms Include Time­Corrected Input Pulse (Trace A), Amplifier-Under-Test Output (Trace B), Sample Gate (Trace C) and Settling Time Output (Trace D). Sample Gate Window’s Delay and Width are Variable
A = 2V/DIV
B = 5mV/DIV
AN79 F07
A = 2V/DIV
B = 5mV/DIV
10ns/DIV
Figure 9. Settling Time Circuit’s Output (Trace B) with Unadjusted Sampling Bridge AC and DC Trims. Settle Node is Grounded for This Test. Excessive Switch Drive Feedthrough and Baseline Offset are Present. Trace A is the Sample Gate
A = 2V/DIV
B = 5mV/DIV
10ns/DIV
AN79 F09
AN79 F10
5ns/DIV AN79 F08
Figure 8. Expanded Vertical and Horizontal Scales Show 30ns Amplifier Settling Within 5mV (Trace B). Trace A is Time-Corrected Input Step
Trace A is the input pulse and trace B the settle signal output. With the amplifier disabled and the settle node grounded, the output should (theoretically) always be zero. The photo shows this is not the case for an un­trimmed bridge. AC and DC errors are present. The sample gate’s transitions cause large swings. Additionally, the output shows significant DC offset error during the sam­pling interval. Adjusting the AC balance and skew compen­sation minimizes the switching induced transients. The DC offset is adjusted out with the baseline zero trim. Figure 10 shows the results after making these adjustments. All switching related activity is minimized and offset error reduced to unreadable levels. Once this level of perfor­mance has been achieved, the circuit is nearly ready for use.9 Unground the settle node and restore the current switch and resistor connections to the amplifier. Any
Figure 10. Settling Time Circuit’s Output (Trace B) with Sampling Bridge Trimmed. As in Figure 9, Settle Node is Grounded for This Test. Switch Drive Feedthrough and Baseline Offset are Minimized. Trace A is the Sample Gate
further differences between pre- and postsettling baseline are corrected with the “settle node zero” trim.
Using the Sampling-Based Settling Time Circuit
Figures 11 and 12 underscore the importance of position­ing the sampling window properly in time. In Figure 10 the sample gate delay initiates the sample window (trace A) too early and the residue amplifier’s output (trace B) overdrives the oscilloscope when sampling commences. Figure 12 is better, with no off-screen activity. All amplifier settling residue is well inside the screen boundaries.
Note 9: Achieving this level of performance also depends on layout. The circuit’s construction involves a number of subtleties and is absolutely crucial. Please see Appendix E, “Breadboarding, Layout and Connection Techniques.”
AN79-7
Application Note 79
A = 5V/DIV
B = 5mV/DIV
10ns/DIV
Figure 11. Oscilloscope Display with Inadequate Sample Gate Delay. Sample Window (Trace A) Occurs Too Early, Resulting in Off-Screen Activity in Settle Output (Trace B). Oscilloscope is Overdriven, Making Displayed Information Questionable
A = 5V/DIV
B = 5mV/DIV
10ns/DIV AN79 F12
Figure 12. Optimal Sample Gate Delay Positions Sampling Window (Trace A) So All Settle Output (Trace B) Information is Well Inside Screen Boundaries
AN79 F11
A = 5V/DIV
B = 10mV/DIV
10ns/DIV AN79 F13
Figure 13. Settling Profile with Inadequate Feedback Capacitance Shows Underdamped Response. Trace A is Time­Corrected Input Pulse. Trace B is Settling Residue Output. t
= 43ns
SETTLE
A = 5V/DIV
In general, it is good practice to “walk” the sampling window up to the last ten millivolts or so of amplifier slewing so that the onset of ring time is observable. The sampling based approach provides this capability and it is a very powerful measurement tool. Additionally, remem­ber that slower amplifiers may require extended delay and/ or sampling window times. This may necessitate larger capacitor values in the delayed pulse generator timing networks.
Compensation Capacitor Effects
The amplifier requires frequency compensation to get the best possible settling time.10 Figure 13 shows effects of
AN79-8
B = 10mV/DIV
10ns/DIV
Figure 14. Excessive Feedback Capacitance Overdamps Response. t
Note 10: This section discusses frequency compensation of the
amplifier within the context of sampling-based settling time measure­ment. As such, it is necessarily brief. Considerably more detail is available in Appendix D, “Practical Considerations for Amplifier Compensation.”
SETTLE
= 50ns
AN79 F14
Application Note 79
out to 50ns. The best case appears in Figure 15. This photo was taken with the compensation capacitor carefully cho­sen for the best possible settling time. Damping is tightly controlled and settling time goes down to 30ns.
A = 5V/DIV
B = 5mV/DIV
5ns/DIV AN79 F15
Figure 15. Optimal Feedback Capacitance Yields Tightly Damped Signature and Best Settling Time. Optimum Response Allows Expanded Horizontal and Vertical Scales. t
SETTLE
30ns
Verifying Results—Alternate Method
The sampling-based settling time circuit appears to be a useful measurement solution. How can its results be tested to ensure confidence? A good way is to make the same measurement with an alternate method and see if results agree. It was stated earlier that classical sampling oscilloscopes were inherently immune to overdrive.11 If this is so, why not utilize this feature and attempt settling time measurement directly at the clamped settle node? Figure 16 does this. Under these conditions, the sampling ‘scope12 is heavily overdriven, but is ostensibly immune to the insult. Figure 17 puts the sampling oscilloscope to the test. Trace A is the time corrected input pulse and trace B the settle signal. Despite a brutal overdrive, the ‘scope appears to respond cleanly, giving a very plausible settle signal presentation.
