Lincoln Electric Welder User Manual

STAINLESS STEELS
Properties – How To Weld Them – Where To Use Them
STAINLESS STEELS
TABLE OF
PROPERTIES – HOW TO WELD THEM WHERE TO USE THEM
A description of the physical and mechanical properties of a variety of commercial stainless steels. Recommendations on the applications of each type and how to arc weld each including filler materials.
By
Damian Kotecki, PhD Technical Director, Stainless and High Alloy Product Development
and
Frank Armao
Senior Application Engineer
CONTENTS
1.0 Introduction ........................ 2
2.0 Types of Stainless Steels... 2
2.1 Ferrite Promoters
2.2 Austenite Promoters
2.3 Neutral Effect
3.0 Weldability of Stainless
Steels ....................................2
3.1 Ferritic Stainless Steels
3.2 Martensitic Stainless Steels
3.3 Austenitic Stainless Steels
3.3.1 Sensitization
3.3.2 Hot Cracking
3.4 Precipitation Hardening Stainless Steels
3.5 Duplex Stainless Steels
4.0 Physical Properties .......... 10
5.0 Mechanical Properties ..... 10
6.0 Selection of a Stainless
Steel ....................................12
7.0 Design for Welding
Stainless Steels ..................14
8.0 Selection of Filler Metals ...14
9.0 Selection of a Welding
Process...............................18
9.1 Shielded Metal Arc Welding
9.2 Submerged Arc Welding
9.3 Gas Metal Arc Welding
9.4 Flux Cored Arc Welding
9.5 Gas Tungsten Arc Welding
10.0 Procedures for Welding
Stainless Steels ..................21
10.1 Welding with the Shielded
Metal Arc Process
10.2 Welding with the
Submerged Arc Process
10.3 Welding with the Gas
Metal Arc Process
10.4 Welding with the Gas
Tungsten Arc Process
Copyright © 2003 by The Lincoln Electric Company All Rights Reserved
Sources of Additional Information
Safety in Welding
WELDING OF STAINLESS STEELS
1.0 INTRODUCTION
Stainless steels are defined as iron base alloys which contain at least
10.5% chromium. The thin but dense chromium oxide film which forms on the surface of a stainless steel provides corrosion resistance and prevents further oxidation. There are five types of stainless steels depending on the other alloying additions present, and they range from fully austenitic to fully ferritic.
2.0 TYPES OF STAINLESS STEELS
Austenitic stainless steels include the 200 and 300 series of which type 304 is the most common. The primary alloying additions are chromium and nickel. Ferritic stainless steels are non-hardenable Fe-Cr alloys. Types 405, 409, 430, 422 and 446 are representative of this group. Martensitic stainless steels are similar in composition to the ferritic group but contain higher carbon and lower chromium to permit hardening by heat treatment. Types 403, 410, 416 and 420 are representative of this group. Duplex stainless steels are supplied with a microstructure of approximately equal amounts of ferrite and austenite. They contain roughly 24% chromium and 5% nickel. Their numbering system is not included in the 200, 300 or 400 groups. Precipitation hardening stainless steels contain alloying additions such as aluminum which allow them to be hardened by
a solution and aging heat treatment. They are further classified into sub groups as martensitic, semiaustenitic and austenitic precipitation hardening stainless steels. They are identified as the 600-series of stainless steels (e.g., 630, 631, 660).
The alloying elements which appear in stainless steels are classed as ferrite promoters and austenite promoters and are listed below.
2.1 FERRITE PROMOTERS
Chromium – provides basic corrosion resistance.
Molybdenum – provides high temperature strength and increases corrosion resistance.
Niobium (Columbium), Titanium – strong carbide formers.
2.2 AUSTENITE PROMOTERS
Nickel – provides high temperature strength and ductility.
Carbon – carbide former, strengthener.
Nitrogen – increases strength, reduces toughness.
2.3 NEUTRAL EFFECT
• Regarding Austenite & Ferrite
Manganese – sulfide former
Silicon – wetting agent
Sulfur and Selenium – improve
machinability, cause hot cracking in welds.
3.0 WELDABILITY OF STAINLESS STEELS
Most stainless steels are considered to have good weldability and may be welded by several welding processes including the arc welding processes, resistance welding, electron and laser beam welding, friction welding and brazing. For any of these processes, joint surfaces and any filler metal must be clean.
The coefficient of thermal expansion for the austenitic types is 50% greater than that of carbon steel and this must be considered to minimize distortion. The low thermal and electrical conductivity of austenitic stainless steel is generally helpful in welding. Less welding heat is required to make a weld because the heat is not conducted away from a joint as rapidly as in carbon steel. In resistance welding, lower current can be used because resistivity is higher. Stainless steels which require special welding procedures are discussed in later sections.
