Lincoln Electric IM808 User Manual

IM808-A
RETURN TO MAIN MENU
POWER WAVE 455M/STT
For use with machines having Code Numbers:
Safety Depends on You
Lincoln arc welding and cutting equipment is designed and built with safety in mind. However, your overall safety can be increased by proper installation ... and thought­ful operation on your part. DO
NOT INSTALL, OPERATE OR REPAIR THIS EQUIPMENT WITHOUT READING THIS MAN­UAL AND THE SAFETY PRE­CAUTIONS CONTAINED THROUGHOUT. And, most
importantly, think before you act and be careful.
11008, 11204
June, 2004
Cleveland, Ohio 44117-1199 U.S.A. TEL: 216.481.8100 FAX: 216.486.1751 WEB SITE: www.lincolnelectric.com
IEC 60974-1
NRTL/C
OPERATOR’S MANUAL
Copyright © 2004 Lincoln Global Inc.
• World's Leader in Welding and Cutting Products •
• Sales and Service through Subsidiaries and Distributors Worldwide •
i
SAFETY
WARNING
CALIFORNIA PROPOSITION 65 WARNINGS
Diesel engine exhaust and some of its constituents are known to the State of California to cause can­cer, birth defects, and other reproductive harm.
The Above For Diesel Engines
ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.
Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.
The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.
The Above For Gasoline Engines
i
FOR ENGINE powered equipment.
1.a. Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.
____________________________________________________
1.b. Operate engines in open, well-ventilated areas or vent the engine exhaust fumes outdoors.
____________________________________________________
1.c. Do not add the fuel near an open flame weld­ing arc or when the engine is running. Stop the engine and allow it to cool before refuel­ing to prevent spilled fuel from vaporizing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.
____________________________________________________
1.d. Keep all equipment safety guards, covers and devices in posi­tion and in good repair.Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.
____________________________________________________
1.e. In some cases it may be necessary to remove safety
guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.
___________________________________________________
1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.
1.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.
ELECTRIC AND MAGNETIC FIELDS may be dangerous
2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines
2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.
2.c. Exposure to EMF fields in welding may have other health effects which are now not known.
2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:
2.d.1.
Route the electrode and work cables together - Secure them with tape when possible.
2.d.2. Never coil the electrode lead around your body.
2.d.3. Do not place your body between the electrode and
work cables. If the electrode cable is on your right side, the work cable should also be on your right side.
___________________________________________________
1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.
2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.
2.d.5. Do not work next to welding power source.
Mar ‘95
ii
SAFETY
ii
ELECTRIC SHOCK can kill.
3.a. The electrode and work (or ground) circuits are electrically “hot” when the welder is on. Do not touch these “hot” parts with your bare skin or wet clothing. Wear dry, hole-free gloves to insulate hands.
3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.
In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:
• Semiautomatic DC Constant Voltage (Wire) Welder.
• DC Manual (Stick) Welder.
• AC Welder with Reduced Voltage Control.
3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically “hot”.
3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.
3.e. Ground the work or metal to be welded to a good electrical (earth) ground.
3.f.
Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.
3.g. Never dip the electrode in water for cooling.
3.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.
3.i. When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.
3.j. Also see Items 6.c. and 8.
ARC RAYS can burn.
4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.
4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.
4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.
FUMES AND GASES can be dangerous.
5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases.When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep
fumes and gases away from the breathing zone. When
welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and below Threshold Limit Values (TLV) using local exhaust or mechanical ventilation. In confined spaces or in some circumstances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.
5.b.
Do not weld in locations near chlorinated hydrocarbon coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors form phosgene, a highly toxic gas, and other irritating prod­ucts.
5.c. Shielding gases used for arc welding can displace air and cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.
5.d. Read and understand the manufacturer’s instructions for this
equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employer’s safety practices. MSDS forms are available from your welding distributor or from the manufacturer.
vapors
to
5.e. Also see item 1.b.
Mar ‘95
iii
SAFETY
iii
WELDING SPARKS can cause fire or explosion.
6.a.
