Lincoln Electric IM991 User Manual

RETURN TO MAIN MENU
LN-25 PRO DUAL POWER
Safety Depends on You
Lincoln arc welding and cutting equipment is designed and built with safety in mind. However, your overall safety can be increased by proper installation ... and thoughtful operation on your part. DO NOT
INSTALL, OPERATE OR REPAIR THIS EQUIPMENT WITHOUT READING THIS MANUAL AND THE SAFETY PRECAUTIONS CONTAINED THROUGHOUT.
And, most importantly, think before you act and be careful.
IM991-B
September, 2010
Cleveland, Ohio 44117-1199 U.S.A. TEL: 216.481.8100 FAX: 216.486.1751 WEB SITE: www.lincolnelectric.com
IP23 IEC 60974-5
OPERATORʼS MANUAL
Copyright © Lincoln Global Inc.
• World's Leader in Welding and Cutting Products •
• Sales and Service through Subsidiaries and Distributors Worldwide •
i
SAFETY
i
WARNING
CALIFORNIA PROPOSITION 65 WARNINGS
Diesel engine exhaust and some of its constituents are known to the State of California to cause can­cer, birth defects, and other reproductive harm.
The Above For Diesel Engines
ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.
Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.
The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.
The Above For Gasoline Engines
FOR ENGINE powered equipment.
1.a. Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.
____________________________________________________
1.b. Operate engines in open, well-ventilated areas or vent the engine exhaust fumes outdoors.
____________________________________________________
1.c. Do not add the fuel near an open flame welding arc or when the engine is running. Stop the engine and allow it to cool before refueling to prevent spilled fuel from vaporiz­ing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.
____________________________________________________
1.d. Keep all equipment safety guards, covers and devices in position and in good repair.Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.
____________________________________________________
1.e. In some cases it may be necessary to remove safety
guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.
___________________________________________________
1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.
1.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.
ELECTRIC AND MAGNETIC FIELDS may be dangerous
2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines
2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.
2.c. Exposure to EMF fields in welding may have other health effects which are now not known.
2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:
2.d.1.
Route the electrode and work cables together - Secure them with tape when possible.
2.d.2. Never coil the electrode lead around your body.
2.d.3. Do not place your body between the electrode and
work cables. If the electrode cable is on your right side, the work cable should also be on your right side.
___________________________________________________
1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.
2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.
2.d.5. Do not work next to welding power source.
ii
SAFETY
ii
ELECTRIC SHOCK can kill.
3.a. The electrode and work (or ground) circuits are electrically “hot” when the welder is on. Do not touch these “hot” parts with your bare skin or wet clothing. Wear dry, hole-free
gloves to insulate hands.
3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.
In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:
• Semiautomatic DC Constant Voltage (Wire) Welder.
• DC Manual (Stick) Welder.
• AC Welder with Reduced Voltage Control.
3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically “hot”.
3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.
3.e. Ground the work or metal to be welded to a good electrical (earth) ground.
3.f.
Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.
3.g. Never dip the electrode in water for cooling.
3.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.
3.i. When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.
3.j. Also see Items 6.c. and 8.
ARC RAYS can burn.
4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.
4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.
4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.
FUMES AND GASES can be dangerous.
5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases. When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep
fumes and gases away from the breathing zone. When
welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and within applicable OSHA PEL and ACGIH TLV limits using local exhaust or mechanical ventilation. In confined spaces or in some circum­stances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.
5. b. The operation of welding fume control equipment is affected by various factors including proper use and positioning of the equipment, maintenance of the equipment and the spe­cific welding procedure and application involved. Worker exposure level should be checked upon installation and periodically thereafter to be certain it is within applicable OSHA PEL and ACGIH TLV limits.
5.c.
Do not weld in locations near chlorinated hydrocarbon coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors form phosgene, a highly toxic gas, and other irritating prod­ucts.
5.d. Shielding gases used for arc welding can displace air and
cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.
vapors
to
5.e. Read and understand the manufacturer’s instructions for this
equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employer’s safety practices. MSDS forms are available from your welding distributor or from the manufacturer.