3.1 FERRITIC STAINLESS STEELS
The ferritic stainless steels contain
10.5 to 30% Cr, up to 0.20% C and sometimes ferrite promoters Al, Nb (Cb), Ti and Mo. They are ferritic at all temperatures, do not transform to austenite and therefore, are not hardenable by heat treatment. This group includes the more common types 405, 409, 430, 442 and 446. Table I lists the nominal composition
2
TABLE I — Nominal Compositions of Ferritic Stainless Steels
Type Number C Mn Si Cr Ni PS Other
UNS
405 S40500 0.08 1.00 1.00 11.5-14.5 0.04 0.03 0.10-0.30 Al 409 S40900 0.08 1.00 1.00 10.5-11.75 0.045 0.045 6 x %C min. TI 429 S42900 0.12 1.00 1.00 14.0-16.0 0.04 0.03 430 S43000 0.12 1.00 1.00 16.0-18.0 0.04 0.03
430F** S43020 0.12 1.25 1.00 16.0-18.0 0.06 0.15 min. 0.06 Mo
430FSe** S43023 0.12 1.25 1.00 16.0-18.0 0.06 0.06 0.15 min. Se
430Ti S43036 0.10 1.00 1.00 16.0-19.5 0.75 0.04 0.03 5 x %C - Ti min.
434 S43400 0.12 1.00 1.00 16.0-18.0 0.04 0.03 0.75-1.25 Mo 436 S43600 0.12 1.00 1.00 16.0-18.0 0.04 0.03 0.75-1.25 Mo;
442 S44200 0.20 1.00 1.00 18.0-23.0 0.04 0.03 444 S44400 0.025 1.00 1.00 17.5-19.5 1.00 0.04 0.03 1.75-2.5 Mo, 0.035 N
446 S44600 0.20 1.50 1.00 23.0-27.0 0.04 0.03 0.25 N
18-2FM** S18200 0.08 2.50 1.00 17.5-19.5 0.04 0.15 min.
18SR 0.04 0.3 1.00 18.0 2.0 Al; 0.4 Ti
26-1 S44625 0.01 0.40 0.40 25.0-27.5 0.50 0.02 0.02 0.75-1.5 Mo; 0.015N;
(E-Brite) 0.2 Cu; 0.5 (Ni+Cu)
26-1Ti S44626 0.06 0.75 0.75 25.0-27.0 0.5 0.04 0.02 0.75-1.5 Mo; 0.04 N;
29-4 S44700 0.01 0.30 0.20 28.0-30.0 0.15 0.025 0.02 3.5-4.2 Mo
29-4-2 S44800 0.01 0.30 0.20 28.0-30.0 2.0-2.5 0.025 0.02 3.5-4.2 Mo
Monit S44635 0.25 1.00 0.75 24.5-26.0 3.5-4.5 0.04 0.03 3.5-4.5 Mo;
Sea-cure/ S44660 0.025 1.00 0.75 25.0-27.0 1.5-3.5 0.04 0.03 2.5-3.5 Mo;
Sc-1 0.2 + 4 (%C + %N)
Composition - Percent *
5 x %C min.
Nb(Cb) + Ta
0.2 + 4 (%C + %N); (Ti +Nb(Cb) )
0.2 Cu; 0.2-1.0 Ti
0.3-0.6 (Ti + Nb(Cb) )
(Ti + Nb(Cb) )
*Single values are maximum values. (From ASM Metals Handbook, Ninth Edition, Volume 3)
of a number of standard and several non-standard ferritic stainless steels. They are characterized by weld and HAZ grain growth which can result in low toughness of welds.
To weld the ferritic stainless steels, filler metals should be used which match or exceed the Cr level of the base alloy. Type 409 is available as metal cored wire and Type 430 is available in all forms. Austenitic Types 309 and 312 may be used for dissimilar joints. To minimize grain growth, weld heat input should be minimized, Preheat should be limited to 300-450°F and used only for the higher carbon ferritic stainless steels (e.g., 430, 434, 442 and 446). Many of the highly alloyed ferritic stainless steels are only available in sheet and
**These grades are generally
considered to be unweldable.
3.2 MARTENSITIC STAINLESS STEELS
The martensitic stainless steels contain 11 to 18% Cr, up to 1.20% C and small amounts of Mn and Ni and, sometimes, Mo. These steels will transform to austenite on heating and, therefore, can be hardened by formation of martensite on cooling. This group includes Types 403, 410, 414, 416, 420, 422, 431 and 440. Both standard and non-standard martensitic stainless steels are listed in Table II. They have a tendency toward weld cracking on cooling when hard brittle martensite is formed.
Chromium and carbon content of the filler metal should generally match these elements in the base metal. Type 410 filler is available as covered electrode, solid wire and cored wire and can be used to weld types 402, 410, 414 and 420 steels. Type 410NiMo filler metal can also be used. When it is necessary to match the carbon in Type 420 steel, Type 420 filler, which is available as solid wire and cored wire, should be used. Types 308, 309 and 310 austenitic filler metals can be used to weld the martensitic steels to themselves or to other steels where good as­deposited toughness is required.
Preheating and interpass temperature in the 400 to 600°F (204 to 316°C)
range is recommended for most tube forms and are usually welded by GTA without filler metal.