Remove fire hazards from the welding area.
If this is not possible, cover them to prevent
the welding sparks from starting a fire.
materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.
6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.
6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.
6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even been “cleaned”. For information, purchase “Recommended Safe Practices for the Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society
(see address above).
6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.
Sparks and spatter are thrown from the welding arc. Wear oil
6.f. free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.
6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate circuits. This can create fire hazards or overheat lifting chains or cables until they fail.
6.h. Also see item 1.c.
Remember that welding sparks and hot
though
they have
Preparation
for Welding and Cutting of
CYLINDER may explode if damaged.
7.a. Use only compressed gas cylinders containing the correct shielding gas for the process used and properly operating regulators designed for the gas and
pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.
7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.
7.c. Cylinders should be located:
• Away from areas where they may be struck or subjected to
physical damage.
• A safe distance from arc welding or cutting operations and
any other source of heat, sparks, or flame.
7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.
7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.
7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.
7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.
FOR ELECTRICALLY powered equipment.
8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.
8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer’s recommendations.
8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturer’s recommendations.
Mar ‘95
iv
SAFETY
iv
PRÉCAUTIONS DE SÛRETÉ
Pour votre propre protection lire et observer toutes les instructions et les précautions de sûreté specifiques qui parraissent dans ce manuel aussi bien que les précautions de sûreté générales suiv­antes:
Sûreté Pour Soudage A L’Arc
1. Protegez-vous contre la secousse électrique:
a. Les circuits à l’électrode et à la piéce sont sous tension
quand la machine à souder est en marche. Eviter toujours tout contact entre les parties sous tension et la peau nue ou les vétements mouillés. Porter des gants secs et sans trous pour isoler les mains.
b. Faire trés attention de bien s’isoler de la masse quand on
soude dans des endroits humides, ou sur un plancher met­allique ou des grilles metalliques, principalement dans les positions assis ou couché pour lesquelles une grande partie du corps peut être en contact avec la masse.
c. Maintenir le porte-électrode, la pince de masse, le câble de
soudage et la machine à souder en bon et sûr état defonc­tionnement.
d.Ne jamais plonger le porte-électrode dans l’eau pour le
refroidir.
e. Ne jamais toucher simultanément les parties sous tension
des porte-électrodes connectés à deux machines à souder parce que la tension entre les deux pinces peut être le total de la tension à vide des deux machines.
f. Si on utilise la machine à souder comme une source de
courant pour soudage semi-automatique, ces precautions pour le porte-électrode s’applicuent aussi au pistolet de soudage.
6. Eloigner les matériaux inflammables ou les recouvrir afin de prévenir tout risque d’incendie dû aux étincelles.
7. Quand on ne soude pas, poser la pince à une endroit isolé de la masse. Un court-circuit accidental peut provoquer un échauffement et un risque d’incendie.
8. S’assurer que la masse est connectée le plus prés possible de la zone de travail qu’il est pratique de le faire. Si on place la masse sur la charpente de la construction ou d’autres endroits éloignés de la zone de travail, on augmente le risque de voir passer le courant de soudage par les chaines de levage, câbles de grue, ou autres circuits. Cela peut provoquer des risques d’incendie ou d’echauffement des chaines et des câbles jusqu’à ce qu’ils se rompent.
9. Assurer une ventilation suffisante dans la zone de soudage. Ceci est particuliérement important pour le soudage de tôles galvanisées plombées, ou cadmiées ou tout autre métal qui produit des fumeés toxiques.
10. Ne pas souder en présence de vapeurs de chlore provenant d’opérations de dégraissage, nettoyage ou pistolage. La chaleur ou les rayons de l’arc peuvent réagir avec les vapeurs du solvant pour produire du phosgéne (gas fortement toxique) ou autres produits irritants.
11. Pour obtenir de plus amples renseignements sur la sûreté, voir le code “Code for safety in welding and cutting” CSA Standard W 117.2-1974.
2. Dans le cas de travail au dessus du niveau du sol, se protéger contre les chutes dans le cas ou on recoit un choc. Ne jamais enrouler le câble-électrode autour de n’importe quelle partie du corps.
