Linear Technology Analog Devices LT8708-1 Datasheet

RVS (0V)
V
V
DB2
80V Synchronous 4-Switch Buck-Boost DC/DC
V
BAT2
= 13.5V
V
BAT2
CHARGING CURRENT = 30A
V
BAT1
(V)
101214
169495
96
97
98
99
100
Efficiency
87081 TA01b
Slave Controller for LT8708 Multiphase System

FEATURES DESCRIPTION

n
Slave Chip of LT8708 to Deliver Additional Power
n
Good Current Matching to the Average Output Current of LT8708 Through Current Regulation
n
Easily Paralleled with LT8708 Through Four Pins
n
Synchronized Start-Up with LT8708
n
Same Conduction Modes as LT8708
n
Synchronous Rectification: Up to 98% Efficiency
n
Frequency Range: 100kHz to 400kHz
n
Available in 40-Lead (5mm × 8mm) QFN with High Voltage Pin Spacing

APPLICATIONS

n
High Voltage Buck-Boost Converters
n
Bidirectional Charging Systems
n
Automotive 48V Systems
All registered trademarks and trademarks are the property of their respective owners.
The LT®8708-1 is a high performance buck-boost switching regulator controller that is paralleled with the LT8708 to add power and phases to an LT8708 system. The LT8708-1 always operates as a slave to the master LT8708 and has the capability of delivering as much cur­rent or power as the master. One or more slaves can be connected to a single master, proportionally increasing power and current capability of the system.
The LT8708-1 has the same conduction modes as LT8708, allowing the LT8708-1 to conduct current and power in the same direction(s) as the master. The master controls the overall current and voltage limits for an LT8708 mul­tiphase system, and the slaves comply with these limits.
LT8708-1s can be easily paralleled with the LT8708 by connecting four signals together. Two additional current limits (forward VIN current and reverse VIN current) are available on each slave that can be set independently.
LT8708-1