3
TABLE II — Nominal Compositions of Martensitic Stainless Steels
UNS Composition - Percent *
Type Number C Mn Si Cr Ni PS Other
403 S40300 0.15 1.00 0.50 11.5-13.0 0.04 0.03 410 S41000 0.15 1.00 1.00 11.5-13.0 0.04 0.03
410Cb S41040 0.18 1.00 1.00 11.5-13.5 0.04 0.03 0.05-0.3 Nb(Cb)
410S S41008 0.08 1.00 1.00 11.5-13.5 0.6 0.04 0.03
414 S41400 0.15 1.00 1.00 11.5-13.5 1.25-2.50 0.04 0.03
414L 0.06 0.50 0.15 12.5-13.0 2.5-3.0 0.04 0.03 0.5 Mo; 0.03 Al
416 S41600 0.15 1.25 1.00 12.0-14.0 0.04 0.03 0.6 Mo
416Se** S41623 0.15 1.25 1.00 12.0-14.0 0.06 0.06 0.15 min. Se
416 Plus X** S41610 0.15 1.5-2.5 1.00 12.0-14.0 0.06 0.15 min. 0.6 Mo
420 S42000 0.15 min. 1.00 1.00 12.0-14.0 0.04 0.03
420F** S42020 0.15 min. 1.25 1.00 12.0-14.0 0.06 0.15 min. 0.6 Mo
422 S42200 0.20-0.25 1.00 0.75 11.0-13.0 0.5-1.0 0.025 0.025 0.75-1.25 Mo;
0.75-1.25 W;
0.15-0.3 V
431 S43100 0.20 1.00 1.00 15.0-17.0 1.25-2.50 0.04 0.03
440A S44002 0.60-0.75 1.00 1.00 16.0-18.0 0.04 0.03 0.75 Mo 440B S44003 0.75-0.95 1.00 1.00 16.0-18.0 0.04 0.03 0.75 Mo 440C S44004 0.95-1.20 1.00 1.00 16.0-18.0 0.04 0.03 0.75 Mo
*Single values are maximum values. (From ASM Metals Handbook, Ninth Edition, Volume 3)
martensitic stainless steels. Steels with over 0.20% C often require a post weld heat treatment to soften and toughen the weld.
3.3 AUSTENITIC STAINLESS STEEL
The austenitic stainless steels contain 16-26% Cr, 8-24% Ni + Mn, up to
0.40% C and small amounts of a few other elements such as Mo, Ti, Nb (Cb) and Ta. The balance between the Cr and Ni + Mn is normally adjusted to provide a microstructure of 90-100% austenite. These alloys are characterized by good strength and high toughness over a wide temperature range and oxidation resistance to over 1000°F (538°C). This group includes Types 302, 304, 310, 316, 321 and 347. Nominal composition of these and other austenitic stainless steels are listed in Table III. Filler metals for these alloys should generally match the base metal but for most alloys, provide a microstructure with some ferrite to avoid hot cracking as will be
**These grades are generally
considered to be unweldable.
discussed further. To achieve this, Type 308 is used for Type 302 and 304 and Type 347 for Type 321. The others should be welded with matching filler. Type 347 can also be welded with Type 308H filler. These filler materials are available as coated electrodes, solid bare wire and cored wire. Type 321 is available on a limited basis as solid and cored wire.
Two problems are associated with welds in the austenitic stainless steels: 1) sensitization of the weld heat affected zone, and 2) hot cracking of weld metal.
3.3.1 SENSITIZATION:
Sensitization leads to intergranular corrosion in the heat affected zone as shown in Figure 1. Sensitization is caused by chromium carbide formation and precipitation at grain boundaries in the heat affected zone when heated in the 800 to 1600°F (427 to 871°C) temperature range. Since most carbon is found near grain boundaries, chromium carbide formation removes some chromium from solution near the grain
boundaries, thereby reducing the corrosion resistance of these local areas. This problem can be remedied by using low carbon base material and filler material to reduce the amount of carbon available to combine with chromium. Welds should be made without preheat and with minimum heat input to shorten the time in the sensitization temperature range.
The degree of carbide precipitation increases with:
1. Higher carbon content (for example, because 301 and 302 grades have a maximum carbon content of 0.15% they are more susceptible to carbon precipitation than grade 304 which has a maximum carbon content of only
0.08%).
2. Time at the critical mid-range temperatures – a few seconds at 1200°F (649°C) can do more damage than several minutes at 850°F (454°C) or 1450°F (788°C).
Welding naturally produces a temperature gradient in the steel. It ranges from melting temperature at the weld to room temperature some
4
distance from the weld. A narrow zone on each side of the weld remains in the sensitizing temperature range for sufficient time for precipitation to occur. If used in severely corrosive conditions, lines of damaging corrosion appear alongside each weld.
Control of Carbide Precipitation
The amount of carbide precipitation is reduced by promoting rapid cooling. Fortunately, the copper chill bars, skip welding and other techniques needed to control distortion in sheet metal (see pg 34) help reduce carbide precipitation. Annealing the weldment at 1900°F (1038°C) or higher, followed by water quench, eliminates carbide precipitation, but this is an expensive and often impractical procedure. Therefore, when weldments operate in severe corrosive applications or within the sensitizing temperature range, either ELC or stablilized grades are needed.