3. Un coup d’arc peut être plus sévère qu’un coup de soliel, donc:
a. Utiliser un bon masque avec un verre filtrant approprié ainsi
qu’un verre blanc afin de se protéger les yeux du rayon­nement de l’arc et des projections quand on soude ou quand on regarde l’arc.
b. Porter des vêtements convenables afin de protéger la peau
de soudeur et des aides contre le rayonnement de l‘arc.
c. Protéger l’autre personnel travaillant à proximité au
soudage à l’aide d’écrans appropriés et non-inflammables.
4. Des gouttes de laitier en fusion sont émises de l’arc de soudage. Se protéger avec des vêtements de protection libres de l’huile, tels que les gants en cuir, chemise épaisse, pan­talons sans revers, et chaussures montantes.
5. Toujours porter des lunettes de sécurité dans la zone de soudage. Utiliser des lunettes avec écrans lateraux dans les zones où l’on pique le laitier.
PRÉCAUTIONS DE SÛRETÉ POUR LES MACHINES À SOUDER À TRANSFORMATEUR ET À REDRESSEUR
1. Relier à la terre le chassis du poste conformement au code de l’électricité et aux recommendations du fabricant. Le dispositif de montage ou la piece à souder doit être branché à une bonne mise à la terre.
2. Autant que possible, I’installation et l’entretien du poste seront effectués par un électricien qualifié.
3. Avant de faires des travaux à l’interieur de poste, la debranch­er à l’interrupteur à la boite de fusibles.
4. Garder tous les couvercles et dispositifs de sûreté à leur place.
Mar. ‘93
v
SAFETY
v
vi
SAFETY
vi
for selecting a QUALITY product by Lincoln Electric. We want you
Thank You
to take pride in operating this Lincoln Electric Company product ••• as much pride as we have in bringing this product to you!
Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims for material damaged in shipment must be made by the purchaser against the transportation company at the time the shipment is received.
Please record your equipment identification information below for future reference. This information can be found on your machine nameplate.
Product _________________________________________________________________________________
Model Number ___________________________________________________________________________
Code Number or Date Code_________________________________________________________________
Serial Number____________________________________________________________________________
Date Purchased___________________________________________________________________________
viivii
Where Purchased_________________________________________________________________________
Whenever you request replacement parts or information on this equipment, always supply the information you have recorded above. The code number is especially important when identifying the correct replacement parts.
On-Line Product Registration
- Register your machine with Lincoln Electric either via fax or over the Internet.
• For faxing: Complete the form on the back of the warranty statement included in the literature packet accompanying this machine and fax the form per the instructions printed on it.
• For On-Line Registration: Go to our
“Product Registration”. Please complete the form and submit your registration.
Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection. The level of seriousness to be applied to each is explained below:
WEB SITE at www.lincolnelectric.com. Choose “Quick Links” and then
WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or loss of life.
CAUTION
This statement appears where the information must be followed to avoid minor personal injury or damage to this equipment.