TYPICAL APPLICATION

The LT8708-1 Two-Phase 12V Bidirectional Dual Battery System with FHCM and RHCM Efficiency
ICP ICN
BAT1
TO DIODE
DB1
TG1 BOOST1 SW1 BG1 CSP CSN
CSNIN
CSPIN V
INCHIP
SHDN
SWEN
RVSOFF
SYNC ICP ICN
VINHIMON
DIR
FBIN
LD033
MASTER
*REFER TO LT8708 DATA SHEET FOR MASTER SETUP
FWD (3V)
POWER TRANSFER
DECISION LOGIC
10V TO 16V
BATTERY
LT8708*
RVSOFF
CLKOUT
DIR
LD033
SWEN
LD033
MODE
V
C
GND BG2 SW2 BOOST2 TG2
LT8708-1
SLAVE
SSRT
TO DIODE
CLKOUT
120kHz
DB2
CSPOUT
CSNOUT
EXTV
VOUTLOMON
INTV
GATEV
IMON_OP
IMON_ON IMON_INP IMON_INN
FBOUT
BAT2
10V TO 16V BATTERY
LD033
DB1
TO
BOOST1TOBOOST2
87081 TA01a
Rev 0
For more information www.analog.comDocument Feedback
1
LT8708-1
TABLE OF CONTENTS
Features ..................................................... 1
Applications ................................................ 1
Typical Application ........................................ 1
Description.................................................. 1
Absolute Maximum Ratings .............................. 3
Order Information .......................................... 3
Pin Configuration .......................................... 3
Electrical Characteristics ................................. 4
Typical Performance Characteristics ................... 8
Pin Functions .............................................. 10
Block Diagram ............................................. 13
Operation................................................... 14
Common LT8708-1 and LT8708 Features ............... 14
Adding Phases to an LT8708 Application ................ 14
Adding Phases: The Master LT8708 .................... 14
Adding Phases: The Slave LT8708-1 .................... 16
Start-Up .................................................................. 17
Start-Up: SWEN Pin .............................................. 17
Start-Up: Soft-Start of Switching Regulator ......... 18
Control Overview .................................................... 18
Power Switch Control ............................................ 19
Unidirectional and Bidirectional Conduction ........... 19
Error Amplifiers ...................................................... 19
Transfer Function: I
OUT(SLAVE)
Vs I
OUT(MASTER)
......20
Transfer Function: CCM ........................................21
Transfer Function: DCM, HCM and Burst Mode
Operation ............................................................ 21
Current Monitoring and Limiting .............................21
Monitoring: I
OUT(SLAVE)
Monitoring and Limiting: I
.........................................21
IN(SLAVE)
......................21
Multiphase Clocking ............................................... 22
Applications Information ................................ 23
Quick-Start Multiphase Setup ................................. 23
Quick Setup: Design the Master Phase ................. 23
Quick Setup: Design the Slave Phase(s) ............... 23
Quick Setup: Evaluation ........................................ 23
Choosing the Total Number of Phases .................... 23
Operating Frequency Selection ............................... 24
CIN and C
CIN and C
CIN and C
Selection ...........................................24
OUT
Selection: VIN Capacitance .............. 24
OUT
Selection: V
OUT
Capacitance ........... 25
OUT
VINHIMON, VOUTLOMON and RVSOFF .................. 25
Configuring the I Regulating I
I
OUT(SLAVE)
I
OUT(SLAVE)
OUT(SLAVE)
: Circuit Description ............................. 26
: Configuration .................................... 28
IN(SLAVE)
Current Limits ................ 26
............................................ 26
Loop Compensation ................................................ 28
Voltage Lockouts .................................................... 29
Circuit Board Layout Checklist ............................... 29
Design Example ..................................................... 29
Typical Applications ...................................... 31
Package Description ..................................... 35
Typical Application ....................................... 36
Related Parts .............................................. 36
2
Rev 0
For more information www.analog.com
(Note 1)
V
CSP
V
CSPOUT
– V
CSN
, V
– V
– V
CSPIN CSNOUT
,
CSNIN
............................... –0.3V to 0.3V
CSP, CSN Voltage ......................................... –0.3V to 3V
VC Voltage (Note 2) ................................... –0.3V to 2.2V
RT, FBOUT, SS Voltage ................................ –0.3V to 5V
IMON_INP, IMON_INN, IMON_OP,
IMON_ON, ICP, ICN Voltage ..................... –0.3V to 5V
SYNC Voltage ............................................ –0.3V to 5.5V
INTVCC, GATEVCC Voltage ............................ –0.3V to 7V
V
BOOST1
– V
SW1
, V
BOOST2
– V
................ –0.3V to 7V
SW2
SWEN, RVSOFF Voltage ............................... –0.3V to 7V
SWEN Current .......................................................0.5mA
RVSO FF Current .......................................................1mA
FBIN, SHDN Voltage .................................. –0.3V to 30V
VINHIMON Voltage ..................................... –0.3V to 30V
VOUTLOMON Voltage .................................. –0.3V to 5V
DIR, MODE Voltage ...................................... –0.3V to 5V
CSNIN, CSPIN, CSPOUT, CSNOUT Voltage ...–0.3V to 80V V
, EXTVCC Voltage ............................ –0.3V to 80V
INCHIP
SW1, SW2 Voltage ..................................... 81V (Note 6)
BOOST1, BOOST2 Voltage ......................... –0.3V to 87V
BG1, BG2, TG1, TG2 ........................................... (Note 5)
LDO33, CLKOUT ................................................ (Note 8)
Operating Junction Temperature Range
LT8708-1E (Notes 3, 8) .......................–40°C to 125°C
LT8708-1I (Notes 3, 8) ........................ –40°C to 125°C
LT8708-1H (Notes 3, 8) .......................–40°C to 150°C
Storage Temperature Range ...................–65°C to 150°C
LT8708-1

PIN CONFIGURATIONABSOLUTE MAXIMUM RATINGS

TOP VIEW
LDO33
IMON_ON
IMON_OP
MODE
SWEN
40 39 38 37 36 35 34
1CLKOUT
SS
2
SHDN
3
CSN
4
CSP
5
ICN
6
DIR
7
FBIN
8
FBOUT
9
V
10
C
IMON_INP
IMON_INN
11
12
13
RT
14
SYNC
15 16 17 18
GND
40-LEAD (5mm × 8mm) PLASTIC QFN
= 150°C, θJA = 36°C/W, θJC = 38°C/W
T
JMAX
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB
41
GND
CC
BG1
BG2
GATEV
UHG PACKAGE
19 20 21
INTVCC
TG2
BOOST2
INCHIP
V
33
32
31
30
29
28
27
26
25
24
23
22
SW2
CSPIN
CSNIN
CSNOUT
CSPOUT
EXTV
CC
ICP
VINHIMON
VOUTLOMON
RVSOFF
BOOST1
TG1
SW1

ORDER INFORMATION

LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE
LT8708EUHG-1#PBF LT8708EUHG-1#TRPBF 87081 40-Lead (5mm × 8mm) Plastic QFN –40°C to 125°C
LT8708IUHG-1#PBF LT8708IUHG-1#TRPBF 87081 40-Lead (5mm × 8mm) Plastic QFN –40°C to 125°C
LT8708HUHG-1#PBF LT8708HUHG-1#TRPBF 87081 40-Lead (5mm × 8mm) Plastic QFN –40°C to 150°C
Consult ADI Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.
Rev 0
For more information www.analog.com
3
LT8708-1