Note 11: See Appendix A, “Evaluating Oscilloscope Overdrive Performance,” for in-depth discussion. Note 12: Tektronix type 661 with 4S1 vertical and 5T3 timing plug-ins.
PULSE
GENERATOR
INPUT
* = 1% FILM RESISTOR
5V
100
50
: 1N5711
2pF
510
2k
DELAY
COMP
1k
2
8
2k
+
1µF
3.9pF
13
7
3
–5V–5V
5V
11
430 *
4 CA3039
ARRAY
430*
1/2 LT1720
+
–5V
10
5
1k*
TYP 2.2pF (SEE TEXT)
C
COMP
510*
LT1813
+
909Ω*
200
SETTLE
NODE
ZERO
TIME-CORRECTED INPUT STEP TO TEKTRONIX 661 OSCILLOSCOPE VIA ×10 HP-1120A FET PROBE
1k*
OUTPUT TO TEKTRONIX 661 OSCILLOSCOPE VIA ×1 HP-1120A FET PROBE
5V
AN79 F16
Figure 16. Settling Time Test Circuit Using Classical Sampling Oscilloscope. Sampling ‘Scope’s Inherent Overload Immunity Permits Large Off-Screen Excursions
AN79-9
Application Note 79
A = 2V/DIV
B = 5mV/DIV
5ns/DIV AN79 F17
Figure 17. Settling Time Measurement with the Classical Sampling ‘Scope. Oscilloscope’s Overload Immunity Allows Accurate Measurement Despite Extreme Overdrive
Summary of Results
The simplest way to summarize the different method’s results is by visual comparison. Figures 18 and 19 repeat previous photos of the two different settling-time meth­ods. If both approaches represent good measurement technique and are properly constructed, results should be indentical.13 If this is the case, the identical data produced by the two methods has a high probability of being valid.
A = 2V/DIV
B = 5mV/DIV
5ns/DIV AN79 F18
Figure 18. Settling Time Measurement Using the Sampling Bridge Circuit. t
A = 2V/DIV
B = 5mV/DIV
SETTLE
= 30ns
Examination of the photographs shows nearly identical settling times and settling waveform signatures. The shape of the settling waveform is essentially identical in both photos.14 This kind of agreement provides a high degree of credibility to the measured results.
Note 13: Construction details of the settling time fixtures discussed here appear (literally) in Appendix E, “Breadboarding, Layout and Connection Techniques.”
Note 14: The slightly rougher appearance of figure 19’s final settling movement (7th through 9th vertical divisions) may be due to the sampling ‘scope’s substantially higher bandwidth. Figure 18 was taken with a150MHz instrument; sampling oscilloscope bandwidth is 1GHz.
5ns/DIV
AN79 F19
Figure 19. Settling Time Measurement using the Classical Sampling ‘Scope. t
SETTLE
= 30ns
AN79-10
REFERENCES
Application Note 79
1. Williams, Jim, “Component and Measurement Advances Ensure 16-Bit DAC Settling Time,” Linear Technology Corporation, Application Note 74, July
1998.
2. Williams, Jim, “Measuring 16-Bit Settling Times: The Art of Timely Accuracy,”
1998.
3. Williams, Jim, “Methods for Measuring Op Amp Settling Time,” Linear Technology Corporation, Application Note 10, July 1985.
4. Demerow, R., “Settling Time of Operational Amplifi­ers,”
Analog Dialogue
Inc., 1970.
5. Pease, R. A., “The Subtleties of Settling Time,”
, Volume 4-1, Analog Devices,
New Lightning Empiricist
1971.
6. Harvey, Barry, “Take the Guesswork Out of Settling Time Measurements,”
7. Williams, Jim, “Settling Time Measurement Demands Precise Test Circuitry,” 15, 1984.
8. Schoenwetter, H. R., “High-Accuracy Settling Time Measurements,”
tion and Measurement
1983.
9. Sheingold, D. H., “DAC Settling Time Measure­ment,” pg. 312-317. Prentice-Hall, 1986.
Analog-Digital Conversion Handbook
IEEE Transactions on Instrumenta-
, Vol. IM-32. No. 1, March
EDN
, November 19,
, Teledyne Philbrick, June
EDN
, September 19, 1985.
EDN
, November
,
The
14. Harris Semiconductor, “CA3039 Diode Array Data Sheet,” Harris Semiconductor, 1993.
15. Korn, G. A. and Korn, T. M., “Electronic Analog and Hybrid Computers,” “Diode Switches,” pg. 223-226. McGraw-Hill, 1964.
16. Carlson, R., “A Versatile New DC-500MHz Oscillo­scope with High Sensitivity and Dual Channel Display,” Company, January 1960.
17. Tektronix, Inc., “Sampling Notes,” Tektronix, Inc.,
1964.
18. Tektronix, Inc., “Type 1S1 Sampling Plug-In Operat­ing and Service Manual,” Tektronix, Inc., 1965.
19. Mulvey, J., “Sampling Oscilloscope Circuits,” Tektronix, Inc., Concept Series, 1970.
20. Addis, John, “Sampling Oscilloscopes,” Private Communication, February, 1991.
21. Williams, Jim, “Bridge Circuits—Marrying Gain and Balance,” Linear Technology Corporation, Applica­tion Note 43, June, 1990.
22. Tektronix, Inc., “Type 661 Sampling Oscilloscope Operating and Service Manual,’ Tektronix, Inc.,
1963.