Another remedy is to use stabilized stainless steel base metal and filler materials which contain elements that will react with carbon, leaving all
the chromium in solution to provide corrosion resistance. Type 321 con­tains titanium and Type 347 contains niobium (columbium) and tantalum, all of which are stronger carbide formers than chromium.
ELC – Extra Low Carbon – Grades (304L, 308L)
The 0.04% maximum carbon content of ELC grades helps eliminate damaging carbide precipitation caused by welding. These grades are most often used for weldments which operate in severe corrosive conditions at temperatures under 800°F (427°C).
ELC steels are generally welded with the ELC electrode, AWS E308L-XX. Although the stabilized electrodes AWS E347-XX produce welds of equal resistance to carbide precipitation and similar mechanical properties, the ELC electrode welds tend to be less crack sensitive on heavy sections and have better low temperature notch toughness.
The low carbon content in ELC grades leaves more chromium to provide resistance to intergranular corrosion.
Stabilized Grades (321, 347, 348)
Stabilized grades contain small amounts of titanium (321), niobium (columbium) (347), or a combination of niobium and tantalum (347, 348). These elements have a stronger affinity for carbon then does chromium, so they combine with the carbon leaving the chromium to provide corrosion resistance.
These grades are most often used in severe corrosive conditions when service temperatures reach the sensitizing range. They are welded with the niobium stabilized electrodes, AWS E347-XX.
Type 321 electrodes are not generally made because titanium is lost in the arc. AWS E347-XX is usually quite satisfactory for joining type 321 base metal.
Molybdenum Grades
(316, 316L, 317, 317L, D319)
Molybdenum in stainless steel increases the localized corrosion resistance to many chemicals. These steels are particularly effective in combatting pitting corrosion. Their most frequent use is in industrial
FIGURE 1
5
TABLE III — Nominal Compositions of Austenitic Stainless Steels
UNS Composition - Percent *
Type Number C Mn Si Cr Ni PS Other
201 S20100 0.15 5.5-7.5 1.00 16.0-18.0 3.5-5.5 0.06 0.03 0.25 N
202 S20200 0.15 7.5-10.0 1.00 17.0-19.0 4.0-6.0 0.06 0.03 0.25 N
205 S20500 0.12-0.25 14.0-15.5 1.00 16.5-18.0 1.0-1.75 0.06 0.03 0.32-0.40 N
216 S21600 0.08 7.5-9.0 1.00 17.5-22.0 5.0-7.0 0.045 0.03 2.0-3.0 Mo; 0.25-0.5 N
301 S30100 0.15 2.00 1.00 16.0-18.0 6.0-8.0 0.045 0.03
302 S30200 0.15 2.00 1.00 17.0-19.0 8.0-10.0 0.045 0.03
302B S30215 0.15 2.00 2.0-3.0 17.0-19.0 8.0-10.0 0.045 0.03
303** S30300 0.15 2.00 1.00 17.0-19.0 8.0-10.0 0.20 0.15 min. 0.6 Mo
303Se** S30323 0.15 2.00 1.00 17.0-19.0 8.0-10.0 0.20 0.06 0.15 min. Se
304 S30400 0.08 2.00 1.00 18.0-20.0 8.0-10.5 0.045 0.03
304H S30409 0.04-0.10 2.00 1.00 18.0-20.0 8.0-10.5 0.045 0.03
304L S30403 0.03 2.00 1.00 18.0-20.0 8.0-12.0 0.045 0.03
304LN S30453 0.03 2.00 1.00 18.0-20.0 8.0-10.5 0.045 0.03 0.10-0.15 N
S30430 S30430 0.08 2.00 1.00 17.0-19.0 8.0-10.0 0.045 0.03 3.0-4.0 Cu
304N S30451 0.08 2.00 1.00 18.0-20.0 8.0-10.5 0.045 0.03 0.10-0.16 N
304HN S30452 0.04-0.10 2.00 1.00 18.0-20.0 8.0-10.5 0.045 0.03 0.10-0.16 N
305 S30500 0.12 2.00 1.00 17.0-19.0 10.5-13.0 0.045 0.03
308 S30800 0.08 2.00 1.00 19.0-21.0 10.0-12.0 0.045 0.03
308L 0.03 2.00 1.00 19.0-21.0 10.0-12.0 0.045 0.03
309 S30900 0.20 2.00 1.00 22.0-24.0 12.0-15.0 0.045 0.03
309S S30908 0.08 2.00 1.00 22.0-24.0 12.0-15.0 0.045 0.03