ELECTRICAL CHARACTERISTICS

The l denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at TA = 25°C. V
PARAMETER CONDITIONS MIN TYP MAX UNITS
Voltage Supplies and Regulators
V
Operating Voltage Range EXTVCC = 0V
INCHIP
V
Quiescent Current Not Switching, V
INCHIP
V
Quiescent Current in Shutdown V
INCHIP
EXTVCC Switchover Voltage I
EXTVCC Switchover Hysteresis 0.2 V
INTVCC Current Limit Max Current Draw from INTVCC and LDO33 Pins
INTVCC Voltage Regulated from V
INTVCC Load Regulation I
INTVCC, GATEVCC Undervoltage Lockout INTVCC Falling, GATEVCC Connected to INTV
INTVCC, GATEVCC Undervoltage Lockout Hysteresis GATEVCC Connected to INTV
INTVCC Regulator Dropout Voltage V
LDO33 Pin Voltage 5mA from LDO33 Pin
LDO33 Pin Load Regulation I
LDO33 Pin Current Limit SYNC = 3V
LDO33 Pin Undervoltage Lockout LDO33 Falling 2.96 3.04 3.12 V
LDO33 Pin Undervoltage Lockout Hysteresis 35 mV
Switching Regulator Control
Maximum Current Sense Threshold (V
Maximum Current Sense Threshold (V
Maximum Current Sense Threshold (V
Maximum Current Sense Threshold (V
CSP
CSN
CSN
CSP
– V
) Boost Mode, Minimum M3 Switch Duty Cycle
CSN
– V
) Buck Mode, Minimum M2 Switch Duty Cycle
CSP
– V
) Boost Mode, Minimum M3 Switch Duty Cycle
CSP
– V
) Buck Mode, Minimum M2 Switch Duty Cycle
CSN
Gain from VC to Max Current Sense Voltage (V
– V
CSP
) (A5 in the Block Diagram)
CSN
SHDN Input Voltage High SHDN Rising to Enable the Device SHDN Input Voltage High Hysteresis 40 mV SHDN Input Voltage Low Device Disabled, Low Quiescent Current
SHDN Pin Bias Current V
SWEN Rising Threshold Voltage
SWEN Threshold Voltage Hysteresis 22 mV
SWEN Output Voltage Low I
SWEN Internal Pull-Down Release Voltage SHDN = 3V
EXTVCC = 7.5V
SWEN = 3.3V SWEN = 0V
= 0V 0 1 µA
SHDN
= –20mA, V
INTVCC
Combined. Regulated from V INTVCC = 5.25V INTVCC = 4.4V
Regulated from EXTVCC (12V), I
= 0mA to 50mA –0.5 –1.5 %
INTVCC
– V
INCHIP
= 0.1mA to 5mA –0.25 –1 %
LDO33
Boost Mode Buck Mode
(LT8708E-1, LT8708I-1) (LT8708H-1)
= 3V
SHDN
V
= 12V
SHDN
= 200µA
SWEN
SHDN = 0V or V SHDN = 3V
=12V, SHDN = 3V, DIR = 3.3V unless otherwise noted. (Note 3).
INCHIP
l
5.5
l
2.8
EXTVCC
= 0
4.7
2.45
CC
l
6.15 6.4 6.6 V
l
90
127
l
28
42
l
6.1
l
l
6.3
6.1
6.3
4.45 4.65 4.85 V
160 mV
l
3.23 3.295 3.35 V
l
12 17.25 22 mA
l
76 93 110 mV
l
68 82 97 mV
l
79 93 108 mV
l
72 84 96 mV
INTVCC
Rising
EXTVCC
or EXTVCC (12V)
INCHIP
, I
INCHIP
, I
INTVCC
= 20mA
INTVCC
CC
INTVCC
= 20mA
= 20mA 245 mV
135
–135
l
1.175 1.221 1.275 V
l l
0.35
0
141 22
l
1.156 1.208 1.256 V
INCHIP
= 0V
l l
l
0.75 0.8 V
0.9
0.2
80 80
7.5
4.5
165
55
6.5
6.5
0.3
1.1
0.5
mA mA
mA mA
mV/V mV/V
µA µA
V V
V V
V V
V V
4
Rev 0
For more information www.analog.com
LT8708-1
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at TA = 25°C. V
PARAMETER CONDITIONS MIN TYP MAX UNITS
MODE Pin Continuous Conduction Mode (CCM) Threshold
MODE Pin Hybrid DCM/CCM Mode (HCM) Range
MODE Pin Discontinuous Conduction Mode (DCM) Range
MODE Pin Burst Mode Operation Threshold
DIR Pin Forward Operation Threshold