viii
TABLE OF CONTENTS
Page
Installation .......................................................................................................Section A
Technical Specifications - POWER WAVE 455M/STT .........................................A-1
Safety Precautions ................................................................................................A-2
Select Suitable Location........................................................................................A-2
Lifting...............................................................................................................A-2
Stacking ..........................................................................................................A-2
Machine Grounding ...............................................................................................A-2
High Frequency Protection....................................................................................A-2
Input Connection ...................................................................................................A-2
Input Fuse and Supply Wire Considerations.........................................................A-3
Electrode and Work Cable Connections ...............................................................A-3
Cable Inductance, and its Effects on Pulse Welding ...........................................A-4
Negative Electrode Polarity ...................................................................................A-4
Voltage Sensing ................................................................................................... A-4
Power Wave to Semi-automatic Power Feed Wire Feeder Interconnections.......A-5
System Description................................................................................................A-5
Configuring the System...................................................................................................A-6
Alternate Hard Automatic Application ....................................................................A-7
Combinaation Hard Automtion Application ............................................................A-7
Dual Head Boom Feeder.......................................................................................A-7
Welding with Multiple Power Waves......................................................................A-8
Control Cable Specifications .................................................................................A-8
Multiple Arc Unsynchronized .................................................................................A-9
I / O Receptacle Specifications ...........................................................................A-10
Dip Switch Settings and Locations ..............................................................A-10
Control Board Dip Switch..............................................................................A-10
Water Flow Sensor........................................................................................A-10
________________________________________________________________________
Operation .........................................................................................................Section B
Safety Precautions ................................................................................................B-1
Graphic Symbols that appear on this machine or in this manual..........................B-2
Definition of Welding Terms...................................................................................B-3
General Description...............................................................................................B-4
Recommended Processes and Equipment ...........................................................B-4
Required Equipment..............................................................................................B-4
Limitations..............................................................................................................B-4
Duty Cycle and Time Period..................................................................................B-4
Case Front Controls........................................................................................B-5
Nominal Procedures........................................................................................B-6
Fringe Procedures...........................................................................................B-6
Making a Weld ................................................................................................B-6
Welding Adjustment ........................................................................................B-6
Constant Voltage Welding...............................................................................B-7
Pulse Welding .................................................................................................B-8
STT Welding ...................................................................................................B-9
________________________________________________________________________
Accessories.....................................................................................................Section C
Optional Equipment...............................................................................................C-1
Factory Installed..............................................................................................C-1
Field Installed..................................................................................................C-1
Compatible Lincoln Equipment .......................................................................C-1
________________________________________________________________________
Maintenance ....................................................................................................Section D
Safety Precautions ................................................................................................D-1
Routine Maintenance ............................................................................................D-1
Periodic Maintenance............................................................................................D-1
Calibration Specification........................................................................................D-1
________________________________________________________________________
viii
ix
TABLE OF CONTENTS
Page
Troubleshooting..............................................................................................Section E
How to use Troubleshooting Guide.......................................................................E-1
Using the Status LED to Troubleshoot System Problems.....................................E-2
Error Codes For Power Waves .............................................................................E-3
Troubleshooting Guide ............................................................................E-4 thru E-7
________________________________________________________________________
Wiring Diagram ............................................................................................Section F-1
Connection Diagrams...........................................................................Section F-2, F-3
Dimension Print............................................................................................Section F-4
________________________________________________________________________
Parts Lists....................................................................................................P450 Series
________________________________________________________________________
ix
A-1
INSTALLATION
TECHNICAL SPECIFICATIONS - POWER WAVE 455M/STT (CE) (K2203-2)
INPUT AT RATED OUTPUT - THREE PHASE ONLY
INPUT VOLTS
OUTPUT CONDITIONS
AMPS / VOLTS / DUTY CYCLE
EXCEPT STT PROCESS
INPUT
CURRENT
AMPS
OUTPUT CONDITIONS
AMPS / VOLTS / DUTY CYCLE
EXCEPT STT PROCESS
INPUT
CURRENT
AMPS
A-1
380V - 60Hz. 380V - 50Hz. 415V - 60Hz. 415V - 50Hz.
OPEN
CIRCUIT
VOLTAGE
75 VDC
PROCESS CURRENT RANGE (DC) CURRENT AMPS
400A@36V. 100% 400A@36V. 100% 400A@36V. 100% 400A@36V. 100%
STT PROCESS ALL VOLTAGES
325A@33V. 100%
CURRENT
RANGE
AMPS
5 - 570 A
PULSE
FREQUENCY
0.15 - 1000 Hz
MIG/MAG
FCAW
SMAW
Pulse
STT
VOLTAGE
5 - 55 VDC
PULSE
RANGE
36 A 36 A 33 A 33 A
OUTPUT
PULSE AND
BACKGROUND
TIME RANGE
100 MICRO SEC.
3.3 SEC.
500A@40V. 60% 500A@40V. 60% 500A@40V. 60% 500A@40V. 60%
STT PROCESS ALL VOLTAGES
325A@33V. 100%
STT PARAMETERS
PEAK & BACK-
GROUND CURRENT
15-450 AMPS
-
50-500 A 40-500 A 30-500 A
5-750 A
40-325 A
48 A 48 A 44 A 44 A
AUXILIARY
POWER
40 VDC AT
10 AMPS
220 VAC AT
5 AMPS
RECOMMENDED INPUT WIRE AND FUSE SIZES
INPUT
VOLTAGE /
FREQUENCY
380V Hz. 415V Hz.