309S Cb S30940 0.08 2.00 1.00 22.0-24.0 12.0-15.0 0.045 0.03 8 x %C - Nb(Cb)
309 Cb + Ta 0.08 2.00 1.00 22.0-24.0 12.0-15.0 0.045 0.03 8 x %C (Nb(Cb) + Ta)
310 S31000 0.25 2.00 1.50 24.0-26.0 19.0-22.0 0.045 0.03
310S S31008 0.08 2.00 1.50 24.0-26.0 19.0-22.0 0.045 0.03
312 0.15 2.00 1.00 30.0 nom. 9.0 nom. 0.045 0.03
254SMo S31254 0.020 1.00 0.80 19.5-20.5 17.50-18.5 0.03 0.010 6.00-6.50Mo; 0.18-0.22N;
Cu=0.5-1.00
314 S31400 0.25 2.00 1.5-3.0 23.0-26.0 19.0-22.0 0.045 0.03
316 S31600 0.08 2.00 1.00 16.0-18.0 10.0-14.0 0.045 0.03 2.0-3.0 Mo
316F** S31620 0.08 2.00 1.00 16.0-18.0 10.0-14.0 0.20 0.10 min. 1.75-2.5 Mo
316H S31609 0.04-0.10 2.00 1.00 16.0-18.0 10.0-14.0 0.045 0.03 2.0-3.0 Mo
316L S31603 0.03 2.00 1.00 16.0-18.0 10.0-14.0 0.045 0.03 2.0-3.0 Mo
316LN S31653 0.03 2.00 1.00 16.0-18.0 10.0-14.0 0.045 0.03 2.0-3.0 Mo; 0.10-0.30 N
316N S31651 0.08 2.00 1.00 16.0-18.0 10.0-14.0 0.045 0.03 2.0-3.0 Mo; 0.10-0.16 N
317 S31700 0.08 2.00 1.00 18.0-20.0 11.0-15.0 0.045 0.03 3.0-4.0 Mo
317L S31703 0.03 2.00 1.00 18.0-20.0 11.0-15.0 0.045 0.03 3.0-4.0 Mo
317M S31725 0.03 2.00 1.00 18.0-20.0 12.0-16.0 0.045 0.03 4.0-5.0 Mo
321 S32100 0.08 2.00 1.00 17.0-19.0 9.0-12.0 0.045 0.03 5 x %C min. Ti
321H S32109 0.04-0.10 2.00 1.00 17.0-19.0 9.0-12.0 0.045 0.03 5 x %C min. Ti
329 S32900 0.10 2.00 1.00 25.0-30.0 3.0-6.0 0.045 0.03 1.0-2.0 Mo
330 N08330 0.08 2.00 0.75-1.5 17.0-20.0 34.0-37.0 0.04 0.03
AL6-XN N80367 0.030 2.00 1.00 20.0-22.0 23.5-25.5 0.04 0.03 6.00-7.00Mo; 0.18-0.25N;
Cu=0.75
330HC 0.40 1.50 1.25 19.0 nom. 35.0 nom.
332 0.04 1.00 0.50 21.5 nom. 32.0 nom. 0.045 0.03
347 S34700 0.08 2.00 1.00 17.0-19.0 9.0-13.0 0.045 0.03 10 x %C min. Nb(Cb) +Ta
347H S34709 0.04-0.10 2.00 1.00 17.0-19.0 9.0-13.0 0.045 0.03 10 x %C min. Nb(Cb) + Ta
348 S34800 0.08 2.00 1.00 17.0-19.0 9.0-13.0 0.045 0.03 0.2 Cu; 10 x %C min. Nb(Cb) + Ta(c)
348H S34809 0.04-0.10 2.00 1.00 17.0-19.0 9.0-13.0 0.045 0.03 0.2 Cu; 10 x %C min. Nb(Cb) + Ta
384 S38400 0.08 2.00 1.00 15.0-17.0 17.0-19.0 0.045 0.03
Nitronic 32 S24100 0.10 12.0 0.50 18.0 1.6 0.35 N
Nitronic 33 S24000 0.06 13.0 0.5 18.0 3.0 0.30 N
Nitronic 40 S21900 0.08 8.0-10.0 1.00 18.0-20.0 5.0-7.0 0.06 0.03 0.15-0.40 N
Nitronic 50 S20910 0.06 4.0-6.0 1.00 20.5-23.5 11.5-13.5 0.04 0.03 1.5-3.0 Mo; 0.2-0.4 N;
0.1-0.3 Cb; 0.1-0.3 V
Nitronic 60 S21800 0.10 7.0-9.0 3.5-4.5 16.0-18.0 8.0-9.0 0.04 0.03 1.5-3.0 Mo; 0.2-0.4 N;
6
*Single values are maximum values. (From ASM Metals Handbook, Ninth Edition, Volume 3)
**These grades are generally
considered to be unweldable.
processing equipment. 316 and 316L are welded with AWS E316L­XX electrodes.
316L and 317L are ELC grades that must be welded with ELC type electrodes to maintain resistance to carbide precipitation. 317 and 317L are generally welded with E317 or E317L electrodes respectively. They can be welded with AWS E316-XX electrode, but the welds are slightly lower in molybdenum content than the base metal with a corresponding lower corrosion resistance.
When hot oxidizing acids are encountered in service, E316, E316L, E317 or E317L welds may have poor corrosion resistance in the as-welded condition. In such cases, E309 or E309Cb electrodes may be better. As an alternative, the following heat treatment will restore corrosion resistance to the weld:
1. For 316 or 317 – full anneal at 1950-2050°F (1066-1121°C).
2. For 316L and 317L – stress relieve at 1600°F (871°C).
High Temperature Grades
(302B, 304H, 309, 309S, 310, 310S)
E310-XX welds on heavy plate tend to be more crack sensitive than E309-XX weld metals.