DIR Pin Reverse Operation Threshold
RVSOFF Output Voltage Low I RVSOFF Falling Threshold Voltage RVSOFF Threshold Voltage Hysteresis 165 mV
Soft-Start Charging Current VSS = 0V
IMON_ON Rising Threshold for FDCM Operation MODE = 1V (HCM), DIR = 3.3V
IMON_ON Falling Threshold for CCM Operation MODE = 1V (HCM), DIR = 3.3V
IMON_INP Rising Threshold for RDCM Operation MODE = 1V (HCM), DIR = 0V
IMON_INP Falling Threshold for CCM Operation MODE = 1V (HCM), DIR = 0V
ICP Rising Threshold for Start Switching
ICN Rising Threshold for Start Switching
ICP Rising Threshold for Enabling Non-CCM Offset Current
ICP Falling Threshold for Disabling Non-CCM Offset Current
ICN Rising Threshold for Enabling Non-CCM Offset Current
ICN Falling Threshold for Disabling Non-CCM Offset Current
Voltage Regulation Loops (Refer to Block Diagram to Locate Amplifiers)
Regulation Voltage for FBOUT Regulate VC to 1.2V
Regulation Voltage for FBIN Regulate VC to 1.2V
Line Regulation for FBOUT and FBIN Error Amp ReferenceVoltage V
FBOUT Pin Bias Current Current Out of Pin 15 nA
FBOUT Error Amp EA4 g
FBOUT Error Amp EA4 Voltage Gain 245 V/V
VOUTLOMON Voltage Activation Threshold Falling
VOUTLOMON Threshold Voltage Hysteresis 24 mV
VOUTLOMON Pin Bias Current V
FBIN Pin Bias Current Current Out of Pin 10 nA
FBIN Error Amp EA3 g
FBIN Error Amp EA3 Voltage Gain 150 V/V
VINHIMON Voltage Activation Threshold Rising
VINHIMON Threshold Voltage Hysteresis 24 mV
VINHIMON Pin Bias Current V
m
m
= 200µA
RVSOFF
VSS = 0.5V
= 12V to 80V, Not Switching 0.002 0.005 %/V
INCHIP
VOUTLOMON
V
VOUTLOMON
VINHIMON
V
VINHIMON
=12V, SHDN = 3V, DIR = 3.3V unless otherwise noted. (Note 3).
INCHIP
l
0.4 V
l
0.8 1.2 V
l
1.6 2.0 V
l
l
1.6 V
l
= 1.24V, Current Into Pin = 1.17V, Current Into Pin
= 1.17V, Current Into Pin = 1.24V, Current Out of Pin
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
0.08 0.5 V
1.155 1.209 1.275 V
13 2119 3125
235 255 280 mV
185 205 235 mV
235 255 280 mV
185 205 235 mV
485 510 536 mV
485 510 536 mV
680 704 730 mV
500 530 560 mV
680 704 730 mV
500 530 560 mV
1.193 1.207 1.222 V
1.184 1.205 1.226 V
345 µmho
1.185 1.207 1.225 V
0.01 1
0.8
235 µmho
1.185 1.207 1.23 V
0.01 1
0.8
2.4 V
1.2 V
µA
41
1.2
1.2
µA
µA µA
µA µA
For more information www.analog.com
Rev 0
5
LT8708-1
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at TA = 25°C. V
PARAMETER CONDITIONS MIN TYP MAX UNITS
Current Regulation Loops (Refer to Block Diagram to Locate Amplifiers)
Regulation Voltages for IMON_INP and IMON_OP VC = 1.2V
Regulation Voltages for IMON_INN VC = 1.2V
Line Regulation for IMON_INP, IMON_INN and IMON_OP Error Amp Reference Voltage
CSPIN Bias Current V
CSNIN Bias Current BOOST Capacitor Charge Control Block Not Active
CSPIN, CSNIN Common Mode Operating Voltage Range
CSPIN, CSNIN Differential Mode Operating Voltage Range
IMON_INP Output Current V
IMON_INN Output Current V
IMON_INP and IMON_INN Max Output Current
IMON_INP Error Amp EA5 g
m
IMON_INP Error Amp EA5 Voltage Gain 130 V/V