5.f. Also see item 1.b.
iii
SAFETY
iii
WELDING and CUTTING SPARKS can cause fire or explosion.
6.a.
Remove fire hazards from the welding area.
If this is not possible, cover them to prevent
Remember that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.
6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.
6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.
6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even been “cleaned”. For information, purchase “Recommended Safe Practices for the Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society
(see address above).
6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.
Sparks and spatter are thrown from the welding arc. Wear oil
6.f. free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.
6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate cir­cuits. This can create fire hazards or overheat lifting chains or cables until they fail.
6.h. Also see item 1.c.
the welding sparks from starting a fire.
though
they have
Preparation
for Welding and Cutting of
CYLINDER may explode if damaged.
7.a. Use only compressed gas cylinders containing the correct shielding gas for the process used and properly operating regulators designed for the gas and
pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.
7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.
7.c. Cylinders should be located:
• Away from areas where they may be struck or subjected to
physical damage.
• A safe distance from arc welding or cutting operations and
any other source of heat, sparks, or flame.
7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.
7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.
7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.
7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.
FOR ELECTRICALLY powered equipment.
8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.
8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer’s recommendations.
8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturer’s recommendations.
6.I. Read and follow NFPA 51B “ Standard for Fire Prevention During Welding, Cutting and Other Hot Work”, available from NFPA, 1 Batterymarch Park, PO box 9101, Quincy, Ma 022690-9101.
6.j. Do not use a welding power source for pipe thawing.
Refer to http://www.lincolnelectric.com/safety for additional safety information.
iv
SAFETY
iv
PRÉCAUTIONS DE SÛRETÉ
Pour votre propre protection lire et observer toutes les instructions et les précautions de sûreté specifiques qui parraissent dans ce manuel aussi bien que les précautions de sûreté générales suiv­antes:
Sûreté Pour Soudage A LʼArc
1. Protegez-vous contre la secousse électrique:
a. Les circuits à lʼélectrode et à la piéce sont sous tension
quand la machine à souder est en marche. Eviter toujours tout contact entre les parties sous tension et la peau nue ou les vétements mouillés. Porter des gants secs et sans trous pour isoler les mains.
b. Faire trés attention de bien sʼisoler de la masse quand on
soude dans des endroits humides, ou sur un plancher metallique ou des grilles metalliques, principalement dans les positions assis ou couché pour lesquelles une grande partie du corps peut être en contact avec la masse.
c. Maintenir le porte-électrode, la pince de masse, le câble
de soudage et la machine à souder en bon et sûr état defonctionnement.
d.Ne jamais plonger le porte-électrode dans lʼeau pour le
refroidir.
e. Ne jamais toucher simultanément les parties sous tension
des porte-électrodes connectés à deux machines à souder parce que la tension entre les deux pinces peut être le total de la tension à vide des deux machines.
f. Si on utilise la machine à souder comme une source de
courant pour soudage semi-automatique, ces precautions pour le porte-électrode sʼapplicuent aussi au pistolet de soudage.
2. Dans le cas de travail au dessus du niveau du sol, se protéger contre les chutes dans le cas ou on recoit un choc. Ne jamais enrouler le câble-électrode autour de nʼimporte quelle partie du corps.
5. Toujours porter des lunettes de sécurité dans la zone de soudage. Utiliser des lunettes avec écrans lateraux dans les zones où lʼon pique le laitier.
6. Eloigner les matériaux inflammables ou les recouvrir afin de prévenir tout risque dʼincendie dû aux étincelles.
7. Quand on ne soude pas, poser la pince à une endroit isolé de la masse. Un court-circuit accidental peut provoquer un échauffement et un risque dʼincendie.