HEIGHT
663 mm
(26.10 in)
OPERATING TEMPERATURE RANGE
DUTY
CYCLE
100% 100%
-20°C to 40°C
INPUT AMPERE
RATING ON
NAMEPLATE
36 A 33 A
TYPE 75°C
COPPER WIRE
IN CONDUIT
AWG[IEC] SIZES
(mm
8 (10) 8 (10)
PHYSICAL DIMENSIONS
WIDTH
505 mm
(19.86 in)
TEMPERATURE RANGES
TYPE 75°C
GROUND WIRE
IN CONDUIT
AWG[IEC] SIZES
2
)
DEPTH
835 mm
(32.88 in)
STORAGE TEMPERATURE RANGE
-40°C to 40°C
(mm
10 (6) 10 (6)
2
)
TYPE 75°C
(SUPER LAG)
OR BREAKER
SIZE (AMPS)
WEIGHT
121 kg.
(267 lbs.)
40 A 40 A
POWER WAVE 455M/STT (CE)
A-2
INSTALLATION
SAFETY PRECAUTIONS Read this
entire installation section before you start installa­tion.
WARNING
ELECTRIC SHOCK can kill.
A-2
LIFTING
Lift the machine by the lift bail only. The lift bail is designed to lift the power source only. Do not attempt to lift the Power Wave with accessories attached to it.
STACKING
• Only qualified personnel should per­form this installation.
• Turn the input power OFF at the
disconnect switch or fuse box before
working on this equipment. Turn off the input power to any other equipment connected to the welding system at the disconnect switch or fuse box before working on the equipment.
• Do not touch electrically hot parts.
• Always connect the Power Wave 455M/STT (CE)
grounding lug (located inside the reconnect input access door) to a proper safety (Earth) ground.
----------------------------------------------------------
SELECT SUITABLE LOCATION
Do not use Power Wave 455M/STT (CE) in outdoor environments. The Power Wave 455M/STT (CE) power source should not be subjected to falling water, nor should any parts of it be submerged in water. Doing so may cause improper operation as well as pose a safe­ty hazard. The best practice is to keep the machine in a dry, sheltered area.
Do not mount the Power Wave 455M/STT (CE) over combustible surfaces. Where there is a combustible surface directly under stationary or fixed electrical equipment, that surface shall be covered with a steel plate at least 1.6mm (.060") thick, which shall extend not less than 150mm (5.90") beyond the equipment on all sides.
Place the welder where clean cooling air can freely cir­culate in through the rear louvers and out through the case sides and bottom. Dirt, dust, or any foreign mate­rial that can be drawn into the welder should be kept at a minimum. Do not use air filters on the air intake because the air flow will be restricted. Failure to observe these precautions can result in excessive oper­ating temperatures and nuisance shutdowns.
Machines are equipped with F.A.N. (fan as needed) cir­cuitry. The fan runs whenever the output is enabled, whether under loaded or open circuit conditions. The fan also runs for a period of time (approximately 5 min­utes) after the output is disabled, to ensure all compo­nents are properly cooled.
If desired, the F.A.N. feature can be disabled (causing the fan to run whenever the power source is on). To disable F.A.N., connect leads 444 and X3A together at the output of the solid state fan control relay, located on the back of the Control PC board enclosure. (See Wiring Diagram)
POWER WAVE 455M/STT (CE)
Power Wave machines can be stacked to a maximum of 3 high.
WARNING
• Lift only with equipment of adequate lifting capacity.
• Be sure machine is stable when lifting.