IMON_INN Error Amp EA1 g
m
IMON_INN Error Amp EA1 Voltage Gain FBIN = 0V, FBOUT = 3.3V 130 V/V
CSPOUT Bias Current V
CSNOUT Bias Current BOOST Capacitor Charge Control Block Not Active
CSPOUT, CSNOUT Common Mode Operating Voltage Range
CSPOUT, CSNOUT Differential Mode Operating Voltage Range
IMON_ON Output Current V
IMON_ON Max Output Current
CSPOUT–CSNOUT Regulation Voltage Regulate VC to 1.2V
V
= 12V to 80V 0.002 0.005 %/V
INCHIP
= 12V
CSPIN
V
= 1.5V
CSPIN
V
= 3.3V, V
SWEN
V
= 3.3V, V
SWEN
V
= 0V
SWEN
– V
CSPIN
V
– V
CSPIN
V
– V
CSPIN
V
– V
CSPIN
– V
CSNIN
V
– V
CSNIN
V
– V
CSNIN
V
– V
CSNIN
FBIN = 0V, FBOUT = 3.3V 190 µmho
= 12V
CSPOUT
V
= 1.5V
CSPOUT
V
= 3.3V, V
SWEN
V
= 3.3V, V
SWEN
V
= 0V
SWEN
– V
CSNOUT
V
– V
CSNOUT
V
– V
CSNOUT
V
– V
CSNOUT
V
– V
CSNOUT
V
– V
CSNOUT
R
IMON_OP
V
= 12V
CSNOUT
=12V, SHDN = 3V, DIR = 3.3V unless otherwise noted. (Note 3).
INCHIP
l
1.185 1.209 1.231 V
l
1.185 1.21 1.24 V
0.01
0.01
CSPIN CSPIN
= V = V
CSNIN CSNIN
= 12V = 1.5V
84
4.25
0.01
l
0 80 V
l
–100 100 mV
CSNIN CSNIN CSNIN CSNIN
CSPIN CSPIN CSPIN CSPIN
= 50mV, V = 50mV, V = 5mV, V = 5mV, V
= 50mV, V = 50mV, V = 5mV, V = 5mV, V
CSNIN
CSNIN CSNIN CSNIN
CSNIN
CSNIN CSNIN CSNIN
= 5V
= 5V = 5V = 5V
= 5V
= 5V = 5V = 5V
67
70
l
l
l
l
l
64.5
22.5
70 25
20
25
66
70
65
70
19
25
18
25
120 µA
190 µmho
0.01
0.01
CSPOUT CSPOUT
= V = V
CSNOUT CSNOUT
= 12V = 1.5V
83
4.25
0.01
l
0 80 V
l
–100 100 mV
CSPOUT CSPOUT CSPOUT CSPOUT CSPOUT CSPOUT
= 17.4kΩ
= 50mV, V = 50mV, V = 5mV, V = 5mV, V = −5mV, V = −5mV, V
ICP = 1.218V, ICN = 0V
ICP = 0V, ICN = 1.218V
ICP = ICN = 0.348V
CSNOUT
CSNOUT CSNOUT CSNOUT
CSNOUT
CSNOUT
= 5V
= 5V = 5V = 5V
= 5V
= 5V
67
70
l
65
70
l
l
l
l
l
l
22.5
20.5
12.5
10.5
25 25 15 15
120 µA
43 50 55 mV
–55 –50 –44 mV
–6 0 6 mV
73
75.5
27.5 30
74 75
30.5 32
73 75
27.5 29
17.5
19.5
µA µA
µA µA µA
µA µA µA µA
µA µA µA µA
µA µA
µA µA µA
µA µA µA µA µA µA
6
Rev 0
For more information www.analog.com
LT8708-1
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the specified operating junction temperature range, otherwise specifications are at TA = 25°C. V
PARAMETER CONDITIONS MIN TYP MAX UNITS
NMOS Gate Drivers
TG1, TG2 Rise Time C
TG1, TG2 Fall Time C
BG1, BG2 Rise Time C
BG1, BG2 Fall Time C
TG1 Off to BG1 On Delay C
BG1 Off to TG1 On Delay C
TG2 Off to BG2 On Delay C
BG2 Off to TG2 On Delay C
Min On-Time for Main Switch in Boost Operation (t
ON(M3,MIN)
Min On-Time for Synchronous Switch in Buck Operation (t
) Switch M3, C
ON(M2,MIN)
Min Off-Time for Main Switch in Steady-State Boost Operation Switch M3, C
Min Off-Time for Synchronous Switch in Steady-State Buck Operation Switch M2, C
Oscillator
Switch Frequency Range SYNCing or Free Running 100 400 kHz
Switching Frequency, f
OSC
SYNC High Level for Synchronization
SYNC Low Level for Synchronization
SYNC Clock Pulse Duty Cycle V
Recommended Min SYNC Ratio f
SYNC/fOSC
CLKOUT Output Voltage High V
CLKOUT Output Voltage Low 1mA Into CLKOUT Pin 25 100 mV
CLKOUT Duty Cycle TJ = –40°C
CLKOUT Rise Time C