8. Sʼassurer que la masse est connectée le plus prés possible de la zone de travail quʼil est pratique de le faire. Si on place la masse sur la charpente de la construction ou dʼautres endroits éloignés de la zone de travail, on augmente le risque de voir passer le courant de soudage par les chaines de lev­age, câbles de grue, ou autres circuits. Cela peut provoquer des risques dʼincendie ou dʼechauffement des chaines et des câbles jusquʼà ce quʼils se rompent.
9. Assurer une ventilation suffisante dans la zone de soudage. Ceci est particuliérement important pour le soudage de tôles galvanisées plombées, ou cadmiées ou tout autre métal qui produit des fumeés toxiques.
10. Ne pas souder en présence de vapeurs de chlore provenant dʼopérations de dégraissage, nettoyage ou pistolage. La chaleur ou les rayons de lʼarc peuvent réagir avec les vapeurs du solvant pour produire du phosgéne (gas fortement toxique) ou autres produits irritants.
11. Pour obtenir de plus amples renseignements sur la sûreté, voir le code “Code for safety in welding and cutting” CSA Standard W 117.2-1974.
PRÉCAUTIONS DE SÛRETÉ POUR
3. Un coup dʼarc peut être plus sévère quʼun coup de soliel, donc:
a. Utiliser un bon masque avec un verre filtrant approprié
ainsi quʼun verre blanc afin de se protéger les yeux du ray­onnement de lʼarc et des projections quand on soude ou quand on regarde lʼarc.
b. Porter des vêtements convenables afin de protéger la
peau de soudeur et des aides contre le rayonnement de lʻarc.
c. Protéger lʼautre personnel travaillant à proximité au
soudage à lʼaide dʼécrans appropriés et non-inflammables.
4. Des gouttes de laitier en fusion sont émises de lʼarc de soudage. Se protéger avec des vêtements de protection libres de lʼhuile, tels que les gants en cuir, chemise épaisse, pan­talons sans revers, et chaussures montantes.
LES MACHINES À SOUDER À TRANSFORMATEUR ET À REDRESSEUR
1. Relier à la terre le chassis du poste conformement au code de lʼélectricité et aux recommendations du fabricant. Le dispositif de montage ou la piece à souder doit être branché à une bonne mise à la terre.
2. Autant que possible, Iʼinstallation et lʼentretien du poste seront effectués par un électricien qualifié.
3. Avant de faires des travaux à lʼinterieur de poste, la debranch­er à lʼinterrupteur à la boite de fusibles.
4. Garder tous les couvercles et dispositifs de sûreté à leur place.
SAFETY
Electromagnetic Compatibility (EMC)
Conformance
Products displaying the CE mark are in conformity with European Community Council Directive of 15 Dec 2004 on the approximation of the laws of the Member States relating to electromagnetic compatibility, 2004/108/EC. It was manufactured in conformity with a national standard that implements a harmonized standard: EN 60974-10 Electromagnetic Compatibility (EMC) Product Standard for Arc Welding Equipment. It is for use with other Lincoln Electric equipment. It is designed for industrial and professional use.
Introduction
All electrical equipment generates small amounts of electromagnetic emission. Electrical emission may be transmitted through power lines or radiated through space, similar to a radio transmitter. When emissions are received by other equipment, electrical interference may result. Electrical emissions may affect many kinds of electrical equipment; other nearby welding equipment, radio and TV reception, numerical controlled machines, telephone systems, computers, etc. Be aware that interference may result and extra precautions may be required when a welding power source is used in a domestic establishment.
Installation and Use
The user is responsible for installing and using the welding equipment according to the manufacturer’s instructions. If electromagnetic disturbances are detected then it shall be the responsibility of the user of the welding equipment to resolve the situation with the technical assistance of the manufacturer. In some cases this remedial action may be as simple as earthing (grounding) the welding circuit, see Note. In other cases it could involve construction of an electromagnetic screen enclosing the power source and the work complete with associated input filters. In all cases electromagnetic disturbances must be reduced to the point where they are no longer troublesome.
vv
Note: The welding circuit may or may not be earthed for safety reasons according to national codes.