23. Tektronix, Inc., “Type 4S1 Sampling Plug-In Operat­ing and Service Manual,” Tektronix, Inc., 1963.
24. Tektronix, Inc., “Type 5T3 Timing Unit Operating and Service Manual,” Tektronix, Inc., 1965.
Hewlett-Packard Journal
, Hewlett-Packard
10. Orwiler, Bob, “Oscilloscope Vertical Amplifiers,” Tektronix, Inc., Concept Series, 1969.
11. Addis, John, “Fast Vertical Amplifiers and Good Engineering,”
and Personalities
12. W. Travis, “Settling Time Measurement Using Delayed Switch,” Private Communication. 1984.
13. Hewlett-Packard, “Schottky Diodes for High­Volume, Low Cost Applications,” Application Note 942, Hewlett-Packard Company, 1973.
Analog Circuit Design; Art, Science
, Butterworths, 1991.
25. D. J. Hamilton, F. H. Shaver, P. G. Griffith, “Avalanche Transistor Circuits for Generating Rectangular Pulses,” December, 1962.
26. R. B. Seeds, “Triggering of Avalanche Transistor Pulse Circuits,” Technical Report No. 1653-1, August 5, 1960, Stanford Electronics Laboratories, Stanford University, Stanford, California.
Electronic Engineering
,
Solid-State Electronics Laboratory
AN79-11
,
Application Note 79
27. Haas, Isy, “Millimicrosecond Avalanche Switching Circuit Utilizing Double-Diffused Silicon Transis­tors,” Fairchild Semiconductor, (December 1961)
28. Beeson, R. H. Haas, I., Grinich, V. H., “Thermal Response of Transistors in the Avalanche Mode,” Fairchild Semiconductor, Technical Paper 6 (Octo­ber 1959)
29. Tektronix, Inc., Type 111 Pretrigger Pulse Generator Operating and Service Manual, Tektronix, Inc. (1960)
30. G. B. B. Chaplin, “A Method of Designing Transistor Avalanche Circuits with Applications to a Sensitive Transistor Oscilloscope,” paper presented at the 1958 IRE-AIEE Solid State Circuits Conference, Philadelphia, Penn., February 1958.
Application Note 8/2
31. Motorola, Inc., “Avalanche Mode Switching,” Chapter 9, pp 285-304.
book
, 1963.
32. Williams, Jim, “A Seven-Nanosecond Comparator for Single Supply Operation,” “Programmable, Sub­Nanosecond Delayed Pulse Generator,” pg. 32-34, Linear Technology Corporation, Application Note 72, 1998.
33. Morrison, Ralph, “Grounding and Shielding Techniques in Instrumentation,” 2nd Edition,
Wiley Interscience
34. Ott, Henry W., “Noise Reduction Techniques in Electronic Systems,”
35. Williams, Jim, “High Speed Amplifier Techniques,” Linear Technology Corporation, Application Note
47. 1991.
Motorola Transistor Hand-
, 1977.
Wiley Interscience
, 1976.
AN79-12
APPENDIX A
EVALUATING OSCILLOSCOPE OVERDRIVE PERFORMANCE
Application Note 79
The sampling bridge-based settling time circuit is heavily oriented towards preventing overdrive to the monitoring oscilloscope. This is done to avoid overdriving the oscil­loscope. Oscilloscope recovery from overdrive is a grey area and almost never specified. How long must one wait after an overdrive before the display can be taken seriously? The answer to this question is quite complex. Factors in­volved include the degree of overdrive, its duty cycle, its magnitude in time and amplitude and other considerations. Oscilloscope response to overdrive varies widely between types and markedly different behavior can be observed in any individual instrument. For example, the recovery time for a 100× overload at 0.005V/DIV may be very different than at 0.1V/DIV. The recovery characteristic may also vary with waveform shape, DC content and repetition rate. With so many variables, it is clear that measurements involving oscilloscope overdrive must be approached with caution.
Why do most oscilloscopes have so much trouble recov­ering from overdrive? The answer to this question requires some study of the three basic oscilloscope types’ vertical paths. The types include analog (Figure A1A), digital (Figure A1B) and classical sampling (Figure A1C) oscilloscopes. Analog and digital ‘scopes are susceptible to overdrive. The classical sampling ‘scope is the only architecture that is inherently immune to overdrive.
An analog oscilloscope (Figure A1A) is a real time, con­tinuous linear system.1 The input is applied to an attenu­ator, which is unloaded by a wideband buffer. The vertical preamp provides gain, and drives the trigger pick-off, delay line and the vertical output amplifier. The attenuator and delay line are passive elements and require little comment. The buffer, preamp and vertical output ampli­fier are complex linear gain blocks, each with dynamic operating range restrictions. Additionally, the operating point of each block may be set by inherent circuit balance, low frequency stabilization paths or both. When the input is overdriven, one or more of these stages may saturate, forcing internal nodes and components to abnormal oper­ating points and temperatures. When the overload ceases, full recovery of the electronic and thermal time constants may require surprising lengths of time.
2
The digital sampling oscilloscope (Figure A1B) eliminates the vertical output amplifier, but has an attenuator buffer and amplifiers ahead of the A/D converter. Because of this, it is similarly susceptible to overdrive recovery problems.
The classical sampling oscilloscope is unique. Its nature of operation makes it inherently immune to overload. Fig­ure A1C shows why. The sampling occurs
before
any gain is taken in the system. Unlike Figure A1B’s digitally sampled ‘scope, the input is fully passive to the sampling point. Additionally, the output is fed back to the sampling bridge, maintaining its operating point over a very wide range of inputs. The dynamic swing available to maintain the bridge output is large and easily accommodates a wide range of oscilloscope inputs. Because of all this, the amplifiers in this instrument do not see overload, even at 1000× over­drives, and there is no recovery problem. Additional im­munity derives from the instrument’s relatively slow sample rate—even if the amplifiers were overloaded, they would have plenty of time to recover between samples.