CLKOUT Fall Time C
CLKOUT Phase Delay SYNC Rising to CLKOUT Rising, f
= 3300pF (Note 4) 20 ns
LOAD
= 3300pF (Note 4) 20 ns
LOAD
= 3300pF (Note 4) 20 ns
LOAD
= 3300pF (Note 4) 20 ns
LOAD
= 3300pF Each Driver 90 ns
LOAD
= 3300pF Each Driver 80 ns
LOAD
= 3300pF Each Driver 90 ns
LOAD
= 3300pF Each Driver 80 ns
LOAD
) Switch M2, C
RT = 365k RT = 215k RT = 124k
= 0V to 2V 20 80 %
SYNC
– V
LDO33
I
= 0µA
LDO33
TJ = 25°C TJ = 125°C
= 200pF 20 ns
LOAD
= 200pF 20 ns
LOAD
=12V, SHDN = 3V, DIR = 3.3V unless otherwise noted. (Note 3).
INCHIP
= 3300pF 200 ns
LOAD
= 3300pF 200 ns
LOAD
= 3300pF 230 ns
LOAD
= 3300pF 230 ns
LOAD
l
102
l l
l
l
120
170
202
310
350
1.3 V
3/4
, 1mA Out of CLKOUT Pin,
CLKOUT
100 250 mV
22.7
44.1 77
= 100kHz
OSC
l
160 180 200 Degree
142 235 400
kHz kHz kHz
0.5 V
% % %
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Do not force voltage on the VC pin. Note 3: The LT8708E-1 is guaranteed to meet performance specifications
from 0°C to 125°C junction temperature. Specifications over the –40°C to 125°C operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LT8708I-1 is guaranteed over the full –40°C to 125°C junction temperature range. The LT8708H-1 is guaranteed over the full –40°C to 150°C operating junction temperature range.
Note 4: Rise and fall times are measured using 10% and 90% levels. Delay times are measured using 50% levels.
For more information www.analog.com
Note 5: Do not apply a voltage or current source to these pins. They must be connected to capacitive loads only, otherwise permanent damage may occur.
Note 6: Negative voltages on the SW1 and SW2 pins are limited, in an application, by the body diodes of the external NMOS devices, M2 and M3, or parallel Schottky diodes when present. The SW1 and SW2 pins are tolerant of these negative voltages in excess of one diode drop below ground, guaranteed by design.
Note 7: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed the maximum operating junction temperature when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.
Note 8: Do not force voltage or current into these pins.
Rev 0
7
LT8708-1
I
OUT
(A)
0.01
0.1110
30
010203040
50
60
708090
100
EFFICIENCY (%)
87081 G01
VIN = 11.5V
V
OUT
= 14.5V
HCM
DCM
CCM
I
OUT
(A)
0.01
0.1110
3001020304050
60708090100
EFFICIENCY (%)
87081 G02
VIN = 16V
V
OUT
= 12V
HCM
DCM
CCM
VIN = 14.5V
V
OUT
= 14.5V
HCM
DCM
CCM
I
OUT
(A)
0.01
0.1110
300102030
405060708090100
EFFICIENCY (%)
87081 G03
VC 1.3V
TEMPERATURE (°C)
–50
–30
–101030507090110
130
1502030
4050607080
87081 G04
ICP = ICN = 0.348V
CSPOUT–CSNOUT (mV)
–150
–75075
150
–103070
110
150
190
230
87081 G06
TJ = 25°C
MAXIMUM V
C
MINIMUM V
C
ICP/ICN VOLTAGE (V)
0
0.25
0.50
0.7511.25
0
0.5
1.0
1.5
2.0
2.5
V
C
(V)
87081 G07
TJ = 25°C
MAXIMUM V
C
MINIMUM V
C
SS (V)00.511.5
2
0
0.5
1.0
1.5
2.0
2.5
C
(V)
87081 G08
TJ = 25°C
MAXIMUM V
C
MINIMUM V
C
SS (V)
0
0.25
0.50
0.7510
0.5
1.0
1.5
2.0
2.5
C
(V)
87081 G09
VC = ~1.3V
TEMPERATURE (°C)
–50
–30
–101030507090110
130
15020304050
607080
87081 G05