Changing the earthing arrangements should only be authorized by a person who is compe­tent to access whether the changes will increase the risk of injury, e.g., by allowing parallel welding current return paths which may damage the earth circuits of other equipment.
Assessment of Area
Before installing welding equipment the user shall make an assessment of potential electromagnetic prob­lems in the surrounding area. The following shall be taken into account:
a) other supply cables, control cables, signaling and telephone cables; above, below and adjacent to the
welding equipment;
b) radio and television transmitters and receivers;
c) computer and other control equipment;
d) safety critical equipment, e.g., guarding of industrial equipment;
e) the health of the people around, e.g., the use of pacemakers and hearing aids;
f) equipment used for calibration or measurement
g) the immunity of other equipment in the environment. The user shall ensure that other equipment being
used in the environment is compatible. This may require additional protection measures;
h) the time of day that welding or other activities are to be carried out.
SAFETY
Electromagnetic Compatibility (EMC)
The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises.
Methods of Reducing Emissions
Mains Supply
Welding equipment should be connected to the mains supply according to the manufacturer’s recommenda­tions. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed welding equip­ment, in metallic conduit or equivalent. Shielding should be electrically continuous throughout its length. The shielding should be connected to the welding power source so that good electrical contact is maintained between the conduit and the welding power source enclosure.
Maintenance of the Welding Equipment
The welding equipment should be routinely maintained according to the manufacturer’s recommendations. All access and service doors and covers should be closed and properly fastened when the welding equip­ment is in operation. The welding equipment should not be modified in any way except for those changes and adjustments covered in the manufacturers instructions. In particular, the spark gaps of arc striking and stabilizing devices should be adjusted and maintained according to the manufacturer’s recommendations.
vivi
Welding Cables
The welding cables should be kept as short as possible and should be positioned close together, running at or close to floor level.
Equipotential Bonding
Bonding of all metallic components in the welding installation and adjacent to it should be considered. However, metallic components bonded to the work piece will increase the risk that the operator could receive a shock by touching these metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components.
Earthing of the Workpiece
Where the workpiece is not bonded to earth for electrical safety, not connected to earth because of its size and position, e.g., ships hull or building steelwork, a connection bonding the workpiece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the workpiece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the connec­tion of the workpiece to earth should be made by a direct connection to the workpiece, but in some countries where direct connection is not permitted, the bonding should be achieved by suitable capacitance, selected according to national regulations.
Screening and Shielding
Selective screening and shielding of other cables and equipment in the surrounding area may alleviate prob­lems of interference. Screening of the entire welding installation may be considered for special
applications
1.
_________________________
1
Portions of the preceding text are contained in EN 60974-10: “Electromagnetic Compatibility (EMC) prod­uct standard for arc welding equipment.”
Thank You
viivii
for selecting a QUALITY product by Lincoln Electric. We want you to take pride in operating this Lincoln Electric Company product
••• as much pride as we have in bringing this product to you!
The business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equip­ment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for advice or information about their use of our products. We respond to our customers based on the best information in our posses­sion at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such infor­mation or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customerʼs particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any warranty with respect to the sale of our products.
Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.
Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.
CUSTOMER ASSISTANCE POLICY
Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims for material damaged in shipment must be made by the purchaser against the transportation company at the time the shipment is received.
Please record your equipment identification information below for future reference. This information can be found on your machine nameplate.
Product _________________________________________________________________________________
Model Number ___________________________________________________________________________
Code Number or Date Code_________________________________________________________________
Serial Number____________________________________________________________________________
Date Purchased___________________________________________________________________________
Where Purchased_________________________________________________________________________
Whenever you request replacement parts or information on this equipment, always supply the information you have recorded above. The code number is especially important when identifying the correct replacement parts.
On-Line Product Registration
- Register your machine with Lincoln Electric either via fax or over the Internet.
• For faxing: Complete the form on the back of the warranty statement included in the literature packet accompanying this machine and fax the form per the instructions printed on it.
• For On-Line Registration: Go to our
“Product Registration”. Please complete the form and submit your registration.
Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection. The level of seriousness to be applied to each is explained below:
WEB SITE at www.lincolnelectric.com. Choose “Quick Links” and then
WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or loss of life.
CAUTION
This statement appears where the information must be followed to avoid minor personal injury or damage to this equipment.
viii
TABLE OF CONTENTS
Page
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Installation.......................................................................................................................Section A
Technical Specifications.......................................................................................................A-1
Safety Precautions ...............................................................................................................A-2
Location................................................................................................................................A-2
High Frequency Protection...................................................................................................A-2
Weld cable Sizes..................................................................................................................A-2
Analog Control Cable ...........................................................................................................A-3
Cable Connections and Control Cable Connector ...............................................................A-4
Shielding Gas Connection....................................................................................................A-4
Wire Drive Configuration ......................................................................................................A-5
Changing The Gun Receiver Bushing................................................................................A-5
Procedure to Install Drive Rolls and Wire Guides ..............................................................A-5
Pressure Arm Adjustment ....................................................................................................A-6
Loading Spools of Wire ........................................................................................................A-6
Gun Connections..................................................................................................................A-6
Power Source to LN-25™ Pro Dual Power Cable Connection Diagrams ..............A-7 thru A-9
________________________________________________________________________________
Operation.........................................................................................................................Section B
Safety Precautions ...............................................................................................................B-1
Graphic Symbols that appear on this Machine or in this Manual .........................................B-1
Definition of Welding Terms .................................................................................................B-2
General Description..............................................................................................................B-2
Recommended Processes, Process & Equipment Limitations, Recommended Power Sources
Wire Feed Speed CV and CC, Arc Volts.......................................................................B-3
Case Front Controls .....................................................................................................B-4, B-5
WFS Calibration with Digital Meters.....................................................................................B-6
Internal Controls ...........................................................................................................B-7, B-8
Constant Current Wire Welding............................................................................................B-9
Rear Controls .....................................................................................................................B-10
Gas Purge Pushbutton, Flow Meter ...................................................................................B-11
________________________________________________________________________________
Accessories ....................................................................................................................Section C
Factory Installed Equipment.................................................................................................C-1
Drive Roll Kits used..............................................................................................................C-1
Accessories Used ..................................................................................................C-2 thru C-5
Installation of Water Cooling Kit ...........................................................................................C-6
________________________________________________________________________________
Maintenance....................................................................................................................Section D
Safety Precautions ...............................................................................................................D-1
Routine Maintenance ...........................................................................................................D-1
Periodic Maintenance...........................................................................................................D-1
Calibration Specification................................................................................................D-1,D-2
________________________________________________________________________________
Troubleshooting .............................................................................................................Section E
How to Use Troubleshooting Guide .....................................................................................E-1
Digital Display Models Error Codes......................................................................................E-2
Troubleshooting Guide .................................................................................................E-3, E-4
________________________________________________________________________________
........B-2
viii
Wiring Diagram & Dimension Prints .............................................................................Section F
________________________________________________________________________________
Parts Pages ................................................................................................................P-592 Series
_______________________________________________________________________
________
A-1
INSTALLATION
A-1
TECHNICAL SPECIFICATIONS – LN-25™ PRO DUAL POWER (K2614-1 & -3)
INPUT VOLTAGE and CURRENT
INPUT VOLTAGE ± 10%
INPUT AMPERES
DUTY CYCLE
GEARING - WIRE FEED SPEED RANGE-WIRE SIZE
GEARING
Standard Speed
K2614-1 & -3
HEIGHT WIDTH DEPTH WEIGHT
14.8 Inches 8.7 Inches 22.2 Inches 37 lbs (376 mm) ( 221 mm) (589 mm) (17 kg)
Handle folded down
60% rating
100% rating
WFS RANGE
50 – 700 ipm
(1.3 – 17.7m/min)
15-110 VDC
RATED OUTPUT @ 104°F (40°C)
INPUT AMPERES
GMAW
WIRE SIZES
.023 – 1/16"
(0.6 – 1.6mm)
WFS RANGE
50 – 700 ipm
(1.3 – 17.7m/min)
PHYSICAL DIMENSIONS
4A
450
325
FCAW
WIRE SIZES
.030 - 5/64
(0.8 - 2.0mm)
TEMPERATURE RANGE
OPERATION: -40°F to 104°F (-40°C to 40°C) STORAGE: -40°F to 185°F (-40°C to 85°C)
LN-25™ PRO DUAL POWER
A-2
INSTALLATION
A-2
SAFETY PRECAUTIONS
WARNING
ELECTRIC SHOCK CAN KILL.