3
The designers of classical sampling ‘scopes capitalized on the overdrive immunity by including variable DC offset generators to bias the feedback loop (see Figure A1C, lower right). This permits the user to offset a large input, so small amplitude activity on top of the signal can be accurately observed. This is ideal for, among other things, settling time measurements. Unfortunately, classical sam­pling oscilloscopes are no longer manufactured, so if you have one, take care of it!
Note 1: Ergo, the Real Thing. Hopelessly bigoted residents of this locale mourn the passing of the analog ‘scope era and frantically hoard every instrument they can find.
Note 2: Some discussion of input overdrive effects in analog oscillo­scope circuitry is found in Reference 11.
Note 3: Additional information and detailed treatment of classical sampling oscilloscope operation appears in References 16–19 and 22–24.
Note 4: Modern variants of the classical architecture (e.g., Tektronix 11801B) may provide similar capability, although we have not tried them.
4
AN79-13
Application Note 79
Although analog and digital oscilloscopes are susceptible to overdrive, many types can tolerate some degree of this abuse. The early portion of this appendix stressed that measurements involving oscilloscope overdrive must be approached with caution. Nevertheless, a simple test can indicate when the oscilloscope is being deleteriously af­fected by overdrive.
The waveform to be expanded is placed on the screen at a vertical sensitivity that eliminates all off-screen activity. Figure A2 shows the display. The lower right hand portion is to be expanded. Increasing the vertical sensitivity by a factor of two (Figure A3) drives the waveform off-screen, but the remaining display appears reasonable. Amplitude has doubled and waveshape is consistent with the original display. Looking carefully, it is possible to see small amplitude information presented as a dip in the waveform at about the third vertical division. Some small distur­bances are also visible. This observed expansion of the original waveform is believable. In Figure A4, gain has been further increased, and all the features of Figure A3 are amplified accordingly. The basic waveshape appears clearer
and the dip and small disturbances are also easier to see. No new waveform characteristics are observed. Figure A5 brings some unpleasant surprises. This increase in gain causes definite distortion. The initial negative-going peak, although larger, has a different shape. Its bottom appears less broad than in Figure A4. Additionally, the peak’s positive recovery is shaped slightly differently. A new rippling disturbance is visible in the center of the screen. This kind of change indicates that the oscilloscope is having trouble. A further test can confirm that this wave­form is being influenced by overloading. In Figure A6 the gain remains the same but the vertical position knob has been used to reposition the display at the screen’s bottom. This shifts the oscilloscope’s DC operating point which, under normal circumstances, should not affect the dis­played waveform. Instead, a marked shift in waveform amplitude and outline occurs. Repositioning the wave­form to the screen’s top produces a differently distorted waveform (Figure A7). It is obvious that for this particular waveform, accurate results cannot be obtained at this gain.
AN79-14
INPUT
ATTENUATOR ATTENUATOR
BUFFER
+
V
Application Note 79
A
ANALOG
OSCILLOSCOPE
VERTICAL CHANNEL
B
DIGITAL
SAMPLING
OSCILLOSCOPE
VERTICAL CHANNEL
INPUT
ATTENUATOR
V
ATTENUATOR
BUFFER
+
V
V
VERTICAL
PREAMP
VERTICAL
PREAMP
+
V
V
TRIGGER
CIRCUITRY
DELAY LINE
TRIGGER
CIRCUITRY
A/D DRIVER
AMP
A/D CONTROL
A/D
PULSE STRETCHER—
MEMORY SWITCH
DRIVER
VERTICAL
OUTPUT
SAMPLE COMMAND
TO HORIZONTAL/ SWEEP SECTION
TO CRT
TIMING
GENERATOR
MEMORY
MICROPROCESSOR
TO CRT
MEMORY
INPUT
C
CLASSICAL
SAMPLING
OSCILLOSCOPE
VERTICAL CHANNEL
DELAY LINE
TRIGGER
CIRCUITRY
+
V–V
TO HORIZONTAL CIRCUITS
AC
AMPLIFIER
DC OFFSET
GENERATOR
FEEDBACK
VERTICAL
AMPLIFIER
Figure A1. Simplified Vertical Channel Diagrams for Different Type Oscilloscopes. Only the Classical Sampling ‘Scope (C) Has Inherent Overdrive Immunity. Offset Generator Allows Viewing Small Signals Riding On Large Excursions
AN79-15
TO CRT
AN79 FA01
Application Note 79
A = 1V/DIV
A = 0.5V/DIV
100ns/DIV AN79 FA02
Figure A2
100ns/DIV AN79 FA03
Figure A3
A = 0.1V/DIV
100ns/DIV AN79 FA05
Figure A5
A = 0.1V/DIV
100ns/DIV AN79 FA06
Figure A6
A = 0.2V/DIV
AN79-16
A = 0.1V/DIV
100ns/DIV AN79 FA04
Figure A4
Figures A2–A7. The Overdrive Limit is Determined by Progressively Increasing Oscilloscope Gain and Watching for Waveform Aberrations
100ns/DIV AN79 FA07
Figure A7
APPENDIX B
SUBNANOSECOND RISE TIME PULSE GENERATORS FOR THE RICH AND POOR
Application Note 79
The input diode bridge requires a subnanosecond rise time pulse to cleanly switch current to the amplifier under test. The ranks of pulse generators providing this capability are thin. Instruments with rise times of a nanosecond or less are rare, and costs are, in this author’s view, excessive. Current production units can easily cost $10,000, with prices rising towards $30,000 depending on features. For bench work, or even production testing, there are substan­tially less expensive approaches.