TYPICAL PERFORMANCE CHARACTERISTICS

Efficiency vs Output Current (Boost Region – Page 32)
CSPOUT – CSNOUT Voltages (ICP=1.218V, ICN = 0V) (Five Parts)
Efficiency vs Output Current (Buck Region – Page 32)
CSNOUT – CSPOUT Voltages (ICP=1.218V, ICN = 0V) (Five Parts)
TA = 25°C, unless otherwise noted.
Efficiency vs Output Current (Buck-Boost Region – Page 32)
IMON_OP Output Current
8
Maximum and Minimum VC vs ICP_ICN (SS = 0)
Maximum and Minimum VC vs SS (ICP = ICN =0.348V)
For more information www.analog.com
Maximum and Minimum VC vs SS (ICP or ICN = 1V)
Rev 0
LT8708-1
87081 G10
LT8708-1 I
BATTERY DISCONNECTED
LT8708-1 I
BATTERY DISCONNECTED
LT8708-1 I
BATTERY DISCONNECTED
LT8708-1 I
LT8708-1 I
LT8708-1 I
BATTERY DISCONNECTED
TYPICAL PERFORMANCE CHARACTERISTICS
Load Step (Page 32) VIN = 12V V
= 14.5V
OUT
LT8708 I
L
10A/DIV
L
10A/DIV
= 12V, V
V
BAT1
LOAD STEP = 10A TO 25A LOAD APPLIED AT V
BAT2
Load Step (Page 32) VIN = 16V V
= 14.5V
OUT
LT8708 I
L
10A/DIV
L
10A/DIV
500μs/DIV
REGULATED TO 14.5V
WITH
BAT2
Load Step (Page 32) VIN = 14.5V V
OUT
LT8708 I
L
10A/DIV
L
10A/DIV
V
BAT1
LOAD STEP = 10A TO 25A LOAD APPLIED AT V
Load Step (Page 33) VIN = 48V V
OUT
LT8708 I
L
20A/DIV
L
20A/DIV
L
20A/DIV
L
20A/DIV
TA = 25°C, unless otherwise noted.
= 14.5V
87081 G11
= 14.5V, V
500μs/DIV
REGULATED TO 14.5V
BAT2
WITH
BAT2
= 14.5V
PHASE 1
PHASE 2
PHASE 3
PHASE 4
500μs/DIV
= 16V, V
V
BAT1
LOAD STEP = 10A TO 25A LOAD APPLIED AT V
REGULATED TO 14.5V
BAT2
BAT2
WITH
87081 G12
500μs/DIV
V
= 48V, V
BAT1
LOAD STEP = 20A TO 55A LOAD APPLIED AT V
REGULATED TO 14.5V
BAT2
BAT2
87081 G13
WITH
Rev 0
For more information www.analog.com
9
LT8708-1