• Turn the input power OFF at the disconnect switch or fuse box before attempting to connect or disconnect input power lines, out­put cables or control cables.
• Only qualified personnel should perform this installation.
• Do not touch metal portions of the work clip when the welding power source is on.
• Do not attach the work clip to the wire feeder.
• Connect the work clip directly to the work, as close as possible to the welding arc.
• Turn power off at the welding power source before disconnecting the work clip from the work.
• Only use on power sources with open circuit voltages less than 110 VDC.
------------------------------------------------------------------------
LOCATION
For best wire feeding performance, place the LN­25™ PRO DUAL POWER on a stable and dry surface. Keep the wire feeder in a vertical position. Do not operate the wire feeder on an angled surface of more than 15 degrees.
The handle of the LN-25™ PRO DUAL POWER is intended for moving the wire feeder about the work place only.
When suspending a wire feeder, insulate the hanging device from the wire feeder enclosure.
CAUTION
HIGH FREQUENCY PROTECTION
Locate the LN-25™ PRO DUAL POWER away from radio controlled machinery. The normal operation of the LN-25™ PRO DUAL POWER may adversely affect the operation of RF controlled equipment, which may result in bodily injury or damage to the equipment.
------------------------------------------------------------------------
WELD CABLE SIZE
Table A.1 located below are copper cable sizes rec­ommended for different currents and duty cycles. Lengths stipulated are the distance from the welder to work and back to the welder again. Cable sizes are increased for greater lengths primarily for the purpose of minimizing cable drop.
Do not submerge the LN-25™ PRO DUAL POWER.
The LN-25™ PRO DUAL POWER is rated IP23 and is suitable for outdoor use.
TABLE A.1
RECOMMENDED CABLE SIZES (RUBBER COVERED COPPER - RATED 167°F or 75°C)**
CABLE SIZES FOR COMBINED LENGTHS OF ELECTRODE AND WORK CABLES
AMPERES
200 200 225 225 250 250 250 250 300 325 350 400 400 500
** Tabled values are for operation at ambient temperatures of 104°F(40°C) and below. Applications above 104°F(40°C) may require cables
larger than recommended, or cables rated higher than 167°F(75°C).
PERCENT
DUTY
CYCLE
60
100
20
40 & 30
30 40 60
100
60
100
60 60
100
60
0 to 50Ft.
(0 to15m)
2 2
4 or 5
3 3 2 1 1
1 2/0 1/0 2/0 3/0 2/0
50 to 100Ft.
(15 to 30m)
2 2 3 3 3 2 1 1
1 2/0 1/0 2/0 3/0 2/0
100 to 150 Ft.
(30 to 46m)
2 2 2 2 2 1 1 1
1 2/0 2/0 2/0 3/0 3/0
150 to 200 Ft.
(46 to 61m)
1 1 1 1 1 1 1
1 1/0 2/0 2/0 3/0 3/0 3/0
200 to 250 Ft.
(61 to 76m)
1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 2/0 3/0 3/0 4/0 4/0 4/0
LN-25™ PRO DUAL POWER
A-3
INSTALLATION
ANALOG CONTROL CABLE K1797-XX
The control cable connecting the wire feeder to the
power source is specially made for the welding envi­ronment.
The wire feeder power requires overcurrent protec­tion. Connect the wire feeder only to power sources where the overcurrent protection is no more than 15 amps.