The secondary market offers subnanosecond rise time pulse generators at attractive cost. The Hewlett-Packard HP-8082A transitions in under 1ns, has a full complement of controls, and costs about $500. The HP-215A, long out of manufacture, has 800-picosecond edge times and is a clear bargain, with typical price below $50. This instru­ment also has a very versatile trigger output, which per­mits continuous time phase adjustment from before to after the main output. External trigger impedance, polarity and sensitivity are also variable. The output, controlled by a stepped attenuator, will put ±10V into 50 in 800ps.
The Tektronix type 109 switches in 250 picoseconds. Although amplitude is fully variable, charge lines are required to set pulse width. This reed-relay based instru­ment has a fixed 500Hz repetition rate and no external trigger facility, making it somewhat unwieldy to use. Price is typically $20. The Tektronix type 111 is more practical. Edge times are 500 picoseconds, with fully variable repeti­tion rate and external trigger capabilities. Pulse width is set by charge line length. Price is usually about $25.
A potential problem with older instruments is availability.
1
As such, Figure B1 shows a circuit for producing subnanosecond rise time pulses. Rise time is 500ps, with fully adjustable pulse amplitude. An external input deter­mines repetition rate, and output pulse occurrence is settable from before-to-after a trigger output. This circuit uses an avalanche pulse generator to create extremely fast rise-time pulses.
2
Q1 and Q2 form a current source that charges the 1000pF capacitor. When the trigger input is high (trace A, Figure B2) both Q3 and Q4 are on. The current source is off and Q2’s collector (trace B) is at ground. C1’s latch input prevents it from responding and its output remains high. When the trigger input goes low, C1’s latch input is dis­abled and its output drops low. Q4’s collector lifts and Q2 comes on, delivering constant current to the 1000pF ca­pacitor (trace B). The resulting linear ramp is applied to C1 and C2’s positive inputs. C2, biased from a potential de­rived from the 5V supply, goes high 30 nanoseconds after the ramp begins, providing the “trigger output” (trace C) via its output network. C1 goes high when the ramp crosses the “delay programming voltage” input, in this case about 250ns. C1 going high triggers the avalanche-based output pulse (trace D), which will be described. This arrangement permits the delay programming voltage to vary output pulse occurrence from 30 nanoseconds before to 300 nanosec­onds after the trigger output. Figure B3 shows the output pulse (trace D) occurring 30ns before the trigger output when the delay programming voltage is zero. All other wave­forms are identical to Figure B2.
When C1’s output pulse is applied to Q5’s base, it ava­lanches. The result is a quickly rising pulse across R4. C1 and the charge line discharge, Q5’s collector voltage falls and breakdown ceases. C1 and the charge line then recharge. At C1’s next pulse, this action repeats.
Avalanche operation requires high voltage bias. The LT1082 switching regulator forms a high voltage switched mode control loop. The LT1082 pulse width modulates at its 40kHz
Note 1: Residents of Silicon Valley tend towards inbred techno­provincialism. Citizens of other locales cannot simply go to a flea market, junk store or garage sale and buy a subnanosecond pulse generator.
Note 2: The circuits operation essentially duplicates the aforemen­tioned Tektronix type 111 pulse generator (see Reference 29). Information on avalanche operation appears in References 25–32.
AN79-17
Application Note 79
5V
L1 100µH
5V
0.1µF
LT1004-1.2
Q1
220
R4 = HEWLETT-PACKARD HP-355C STEPPED ATTENUATOR L1 = COILTRONICS #UP-2-101 L2 = 15 TURNS #27 WIRE ON MICROMETALS T37-52 CORE
= TYPICAL VALUE. SELECT FOR BEST PULSE PRESENTATION * = 1% FILM RESISTOR PNP = 2N5087 NPN = 2N2369
= FERRITE BEAD FERRONICS #21-110J = BAV-21, 200V
= 1N5711
Q2
1000pF
DELAY PROGRAMMING
VOLTAGE INPUT
0V TO 3V = –30ns TO 300ns DELAY
RELATIVE TO TRIGGER OUTPUT
100*
100 (DELAY CALIB.)
Q3
Q4
51pF
330
330
TRIGGER INPUT
200ns MIN
20kHz
500
30ns TRIM
1k
240
LT1394
+
+
2µF
100V
1k
AVALANCHE BIAS
TYPICALLY 90V
(SEE TEXT)
0.22µF
100V
30k
5V
0.1µF
6 FERRITE
BEADS
(SEE NOTES)
1µF
+
LT1394
C2
4.7k
100
30pF
5V
C1
L
+
5pF
1N5712
50
+
R3
5.6k
C1
0.7pF TO 3pF
180
10k
L2
1.1µH
(SEE NOTES)
130
Q5 CONNECTIONS MAY REQUIRE LENGTH ADJUSTMENT OR ADDITIONAL COMPONENTS FOR OPTIMAL RESULTS. SEE TEXT.