PIN FUNCTIONS

CLKOUT (Pin 1): Clock Output Pin. Use this pin to syn­chronize one or more compatible switching regulator ICs. CLKOUT toggles at the same frequency as the internal oscillator or as the SYNC pin, but is approximately 180° out of phase. CLKOUT may also be used as a temperature monitor since the CLKOUT duty cycle varies linearly with the part’s junction temperature. The CLKOUT pin can drive capacitive loads up to 200pF.
SS (Pin 2): Soft-Start Pin. Place a capacitor from this pin to ground. A capacitor identical to the SS pin capacitor used on the master LT8708 is recommended. Upon start­up, this pin will be charged by an internal resistor to 3.3V.
SHDN (Pin 3): Shutdown Pin. Tie high to enable chip. Ground to shut down and reduce quiescent current to a minimum. Do not float this pin.
CSN (Pin 4): The (–) Input to the Inductor Current Sense and DCM Detect Comparator.
CSP (Pin 5): The (+) Input to the Inductor Current Sense and DCM Detect Comparator. The VC pin voltage and built­in offsets between CSP and CSN pins, in conjunction with the R It is recommended to use the same value R master LT8708.
ICN (Pin 6): Negative V voltage on this pin determines the negative V for LT8708-1 to regulate to. Connect this pin to the master LT8708’s ICN pin. See the Applications Information sec­tion for more information.
value, set the inductor current trip threshold.
SENSE
SENSE
Current Command Pin. The
OUT
OUT
as the
current
FBOUT (Pin 9): V to the input of error amplifier EA4. Typically, connect this pin to GND to disable the EA4.
VC (Pin 10): Error Amplifier Output Pin. Tie external com­pensation network to this pin.
IMON_INP (Pin 11): Positive VIN Current Monitor and Limit Pin. The current out of this pin is 20µA plus a cur­rent proportional to the positive average VIN current. IMON_INP also connects to error amplifier EA5 and can be used to limit the maximum positive VIN current. See the Applications Information section for more information.
IMON_INN (Pin 12): Negative VIN Current Monitor and Limit Pin. The current out of this pin is 20µA plus a cur­rent proportional to the negative average VIN current. IMON_INN also connects to error amplifier EA1 and can be used to limit the maximum negative VIN current. See the Applications Information section for more information.
RT (Pin 13): Timing Resistor Pin. Adjusts the switching frequency. Place a resistor from this pin to ground to set the frequency. It is recommended to use the same value RT resistor as the master LT8708. Do not float this pin.
SYNC (Pin 14): To synchronize the switching frequency to an outside clock, simply drive this pin with a clock. The high voltage level of the clock needs to exceed 1.3V, and the low level should be less than 0.5V. In a two-phase system, connect this pin to the master LT8708’s CLKOUT pin to have a 180° phase shift. See the Applications Information section for more information.
Feedback Pin. This pin is connected
OUT
DIR (Pin 7): Direction pin when MODE is set for DCM (discontinuous conduction mode) or HCM (hybrid con­duction mode) operation. Otherwise this pin is ignored. Connect the pin to GND to process power from the V to VIN. Connect the pin to LDO33 to process power from the VIN to V signal, or connect this pin to the same voltages as the master LT8708.
FBIN (Pin 8): VIN Feedback Pin. This pin is connected to the input of error amplifier EA3. Typically, connect this pin to LDO33 to disable the EA3.
10
. Drive this pin with the same control
OUT
For more information www.analog.com
OUT
BG1, BG2 (Pin 16, Pin 18): Bottom Gate Drive. Drives the gate of the bottom N-channel MOSFETs between ground and GATEVCC.
GATEVCC (Pin 17): Power supply for bottom gate drivers. Must be connected to the INTVCC pin. Do not power from any other supply. Locally bypass to GND. It is recom­mended to use the same value bypass cap as the master LT8708.
Rev 0
PIN FUNCTIONS
LT8708-1
BOOST1, BOOST2 (Pin 24, Pin 19): Boosted Floating Driver Supply. The (+) terminal of the bootstrap capacitor connects here. The BOOST1 pin swings from a diode volt­age below GATEVCC up to V
+ GATEVCC. The BOOST2
IN
pin swings from a diode voltage below GATEVCC up to V
+ GATEVCC.
OUT
TG1, TG2 (Pin 23, Pin 20): Top Gate Drive. Drives the top N-channel MOSFETs with voltage swings equal to GATEVCC superimposed on the switch node voltages.
SW1, SW2 (Pin 22, Pin 21): Switch Nodes. The (–) ter­minals of the bootstrap capacitors connect here.
RVSOFF (Pin 25): Reverse Conduction Disable Pin. This is an input/output open-drain pin that requires a pull-up resistor. Pulling this pin low disables reverse current oper­ation. Typically, connect this pin to the LT8708’s RVSOFF pin. See the Unidirectional and Bidirectional Conduction section for more information.
VOUTLOMON (Pin 26): V Pin. Connect a ±1% resistor divider between V
Low Voltage Monitor
OUT
OUT
, VOUTLOMON and GND to set an undervoltage level on V
. When V
OUT
tion is disabled to prevent drawing current from V
is lower than this level, reverse conduc-
OUT
OUT
. See
the Applications Information section for more information.
CSPOUT (Pin 30): The (+) Input to the V
Current
OUT
Monitor Amplifier. This pin and the CSNOUT pin measure the voltage across the sense resistor, R the V same value R
current signals. It is recommended to use the
OUT
SENSE2
between the CSPOUT and CSNOUT
SENSE2
, to provide
pins as the master LT8708. See Applications Information section for proper use of this pin.
CSNOUT (Pin 31): The (–) Input to the V
Current
OUT
Monitor Amplifier. See Applications Information section for proper use of this pin.
CSNIN (Pin 32): The (–) Input to the VIN Current Monitor Amplifier. This pin and the CSPIN pin measure the volt­age across the sense resistor, R
SENSE1
, to provide the VIN current signals. Connect this pin to VIN when not in use. See Applications Information section for proper use of this pin.
CSPIN (Pin 33): The (+) Input to the VIN Current Monitor Amplifier. Connect this pin to VIN when not in use. See Applications Information section for proper use of this pin.
V
(Pin 34): Main Input Supply Pin for the LT8708-1.
INCHIP
It must be locally bypassed to ground. It is recommended to use the same value bypass cap as the master LT8708.
VINHIMON (Pin 27): VIN High Voltage Monitor Pin. Connect a ±1% resistor divider between VIN, VINHIMON and GND in order to set an overvoltage level on VIN. When VIN is higher than this level, reverse conduction is dis­abled to prevent current flow into VIN. See the Applications Information section for more information.
ICP (Pin 28): Positive V The voltage on this pin determines the positive V
Current Command Pin.
OUT
OUT
current for LT8708-1 to regulate to. Connect this pin to LT8708’s ICP pin. See the Applications Information section for more information.
EXTVCC (Pin 29): External VCC Input. When EXTVCC exceeds 6.4V (typical), INTVCC will be powered from this pin. When EXTVCC is lower than 6.4V, the INTVCC will be powered from V
. It is recommended to use the same
INCHIP
value bypass cap as the master LT8708.
INTVCC (Pin 35): 6.35V Regulator Output. Must be con­nected to the GATEVCC pin. INTVCC is powered from EXTVCC when the EXTVCC voltage is higher than 6.4V, otherwise INTVCC is powered from V
Bypass this
INCHIP.
pin to ground with a minimum 4.7µF ceramic capacitor. It is recommended to use the same value bypass cap as the master LT8708.
SWEN (Pin 36): Switching Regulator Enable Pin. Tie high through a resistor to enable the switching. Ground to dis­able switching. This pin is pulled down during shutdown, a thermal lockout or when an internal UVLO (Under Voltage Lockout) is detected. Do not float this pin. Connect this pin to the LT8708’s SWEN pin for synchronized start-up. See the Start-Up: SWEN Pin section for more details.
Rev 0
For more information www.analog.com
11
Loading...
+ 25 hidden pages