Do not use more than 100 ft. (30.5 m) of control cable between the wire feeder and power source.
A-3
Power Source
A
K
L
M
E
H
J
I
N
G
F
POWER SOURCE
Pin
unused
A
Chassis GND
B
Welding Output Control
C
(trigger from feeder) Welding Output Control
D
(trigger from feeder) Remote Voltage Control
E
("+" supply, from power source) Remote Voltage Control
F
(control signal from feeder or remote.) Remote Voltage Control
G
("-" supply, from power source) Work connection to feeder
H
42 VAC to feeder
I
Reserved
J
Function
B
D
C
Lead #
--
GND
2
4
77
76
75
21 41
Wire Feeder
M
K
N
J
I
H
G
F
C
A
B
L
D
E
WIRE FEEDER
Pin
A
Reserved
B
Reserved
C
Welding Output Control (trigger to power source)
D
Welding Output Control (trigger to power source)
E
Remote Voltage Control ("+" supply, from power source)
F
Remote Voltage Control (control signal from feeder or remote.)
G
Remote Voltage Control ("-" supply, from power source)
H
Work connection from power source
I
42 VAC to feeder
J
Reserved
Function
Lead #
--
2
4
77
76
75
21 41
42 VAC to feeder
K
Reserved
L
unused
M
Electrode voltage from feeder
N
42
67
LN-25™ PRO DUAL POWER
K
42 VAC to feeder
L
Reserved
M
unused
N
Electrode voltage to power source
42
67
A-4
INSTALLATION
A-4
CABLE CONNECTIONS
There is one circular connector for the gun trigger on the front of the LN-25™ PRO DUAL POWER.
Picture
C
E
D
A
B
Function
5-pin trigger connector for push-guns only.
Pin
A B C D E
Wiring
Trigger Not used Common Not used Not used
CONTROL CABLE CONNECTOR
The control cable connector is present only on the Dual Power and Control Cable Feeders.
E F
D
M G
H
N
LC
B
I
K
A J
WIRE FEEDER
H
Picture
WIRE FEEDER
J
A
K
I
L
N
G
M
F
E
Pin
A B C
Output Control to Power Source (2-4)
D
B
C
D
Output Control to Power Source (2-4)
E
Remote Voltage Control 77
F
Remote Voltage Control (wiper) 76
G
Remote Voltage Control 75
H
I
J K L
M N
Electrode Sense Lead 67
Wiring
Not used Not used
Work Sense Lead 21
42VAC
Not used
42VAC Not used Not used
WARNING
ELECTRIC SHOCK can kill.
• Do not touch electrically live parts.
• Welding Voltage is present on pins H, I, K and N when Dual Power feeders are operating as Accross the Arc feeder.
SHIELDING GAS CONNECTION
WARNING
CYLINDER may explode if
damaged.
• Keep cylinder upright and chained to support.
• Keep cylinder away from areas where it may be damaged.
• Never lift welder with cylinder attached.
• Never allow welding electrode to touch cylinder.
• Keep cylinder away from welding or other live electrical circuits.
• BUILD UP OF SHIELDING GAS MAY HARM HEALTH OR KILL.
• Shut off shielding gas supply when not in use.
• See American National Standard Z-49.1, "Safety in Welding and Cutting” Published by the American Welding Society.
------------------------------------------------------------------------
Maximum inlet pressure is 100 psi. (6.9 bar.)
Install the shielding gas supply as follows:
1. Secure the cylinder to prevent it from falling.
2. Remove the cylinder cap. Inspect the cylinder valves
and regulator for damaged threads, dirt, dust, oil or grease. Remove dust and dirt with a clean cloth. DO
NOT ATTACH THE REGULATOR IF OIL, GREASE OR DAMAGE IS PRESENT! Inform your gas supplier
of this condition. Oil or grease in the presence of high pressure oxygen is explosive.
3. Stand to one side away from the outlet and open the
cylinder valve for an instant. This blows away any dust or dirt which may have accumulated in the valve out­let.