• Do not lift this machine using lift bail if it is equipped with a heavy accessory such as trail­er or gas cylinder.
FALLING • Do not lift machine if lift bail is
EQUIPMENT can damaged.
cause injury. • Do not operate machine while
suspended from lift bail.
Do not stack the Power Wave 455M/STT (CE) on top of any other machine.
-----------------------------------------------------------------------­The bottom machine must always be placed on a
firm, secure, level surface. There is a danger of machines toppling over if this precaution is not taken.
-------------------------------------------------------------
MACHINE GROUNDING
The frame of the welder must be grounded. A ground terminal marked with the symbol is located inside the reconnect/input access door for this purpose. See your local and national electrical codes for proper grounding methods.
HIGH FREQUENCY PROTECTION
Locate the Power Wave away from radio controlled machinery.
CAUTION
The normal operation of the Power Wave may adversely affect the operation of RF controlled equipment, which may result in bodily injury or damage to the equipment.
A-3
W / L3
V / L2
U / L1
THE LINCOLN ELECTRIC CO. CLEVELAND, OHIO U.S.A.
XA
S24190
use or service this equipment.
Do not touch electrically live parts.
removed.
Only qualified persons should install,
Do not operate with covers
inspecting or servicing machine.
Disconnect input power before
.
.
.
.
CR1
INPUT SUPPLY CONNECTION DIAGRAM
INSTALLATION
A-3
FIGURE A.1 - CONNECTION DIAGRAM ON CONNECTION/INPUT ACCESS DOOR
NOTE: Turn main input power to the machine OFF before performing connection procedure. Failure to do
so will result in damage to the machine.
INPUT CONNECTION
WARNING
Only a qualified electrician should connect the input leads to the Power Wave 455M/STT (CE). Connections should be made in accordance with all local and national electrical codes and the con­nection diagram located on the inside of the reconnect/input access door of the machine. Failure to do so may result in bodily injury or death.
-------------------------------------------------------------
Use a three-phase supply line. A 45 mm (1.75 inch) diameter access hole for the input supply is located on the upper left case back next to the input access door. Connect L1, L2, L3 and ground according to the Input Supply Connection Diagram decal located on the
inside of the input access door or refer to Figure A.1.
INPUT FUSE AND SUPPLY WIRE CONSIDERATIONS
Refer to the Technical Specifications at the beginning of this Installation section for recommended fuse and wire sizes. Fuse the input circuit with the recommend-
ed super lag fuse or delay type breakers (also called “inverse time” or “thermal/magnetic” circuit breakers). Choose an input and grounding wire size according to local or national electrical codes. Using fuses or circuit breakers smaller than recommended may result in “nuisance” shut-offs from welder inrush currents, even if the machine is not being used at high currents.
POWER WAVE 455M/STT (CE)
ELECTRODE AND WORK CABLE CONNECTIONS
Connect a work lead of sufficient size and length (Per Table 1) between the proper output terminal on the power source and the work. Be sure the connection to the work makes tight metal-to-metal electrical contact. To avoid interference problems with other equipment and to achieve the best possible operation, route all cables directly to the work and wire feeder. Avoid excessive lengths and do not coil excess cable.
Minimum work and electrode cables sizes are as follows:
TABLE A.1
Current (60% Duty Cycle) MINIMUM COPPER
WORK CABLE SIZE AWG
Up To-30 m Length (100 Ft.)
400 Amps 67 mm
2
(2/0) 500 Amps 85 mm2(3/0) 600 Amps 85 mm2(3/0)
NOTE: K1796 coaxial welding cable is recommended to reduce the cable inductance in long cable lengths. This is especially important in Pulse and STT applications.
CAUTION
When using inverter type power sources like the Power Waves, use the largest welding (electrode and
ground) cables that are practical. At least 67 mm (2/0) copper wire - even if the average output current would not normally require it. When pulsing, the pulse current can reach very high levels. Voltage drops can become excessive, leading to poor welding characteristics, if undersized welding cables are used.