Free Machining Grades
(303, 303Se)
Production welding of these grades is not recommended because the sulfur or selenium and phosphorus cause severe porosity and hot short cracking.
If welding is necessary, special E312­XX or E309-XX electrodes are recommended because their high ferrite reduces cracking tendencies. Use techniques that reduce admixture of base metal into the weld metal and produce convex bead shapes.
3.3.2 HOT CRACKING:
Hot cracking is caused by low melting materials such as metallic compounds of sulfur and phosphorous which tend to penetrate grain boundaries. When these compounds are present in the weld or heat affected zone, they will penetrate grain boundaries and
cracks will appear as the weld cools and shrinkage stresses develop.
Hot cracking can be prevented by adjusting the composition of the base material and filler material to obtain a microstructure with a small amount of ferrite in the austenite matrix. The ferrite provides ferrite­austenite grain boundaries which are able to control the sulfur and phosphorous compounds so they do not permit hot cracking. This problem could be avoided by reducing the S and P to very low amounts, but this would increase significantly the cost of making the steel.
Normally a ferrite level of 4 FN minimum is recommended to avoid hot cracking. Ferrite is best determined by measurement with a magnetic instrument calibrated to AWS A4.2 or ISO 8249. It can also be estimated from the composition of the base material and filler material with the use of any of several consti­tution diagrams. The oldest of these is the 1948 Schaeffler Diagram. The Cr equivalent (% Cr + % Mo + 1.5 x % Si + 0.5 x % Cb) is plotted on
These high alloy grades maintain strength at high temperatures and have good scaling resistance. They are primarily used in industrial equipment at high service temperatures – sometimes over 2000°F (1093°C).
AWS E310-XX electrodes are needed to match the high temperature properties and scaling resistance of grades 310 and 310S.
302B and 309 grades are generally welded with E309-XX electrodes. 304H is generally welded with E308H-XX electrodes. E310-XX electrodes can be used on light plate.
= Ni + 35C + 20N + 0.25Cu
eq
Ni
Creq= Cr + Mo + 0.7Cb
FIGURE 2 — New 1992 WRC diagram including solidification mode boundaries.
(Updated from T.A. Siewert, C.N. McCowan and D.L. Olson – Welding Journal,
December 1988 by D.J. Kotecki and T.A. Siewert - Welding Journal, May 1992.)
7
TABLE IV — Nominal Compositions of Precipitation Hardening and Duplex Stainless Steels
UNS Composition - Percent *
Type Number C Mn Si Cr Ni PS Other
Precipitation-Hardening Types
PH 13-8 Mo S13800 0.05 0.10 0.10 12.25-13.25 7.5-8.5 0.01 0.008 2.0-2.5 Mo;
15-5 PH S15500 0.07 1.00 1.00 14.0-15.5 3.5-5.5 0.04 0.03 2.5-4.5 Cu;
17-4 PH S17400 0.07 1.00 1.00 15.5-17.5 3.0-5.0 0.04 0.03 630 3.0-5.0 Cu;
17-7 PH S17700 0.09 1.00 1.00 16.0-18.0 6.5-7.75 0.04 0.03 631 0.75-1.15 Al
PH 15-7 Mo S15700 0.09 1.00 1.00 14.0-16.0 6.5-7.75 0.04 0.03 2.0-3.0 Mo; 0.75-1.5 Al
17-10 P 0.07 0.75 0.50 17.0 10.5 0.28
A286 S66286 0.08 2.00 1.00 13.5-16.0 24.0-27.0 0.040 0.030 660 1.0-1.5 Mo; 2 Ti; 0.3 V AM350 S35000 0.07-0.11 0.5-1.25 0.50 16.0-17.0 4.0-5.0 0.04 0.03 2.5-3.25 Mo; 0.07-0.13 N AM355 S35500 0.10-0.15 0.5-1.25 0.50 15.0-16.0 4.0-5.0 0.04 0.03 2.5-3.25 Mo AM363 0.04 0.15 0.05 11.0 4.0 0.25 Ti
Custom 450 S45000 0.05 1.00 1.00 14.0-16.0 5.0-7.0 0.03 0.03 1.25-1.75 Cu; 0.5-1.0 Mo
Custom 455 S45500 0.05 0.50 0.50 11.0-12.5 7.5-9.5 0.04 0.03 0.5 Mo; 1.5-2.5 Cu;
Stainless W S17600 0.08 1.00 1.00 16.0-17.5 6.0-7.5 0.04 0.03 0.4 Al; 0.4-1.2 Ti
Duplex Types
2205 S32205 0.03 2.0 1.0 22.0 5.5 0.03 0.02 3.0 Mo; 0.18 N
2304 S32304 0.03 2.5 1.0 23.0 4.0 0.1 N
255 0.04 1.5 1.0 25.5 5.5 3.0 Mo; 0.17 N; 2.0 Cu
NU744LN 0.067 1.7 0.44 21.6 4.9 2.4 Mo; 0.10 N; 0.2 Cu
2507 S32750 0.03 1.2 0.8 25 5.5 0.035 0.020 4 Mo; 0.28 N
*Single values are maximum values. (From ASM Metals Handbook, Ninth Edition, Volume 3) and ASTM A638
ASTM
A
GRADE
0.90-1.35 Al; 0.01 N
8 x %C -
Nb(Cb)
Nb(Cb)
Nb(Cb)
0.15-0.45
0.15-0.45
0.8-1.4 Ti; 0.1-0.5
+ Ta
+ Ta
Nb(Cb)
the horizontal axis and the nickel equivalent (% Ni + 30 x % C + 0.5 x % Mn) on the vertical axis. Despite long use, the Schaeffler Diagram is now outdated because it does not consider nitrogen effects and because it has not proven possible to establish agreement among several measurers as to the ferrite percent in a given weld metal.