1M*
13k*
BIAS ADJ 5k
1N4148
10k Q5 2N2369 (SELECTED—SEE TEXT AND NOTES)
V
SW
FB
LT1082
E1 E2 GND
68
1 TURN
10k
5V
V
IN
V
C
+
2µF
150pF
8pF TO
50pF
R4 50 (SEE NOTES)
AN79 FB01
CHARGE LINE TYPICALLY 13FT 50 COAX (SEE TEXT)
100
PULSE OUTPUT (50)
TRIGGER OUTPUT (50)
Figure B1. Programmable Delay Triggers a Subnanosecond Rise Time Pulse Generator. Charge Line at Q5’s Collector Determines 40 Nanosecond Output Width. Output Pulse Occurance is Settable from Before-to-After Trigger Output
A = 5V/DIV
B = 2V/DIV
C = 0.5V/DIV
D = 1V/DIV
100ns/DIV
AN79 FB02
Figure B2. Pulse Generator’s Waveforms Include Trigger Input (Trace A), Q2’s Collector Ramp (Trace B), Trigger Output (Trace C) and Pulse Output (Trace D). Delay Sets Output Pulse 250ns After Trigger Output
AN79-18
A = 5V/DIV
B = 2V/DIV
C = 0.5V/DIV
D = 1V/DIV
100ns/DIV AN79 FB03
Figure B3. Pulse Generator’s Waveforms with Delay Programmed for Output Pulse Occurence (Trace D) 30ns Before Trigger Output (Trace C). All Other Activity is Identical to Previous Figure
Application Note 79
clock rate. L1’s inductive events are rectified and stored in the 2µF output capacitor. The adjustable resistor divider provides feedback to the LT1082. The 1k-0.22µF RC pro- vides noise filtering.
Figure B4, taken with a 3.9GHz bandpass oscilloscope (Tektronix 547 with 1S2 sampling plug-in) shows output pulse purity and rise time. Rise time is 500 picoseconds, with minimal preshoot and pulse top aberrations. This level of cleanliness requires considerable layout experimenta­tion, particularly with Q5’s emitter and collector lead lengths and associated components.3 Additionally, small induc­tances or RC networks may be required between Q5’s emit­ter and R4 to get best pulse presentation.4 The charge line sets output pulse width, with 13 feet giving a 40ns wide output.
Q5 may require selection to get avalanche behavior. Such behavior, while characteristic of the device specified, is not guaranteed by the manufacturer. A sample of 50 Motorola 2N2369s, spread over a 12-year date code span, yielded 82%. All “good” devices switched in less than 600ps.
just
disappear
with no trigger input applied.
Note 3: See References 29 and 32 for pertinent discussion. Note 4: Ground plane type construction with high speed layout,
connection and termination technique is essential for good results from this circuit. Reference 29 contains extremely useful and detailed procedures for optimizing pulse purity.
A = 1V/DIV
500ps/DIV
Figure B4. Pulse Generator Output Shows 500 Picosecond Rise Time with Minimal Pulse-Top Aberrations. Dot Constructed Display is Characteristic of Sampling Oscilloscope Operation
AN79 FB04
AN79-19
Application Note 79
APPENDIX C
MEASURING AND COMPENSATING SETTLING CIRCUIT DELAY
The settling time circuit utilizes an adjustable delay net­work to time correct the input pulse for delays in the sig­nal-processing path. Typically, these delays introduce errors of 20%, so an accurate correction is required. Set­ting the delay trim involves observing the network’s input­output delay and adjusting for the appropriate time interval. Determining the “appropriate” time interval is somewhat more complex. A wideband oscilloscope with FET probes is required. To ensure accuracy in the following delay measurements probe time skew must be verified. The probes are both connected to a fast rise (<1ns) pulse generator to measure the skew. Figure C1 shows less than 50 picoseconds skewing. This ensures small error for the delay measurements, which will be in the nanosecond range.
Referring to text Figure 6, it is apparent that three delay measurements are of interest. The pulse generator to amplifier-under-test, the amplifier-under-test to settle node,
and the amplifier-under-test to output. Figure C2 shows 800 picoseconds delay from the pulse generator input to the amplifier-under-test. Figure C3 indicates 2.5 nanosec­onds from the amplifier-under-test to the settle node. Figure C4 indicates 5.2 nanoseconds from the amplifier­under-test to the output. In Figure C3’s measurement, the probes see severe source impedance mismatch. This is compensated by adding a series 500 resistor to the probe monitoring the amplifier-under-test. This provision approximately equalizes probe source impedances, negat­ing the probe’s input capacitance (1pF) term.
The measurements reveal a circuit input-to-output delay of 6 nanoseconds, and this correction is applied by adjust­ing the 1k trim at the C1 delay compensation comparator. Similarly, when the sampling ‘scope is used, the relevant delays are Figures C2 and C3, a total of 3.3ns. This figure is applied to the delay compensation adjustment when the sampling ‘scope-based measurement is taken.