------------------------------------------------------------------------
2
A-4
INSTALLATION
CABLE INDUCTANCE, AND ITS EFFECTS ON PULSE WELDING
For Pulse Welding processes, cable inductance will cause the welding performance to degrade. For the total welding loop length less than may be used without any effects on welding performance. For the total welding loop length greater than K1796 Coaxial Welding Cables are recommended. The weld­ing loop length is defined as the total of electrode cable length (A) + work cable length (B) + work length (C) (See Figure A.3).
POWER WAVE
For long work piece lengths, a sliding work connection should be considered to keep the total welding loop length less than 50 feet. (See Figure A.4.)
K1796 COAXIAL CABLE
Output connections on some Power Waves are made via 1/2­13 threaded output studs located beneath the spring loaded output cover at the bottom of the case front.
Most welding applications run with the electrode being posi­tive (+). For those applications, connect the electrode cable between the wire feeder and the positive (+) output stud on the power source (located beneath the spring loaded output cover near the bottom of the case front). Connect the other end of the electrode cable to the wire drive feed plate. The electrode cable lug must be against the feed plate. Be sure the connection to the feed plate makes tight metal-to-metal electrical contact. The electrode cable should be sized according to the specifications given in the work cable con­nections section. Connect a work lead from the negative (-) power source output stud to the work piece. The work piece connection must be firm and secure, especially if pulse weld­ing is planned.
When welding with the STT process, use the positive output connection labeled STT for STT welding. (If desired ,other welding modes can be used on this stud; however, the aver­age output current will be limited to 325 amps.) For non-STT processes, use the positive output connection labeled Power Wave, so that the full output range of the machine is avail­able.
15.24m (50 ft.), traditional welding cables
15.24m (50 ft.), the
FIGURE A.3
A
B
FIGURE A.4
POWER WAVE
MEASURE FROM END OF OUTER JACKET OF CABLE
FIGURE A.4
A
WORK
C
B
SLIDING WORK CONNECTION
C
WORK
A
C
B
A-4
For additional Safety information regarding the electrode and work cable set-up, See the standard "SAFETY INFORMA­TION" located in the front of the Instruction Manuals.
CAUTION
Excessive voltage drops caused by poor work piece con­nections often result in unsatisfactory welding perform­ance.
------------------------------------------------------------------------
NEGATIVE ELECTRODE POLARITY
When negative electrode polarity is required, such as in some Innershield applications, reverse the output connections at the power source (electrode cable to the negative (-) stud, and work cable to the positive (+) stud).
When operating with electrode polarity negative the "Electrode Sense Polarity" DIP switch must be set to the "Negative" position on the Wire Drive Feed Head PC Board. The default setting of the switch is positive electrode polarity. Consult the Power Feed instruction manual for further details.
VOLTAGE SENSING
The best arc performance occurs when the Power Waves have accurate data about the arc conditions. Depending upon the process, inductance within the electrode and work lead cables can influence the voltage apparent at the studs of the welder. Voltage sense leads improve the accuracy of the arc conditions and can have a dramatic effect on performance. Sense Lead Kits (K940-10, -25 or
-50) are available for this purpose.
CAUTION
If the voltage sensing is enabled but the sense leads are missing, improperly connected, or if the electrode polar­ity switch is improperly configured, extremely high weld­ing outputs may occur.
------------------------------------------------------------------------
The ELECTRODE sense lead (67) is built into the control cable, and is automatically enabled for all semi-automatic processes. The WORK sense lead (21) connects to the Power Wave 455M/STT (CE) at the four pin connector locat­ed underneath the output stud cover. By default the WORK voltage is monitored at the output stud in the Power Wave 455M/STT (CE). For more information on the WORK sense lead (21), see "Work V oltage Sensingin the following para­graph.
All constant current processes sense the voltage at the out­put studs of the POWER WAVE 455M/STT (CE) by default.
Do Not connect the STT and Power Wave stud together. Paralleling the connection will bypass the STT circuitry and severely deteriorate STT welding performance.
POWER WAVE 455M/STT (CE)
Loading...
+ 32 hidden pages