An improvement on the Schaeffler Diagram is the 1973 WRC-DeLong Diagram, which can be used to estimate ferrite level. The main differences are that the DeLong Diagram includes nitrogen (N) in the Ni equivalent (% Ni + 30 x % C x 30 x % N + 0.5 x % Mn) and shows Ferrite Numbers in addition to “percent ferrite.” Ferrite Numbers at low levels may approximate “percent ferrite.” The most recent diagram, the WRC-1992 Diagram, Figure 2, is considered to be the most accurate predicting diagram at present. The WRC-1992 Diagram has replaced the WRC-DeLong Diagram in the ASME Code with publication of the 1994-95 Winter Addendum. Its Ni equivalent
8
(% Ni + 35 x % C + 20 x % N + 0.25 Cu) and Cr equivalent (% Cr + % Mo + 0.7 x % Cb) differ from those of Schaeffler and WRC-DeLong.
Ferrite Number may be estimated by drawing a horizontal line across the diagram from the nickel equivalent number and a vertical line from the chromium equivalent number. The Ferrite Number is indicated by the diagonal line which passes through the intersection of the horizontal and vertical lines.
Predictions by the WRC-1992 and WRC-DeLong Diagrams for common grades like 308 are similar, but the WRC-1992 diagram generally is more accurate for higher alloy and less common grades like high manganese austenitic or duplex ferritic-austenitic stainless steels.
Ferrite Number can be measured directly on weld deposits from the magnetic properties of the ferrite. Several instruments are available commercially, including the Magne Gage, the Severn Gage, the Inspector Gage and the Ferritescope
which can be calibrated to AWS A4.2 or ISO 8249 and provide readings in Ferrite Number.
The amount of ferrite normally should not be greater than necessary to prevent hot cracking with some margin of safety. The presence of ferrite can reduce corrosion resistance in certain media and excess ferrite can impair ductility and toughness.
3.4 PRECIPITATION HARDENING STAINLESS STEELS
There are three categories of precipi­tation hardening stainless steels – martensitic, semiaustenitic and austenitic.
The martensitic stainless steels can be hardened by quenching from the austenitizing temperature [around 1900°F (1038°C)] then aging between 900 to 1150°F (482 to 621°C). Since these steels contain
less than 0.07% carbon, the marten­site is not very hard and the main hardening is obtained from the aging (precipitation) reaction. Examples of this group are 17-4PH, 15-5PH and PH13-8Mo. Nominal compositions of precipitation hardening stainless steels are listed in Table IV.
The semiaustenitic stainless steels will not transform to martensite when cooled from the austenitizing temper­ature because the martensite transformation temperature is below room temperature. These steels must be given a conditioning treatment which consists of heating in the range of 1350 to 1750°F (732 to 954°C) to precipitate carbon and/or alloy elements as carbides or intermetallic compounds. This removes alloy elements from solution, thereby destabilizing the austenite, which raises the martensite transformation temperature so that a martensite structure will be obtained on cooling to room temperature. Aging the steel between 850 and 1100°F (454 to 593°C) will stress relieve and temper the martensite to increase toughness, ductility, hard­ness and corrosion resistance. Examples of this group are 17-7PH, PH 15-7 Mo and AM 350.
The austenitic precipitation hardening stainless steels remain austenitic after quenching from the solutioning temperature even after substantial
amounts of cold work. They are hardened only by the aging reaction. This would include solution treating between 1800 and 2050°F (982 to 1121°C), oil or water quenching and aging at 1300 to 1350°F (704 to 732°C) for up to 24 hours. Examples of these steels include A286 and 17-10P.
If maximum strength is required in martensitic and semiaustenitic pre­cipitation hardening stainless steels, matching or nearly matching filler metal should be used and the com­ponent, before welding, should be in the annealed or solution annealed condition. Often, Type 630 filler metal, which is nearly identical with 17-4PH base metal, is used for martensitic and semiaustenitic PH stainlesses. After welding, a complete solution heat treatment plus an aging treatment is preferred. If the post weld solution treatment is not feasible, the components should be solution treated before welding then aged after welding. Thick sections of highly restrained parts are sometimes welded in the overaged condition. These would require a full heat treatment after welding to attain maximum strength.
The austenitic precipitation hardening stainless steels are the most difficult to weld because of hot cracking. Welding should preferably be done with the parts in the solution treated
condition, under minimum restraint and with minimum heat input. Nickel base alloy filler metals of the NiCrFe type or conventional austenitic stain­less steel type are often preferred.