4. Attach the flow regulator to the cylinder valve and
tighten the union nut(s) securely with a wrench. Note: if connecting to 100% CO2cylinder, insert regulator adapter between regulator and cylinder valve. If adapter is equipped with a plastic washer, be sure it is seated for connection to the CO2cylinder.
5. Attach one end of the inlet hose to the outlet fitting of
the flow regulator. Attach the other end to the welding system shielding gas inlet. Tighten the union nuts with a wrench.
6. Before opening the cylinder valve, turn the regulator
adjusting knob counterclockwise until the adjusting spring pressure is released.
7. Standing to one side, open the cylinder valve slowly a
fraction of a turn. When the cylinder pressure gage stops moving, open the valve fully.
8. The flow regulator is adjustable. Adjust it to the flow
rate recommended for the procedure and process being used before making a weld.
LN-25™ PRO DUAL POWER
A-5
INSTALLATION
A-5
WIRE DRIVE CONFIGURATION
(See Figure A.2)
CHANGING THE GUN RECEIVER BUSHING
WARNING
ELECTRIC SHOCK can kill.
• Turn the input power OFF at the welding power source before instal­lation or changing drive rolls and/or guides.
• Do not touch electrically live parts.
• When inching with the gun trigger, electrode and drive mechanism are "hot" to work and ground and could remain energized several sec­onds after the gun trigger is released.
• Do not operate with covers, panels or guards removed or open.
• Only qualified personnel should perform mainte­nance work.
------------------------------------------------------------------------
Tools required:
• 1/4" hex key wrench. Note: Some gun bushings do not require the use of
the thumb screw.
1. Turn power off at the welding power source.
2. Remove the welding wire from the wire drive.
3. Remove the thumb screw from the wire drive.
4. Remove the welding gun from the wire drive.
5. Loosen the socket head cap screw that holds the connector bar against the gun bushing.
Important: Do not attempt to completely remove the socket head cap screw.
6. Remove the outer wire guide, and push the gun bushing out of the wire drive. Because of the pre­cision fit, light tapping may be required to remove the gun bushing.
7. Disconnect the shielding gas hose from the gun bushing, if required.
FIGURE A.2
8. Connect the shielding gas hose to the new gun bushing, if required.
9. Rotate the gun bushing until the thumb screw hole aligns with the thumb screw hole in the feed plate. Slide the gun receiver bushing into the wire drive and verify the thumb screw holes are aligned.
10. Tighten the socket head cap screw.
11. Insert the welding gun into the gun bushing and tighten the thumb screw.
PROCEDURE TO INSTALL DRIVE ROLLS AND WIRE GUIDES
WARNING
• Turn the input power OFF at the welding power source before instal­lation or changing drive rolls and/or guides.
• Do not touch electrically live parts.
• When inching with the gun trigger, electrode and drive mechanism are "hot" to work and ground and could remain energized several sec­onds after the gun trigger is released.
• Do not operate with covers, panels or guards removed or open.
• Only qualified personnel should perform mainte­nance work.
------------------------------------------------------------------------
1. Turn power off at the welding power source.
2. Release the idle roll pressure arm.
3. Remove the outer wire guide by turning the knurled thumbscrews counter-clockwise to unscrew them from the feed plate.
4. Rotate the triangular lock and remove the drive rolls.
GUN RECEIVER BUSHING
CONNECTOR BLOCK
THUMB SCREW
SOCKET HEAD CAP SCREW
OUTER WIRE GUIDE
LOOSEN TIGHTEN
LN-25™ PRO DUAL POWER
5. Remove the inner wire guide.
6. Insert the new inner wire guide, groove side out, over the two locating pins in the feed plate.
7. Install a drive roll on each hub assembly secure with the triangular lock.
8. Install the outer wire guide by aligning it with the pins and tightening the knurled thumbscrews.
9. Close the idle arm and engage the idle roll pressure arm. Adjust the pressure appropriately.
Loading...
+ 31 hidden pages