A, B = 0.5V/DIV
100ps/DIV
Figure C1. FET Probe-Oscilloscope Channel-to-Channel Timing Skew Measures 50 Picoseconds
AN79-20
AN79 FC01
A = 2V/DIV
B = 2V/DIV
2ns/DIV
Figure C2. Pulse Generator (Trace A) to Amplifier-Under­Test Negative Input (Trace B) Delay is 800 Picoseconds
AN79 FC02
A = 1V/DIV
B = 0.1V/DIV
Application Note 79
A = 2V/DIV
B = 0.2V/DIV
1ns/DIV
Figure C3. Amplfier-Under-Test Output (Trace A) to Settle Node (Trace B) Delay is 2.5 Nanoseconds
AN79 FC03
APPENDIX D
PRACTICAL CONSIDERATIONS FOR AMPLIFIER COMPENSATION
There are a number of practical considerations in compen­sating the amplifier to get fastest settling time. Our study begins by revisiting text Figure 1 (repeated here as Figure D1). Settling time components include delay, slew and ring times. Delay is due to propagation time through the amplifier and is a relatively small term. Slew time is set by the amplifier’s maximum speed. Ring time defines the region where the amplifier recovers from slewing and ceases movement within some defined error band. Once an amplifier has been chosen, only ring time is readily adjustable. Because slew time is usually the dominant lag, it is tempting to select the fastest slewing amplifier avail­able to obtain best settling. Unfortunately, fast slewing amplifiers usually have extended ring times, negating their brute force speed advantage. The penalty for raw speed is, invariably, prolonged ringing, which can only be damped with large compensation capacitors. Such compensation works, but results in protracted settling times. The key to good settling times is to choose an amplifier with the right balance of slew rate and recovery characteristics and compensate it properly. This is harder than it sounds because amplifier settling time cannot be predicted or extrapolated from any combination of data sheet specifi-
2ns/DIV
Figure C4. Amplifier-Under-Test (Trace A) to Output (Trace B) Delay Measures 5.2 Nanoseconds
SETTLING TIME
INPUT
RING TIME
OUTPUT
Figure D1. Amplifier Settling Time Components Include Delay, Slew and Ring Times. For Given Components, Only Ring Time is Readily Adjustable
SLEW
TIME
DELAY TIME
AN79 FC04
ALLOWABLE
OUTPUT
ERROR
BAND
AN79 D01
cations. It must be measured in the intended configura­tion. A number of terms combine to influence settling time. They include amplifier slew rate and AC dynamics, layout capacitance, source resistance and capacitance, and the compensation capacitor. These terms interact in a complex manner, making predictions hazardous.1 If the parasitics are eliminated and replaced with a pure resistive source, amplifier settling time is still not readily predict­able. The parasitic impedance terms just make a difficult problem more messy. The only real handle available to deal with all this is the feedback compensation capacitor, CF. CF’s purpose is to roll off amplifier gain at the frequency that permits best dynamic response.
Note 1: Spice aficionados take notice.
AN79-21
Application Note 79
Best settling results when the compensation capacitor is selected to functionally compensate for all the above terms. Figure D2 shows results for an optimally selected feedback capacitor. Trace A is the time-corrected input pulse and trace B the amplifier’s settle signal. The amplifier is seen to come cleanly out of slew (sample gate opens just prior to sixth vertical division) and settle very quickly.
In Figure D3, the feedback capacitor is too large. Settling is smooth, although overdamped, and a 20ns penalty results. Figure D4’s feedback capacitor is too small, caus­ing a somewhat underdamped response with resultant excessive ring time excursions. Settling time goes out to 43ns. Note that Figures D3 and D4 require reduction of vertical and horizontal scales to capture nonoptimal response.
When feedback capacitors are individually trimmed for optimal response, the source, stray, amplifier and com­pensation capacitor tolerances are irrelevant. If individual trimming is not used, these tolerances must be consid­ered to determine the feedback capacitor’s production value. Ring time is affected by stray and source capaci-
tance and output loading, as well as the feedback capacitor’s value. The relationship is nonlinear, although some guide­lines are possible. The stray and source terms can vary by ±10% and the feedback capacitor is typically a ±5% component.2 Additionally, amplifier slew rate has a signifi­cant tolerance, which is stated on the data sheet. To obtain a production feedback capacitor value, determine the optimum value by individual trimming
board layout
(board layout parasitic capacitance counts
with the production
too!). Then, factor in the worst-case percentage values for stray and source impedance terms, slew rate and feedback capacitor tolerance. Add this information to the trimmed capacitors measured value to obtain the production value. This budgeting is perhaps unduly pessimistic (RMS error summing may be a defensible compromise), but will keep you out of trouble.
Note 2: This assumes a resistive source. If the source has substantial parasitic capacitance (photodiode, DAC, etc.), this number can easily enlarge to ±50%.
Note 3: The potential problems with RMS error summing become clear when sitting in an airliner that is landing in a snowstorm.
3
AN79-22
Application Note 79
A = 5V/DIV
B = 5mV/DIV
5ns/DIV
AN79 FD02
Figure D2. Optimized Compensation Capacitor Permits Nearly Critically Damped Response, Fastest Settling Time. t
= 30ns
SETTLE
A = 5V/DIV
B = 10mV/DIV
10ns/DIV
AN79 FD03
Figure D3. Overdamped Response Ensures Freedom from Ringing, Even with Component Variations in Production. Penalty is Increased Settling Time. Note Horizontal and Vertical Scale Changes vs Figure D2. t
SETTLE
= 50ns
A = 5V/DIV
B = 10mV/DIV
10ns/DIV
Figure D4. Underdamped Response Results from Undersized Capacitor. Component Tolerance Budgeting Will Prevent This Behavior. Note Vertical and Horizontal Scale Changes vs Figure D2. t
SETTLE
= 43ns
AN79 FD04
AN79-23
Application Note 79
APPENDIX E
BREADBOARDING, LAYOUT AND CONNECTION TECHNIQUES
The measurement results presented in this publication required painstaking care in breadboarding, layout and connection techniques. Nanosecond domain, high resolu­tion measurement does not tolerate cavalier laboratory attitude. The oscilloscope photographs presented, devoid of ringing, hops, spikes and similar aberrations, are the result of a careful breadboarding exercise. The sampler­based breadboard required considerable experimentation before obtaining a noise/uncertainty floor worthy of the measurement.
Ohm’s Law
not
zero,
A good example of the importance of grounding manage­ment involves delivering the input pulse to the bread­board. The pulse generator’s 50 termination in-line coaxial type, and it cannot be directly tied to the signal ground plane. The high speed, high density (5V pulses through the 50 termination generate 100mA current spikes) current flow must return directly to the pulse generator. The coaxial terminator’s construction ensures this substantial current does this, instead of being dumped into the signal ground plane (100mA termination current flowing through 50 produces ≈5mV of error!). Figure E3 shows that the BNC shield floats from the signal plane, and is returned to “dirty” ground via a copper strip. Additionally, Figure E1 shows the pulse generator’s 50 termination physically distanced from the breadboard via a coaxial extension tube. This further ensures that pulse generator return current circulates in a tight local loop at the terminator, and does not mix into the signal plane.