3.5 DUPLEX STAINLESS STEELS
Duplex Ferritic – Austenitic Stainless Steels
Duplex stainless steels solidify as 100% ferrite, but about half of the ferrite transforms to austenite during cooling through temperatures above approx. 1900°F (1040°C). This behavior is accomplished by increasing Cr and decreasing Ni as compared to austenitic grades. Nitrogen is deliberately added to speed up the rate of austenite formation during cooling. Duplex stainless steels are ferromagnetic. They combine higher strength than austenitic stainless steels with fabrication properties similar to austenitics, and with resistance to chloride stress corrosion cracking of ferritic stainless steels. The most common grade is 2205 (UNS S32205), consisting of 22%Cr, 5%Ni, 3%Mo and 0.15%N.
TABLE V — Physical Properties of Groups of Stainless Steels
Austenitic Ferritic Martensitic Precipitation
Property Types Types Types Hardening Types
6
Elastic Modulus; 10
Density; lb./in.
Coeff. of Therm. Expansion: µin./in. °F 9.2 5.8 5.7 6.0
Thermal. Conduct.; Btu/hrft. °F 9.1 14.5 14.0 12.9
Specific Heat; Btu/lb. °F 0.12 0.11 0.11 0.11
Electrical Resistivity, µcm 74 61 61 80
Magnetic Permeability 1.02 600-1,100 700-1000 95
Melting Range °F 2,500-2,650 2,600-2,790 2,600-2,790 2,560-2,625
psi 28.3 29.0 29.0 29.0
GPa 195 200 200 200
3
3
g/cm
µm/m °C 16.6 10.4 10.3 10.8
w/mk 15.7 25.1 24.2 22.3
J/k °K 500 460 460 460
°C 1,375-1,450 1,425-1,530 1,425-1,530 1,400-1,440
0.29 0.28 0.28 0.28
8.0 7.8 7.8 7.8
9
TABLE VI — Properties of Austenitic Stainless Steels
Tensile Strength 0.2% Yield Strength Elong. R.A. Hardness
Type Condition Ksi MPa Ksi MPa %%Rockwell
201 Anneal 115 793 55 379 55 B90 201 Full Hard 185 1275 140 965 4 C41 202 Anneal 105 724 55 379 55 B90 301 Anneal 110 758 40 276 60 B85 301 Full Hard 185 1275 140 965 8 C41 302 Anneal 90 620 37 255 55 65 B82
302B Anneal 95 655 40 276 50 65 B85
303 Anneal 90 620 35 241 50 55 B84 304 Anneal 85 586 35 241 55 65 B80
304L Anneal 80 552 30 207 55 65 B76
304N Anneal 85 586 35 241 30
304LN Anneal 80 552 30 207
305 Anneal 85 586 37 255 55 70 B82 308 Anneal 85 586 35 241 55 65 B80
308L Anneal 80 551 30 207 55 65 B76
309 Anneal 90 620 40 276 45 65 B85 310 Anneal 95 655 40 276 45 65 B87 312 Anneal 95 655 20 314 Anneal 100 689 50 345 45 60 B87
316 Anneal 85 586 35 241 55 70 B80 316L Anneal 78 538 30 207 55 65 B76 316F Anneal 85 586 35 241 55 70 B80
317 Anneal 90 620 40 276 50 55 B85 317L Anneal 85 586 35 241 50 55 B80
321 Anneal 87 599 35 241 55 65 B80
347/348 Anneal 92 634 35 241 50 65 B84
329 Anneal 105 724 80 552 25 50 B98
330 Anneal 80 550 35 241 30 B80
330HC Anneal 85 586 42 290 45 65
332 Anneal 80 552 35 241 45 70
384 Anneal 80 550
(From ASM Metals Handbook, 8th Edition, Volume 1; and 9th Edition, Volume 3 and ASTM standards)
4.0 PHYSICAL
stainless steel, it can be found in the ASM Metals Handbook, Ninth Edition, Volume 3.
PROPERTIES
Average physical properties for each of the main groups of stainless steel are listed in Table V. This includes elastic modulus, density, coefficient of thermal expansion, thermal con­ductivity, specific heat, electrical resistivity, magnetic permeability and melting range. These values should be close enough for most engineer­ing purposes. If more precise data is required for a particular type of
10
5.0 MECHANICAL PROPERTIES
Nominal mechanical properties of austenitic and ferritic stainless steels in the annealed condition are listed in Table VI and Table VII respectively. The austenitic stainless steels generally have higher tensile strengths and elongation than the
ferritic stainless steels but lower yield strengths. Reduction in area is about the same for both groups. Nominal mechanical properties of martensitic stainless steels in both the annealed and tempered condition are listed in Table VIII. The tempered condition involves heating to austenitize, cooling to form martensite and reheating to the indicated temperature to increase toughness. Table IX lists the mechanical properties of the precipi­tation hardening stainless steels as solution annealed and after aging treatments at the temperature indicated. Properties of three duplex stainless steels are included.
Loading...
+ 28 hidden pages