It is worth mentioning that, because of the nanosecond speeds involved, inductive parasitics may introduce more error than resistive terms. This often necessitates using flat wire braid for connections to minimize parasitic induc­tive and skin effect-based losses. Every ground return and signal connection in the entire circuit must be evaluated with these concerns in mind. A paranoiac mindset is quite useful.
Note 1: I do not wax pedantic here. My guilt in this matter runs deep.
milliohms
of ground plane
must
be an
AN79-24
Application Note 79
Shielding
The most obvious way to handle radiation-induced errors is shielding. Various following figures show shielding. Determining where shields are required should come considering what layout will minimize their necessity. Often, grounding requirements conflict with minimizing radiation effects, precluding maintaining distance between sensitive points. Shielding is usually an effective compro­mise in such situations.
A similar approach to ground path integrity should be pursued with radiation management. Consider what points are likely to radiate, and try to lay them out at a distance from sensitive nodes. When in doubt about odd effects, experiment with shield placement and note results, iterat­ing towards favorable performance.2
Above all, never rely
after
on filtering or measurement bandwidth limiting to “get rid of” undesired signals whose origin is not fully understood.
This is not only intellectually dishonest, but may produce wholly invalid measurement “results,” even if they look pretty on the oscilloscope.
Connections
All signal connections to the breadboard must be coaxial. Ground wires used with oscilloscope probes are forbid­den. A 1" ground lead used with a ‘scope probe can easily generate large amounts of observed “noise” and seem­ingly inexplicable waveforms. Use coaxially mounting probe tip adapters!
Figures E1 to E6 restate the above sermon in visual form while annotating the text’s measurement circuits.
Note 2: After it works, you can figure out why. Note 3: See Reference 35 for additional nagging along these lines.
3
AN79-25
Application Note 79
AN79-26
Figure E1. Overview Of Settling Time Breadboard. Pulse Generator
Enters Left Side—50 Coaxial Terminator Mounted On Extension
Tube Minimizes Pulse Generator Return Current Mixing Into Signal
Ground Planes (Bottom and Raised Center Boards). Delayed Pulse
Generator is Lower Left. Delay Compensation Is Small Board Above
Extension Tube (Center Left). Input Bridge-Amplifier-Under-Test Is
Between Raised Board (Center) and Delay Pulse Generator (Lower
Left). Raised Board Is Sampling Bridge and Drive Circuitry. Note All
Coaxial Signal and Probe Connections
Application Note 79
Figure E2. Settling Time Breadboard Detail. Note Radiation Shield
(Vertical Board Lower Left) at Delayed Pulse Generator (Lower Left).
“Dirty” Ground Return Is Wide Copper Strip Running from Board
Lower Center to Banana Jack (Photo Upper Center). Sampling Bridge
Circuitry Is Raised Board (Photo Center Right, Foreground). AC Trims
(Raised Board Center Right) and DC Adjustment (Raised Board Lower
Right) Are Visible
AN79-27
Application Note 79
AN79-28
Figure E3. Detail of Pulse Generator Input and Delay Compensation.
Delay Compensation Circuitry Is Small Board Above Pulse Generator
Coaxial BNC Fitting (Photo Center Left). Pulse Generator BNC
Common Floats from Main Board Via Insulated Vertical Support
(Soldered to BNC—Photo Lower Center Left). BNC Is Tied to Ground
“Mecca” By Thin Copper Strip (Photo Center Left) Running at Angle
to Main Board. Input Bridge and Amplifier-Under-Test Occupy Photo
Center Right. “Dirty” Ground Return Bus (Large Rectangular Board)
Runs Across Main Board, Ends at Banana Jack
Application Note 79
Figure E4. Delayed Pulse Generator Is Fully Shielded from Input
Bridge and Sampler Circuitry (Both Partially Visible, Photo Upper
Right). Shield Is Vertical Board (Photo Center). Delayed Pulse
Generator Output Routes to Sampling Bridge Via Coaxial Cable
(Photo Center Right), Minimizing Radiation
AN79-29
Application Note 79
AN79-30
Figure E5. Input Bridge and Amplifier-Under-Test (AUT) Detail.
Pulse Generator Enters Lower Left. Input Bridge Is IC Can (Photo
Center); AUT Just Above. AUT Feedback Trim Capacitor Is Upper
Center. IC Behind Trim Capacitor Is Bridge Driver Amplifier.
Sampling Bridge (Partial) Is Photo Upper. Probe (Photo Extreme
Right) Monitors Sampler Input. FET Probe (Photo Extreme Left)
Measures Delay Compensated Input Pulse
Application Note 79
Figure E6. Sampling Bridge Viewed from Above. Sample Gate
Coaxial Cable Starts at Delayed Pulse Generator (Photo Extreme
Upper Left), Goes Under Sampler Board (Photo Center), Reappears
at Sampler Board Right Side. Note Vertical Shield Preventing
Sample Gate Pulse Radiation from Corrupting Sampler Output.
Sampler DC Zero Trim Is Square Potentiometer (Sampler Board
Lower Left); Skew and AC Balance Adjustments Are Photo Upper
Center. Sampling Bridge Diodes (Not Visible) Are Directly Beneath
Shielded Section Below Skew and Balance Trims
AN79-31
Application Note 79
AN79-32
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
www.linear-tech.com
an79f LT/TP 0999 4K • PRINTED IN USA
LINEAR TECHNOLOGY CORPORATION 1999
Loading...