This RED-D-ARC welder is built to RED-D-ARC Extreme Duty
design specifications by Lincoln Electric.
Safety Depends on You
This welder is designed and built with safety in mind.
... and thoughtful operation on your part.
DO NOT INSTALL, OPERATE OR REPAIR THIS EQUIPMENT
WITHOUT READING THIS MANUAL AND THE SAFETY
PRECAUTIONS CONTAINED THROUGHOUT.
And, most importantly, think before you act and be careful.
1-800-245-3660
North America’s Largest Fleet of Welding Equipment
However, your overall safety can be increased by proper installation
i
SAFETY
i
WARNING
CALIFORNIA PROPOSITION 65 WARNINGS
Diesel engine exhaust and some of its constituents
are known to the State of California to cause cancer, birth defects, and other reproductive harm.
The Above For Diesel Engines
ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH.
KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.
Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you
purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box
351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available
from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE
PERFORMED ONLY BY QUALIFIED INDIVIDUALS.
The engine exhaust from this product contains
chemicals known to the State of California to cause
cancer, birth defects, or other reproductive harm.
The Above For Gasoline Engines
FOR ENGINE
powered equipment.
1.a. Turn the engine off before troubleshooting and maintenance
work unless the maintenance work requires it to be running.
1.c. Do not add the fuel near an open flame
welding arc or when the engine is running.
Stop the engine and allow it to cool before
refueling to prevent spilled fuel from vaporizing on contact with hot engine parts and
igniting. Do not spill fuel when filling tank. If
fuel is spilled, wipe it up and do not start
engine until fumes have been eliminated.
1.d. Keep all equipment safety guards, covers and devices in
position and in good repair.Keep hands, hair, clothing and
tools away from V-belts, gears, fans and all other moving
parts when starting, operating or repairing equipment.
1.e. In some cases it may be necessary to remove safety
guards to perform required maintenance. Remove
guards only when necessary and replace them when the
maintenance requiring their removal is complete.
Always use the greatest care when working near moving
parts.
1.f. Do not put your hands near the engine fan.
Do not attempt to override the governor or
idler by pushing on the throttle control rods
while the engine is running.
1.h. To avoid scalding, do not remove the
radiator pressure cap when the engine is
hot.
ELECTRIC AND
MAGNETIC FIELDS
may be dangerous
2.a. Electric current flowing through any conductor causes
localized Electric and Magnetic Fields (EMF). Welding
current creates EMF fields around welding cables and
welding machines
2.b. EMF fields may interfere with some pacemakers, and
welders having a pacemaker should consult their physician
before welding.
2.c. Exposure to EMF fields in welding may have other health
effects which are now not known.
2.d. All welders should use the following procedures in order to
minimize exposure to EMF fields from the welding circuit:
2.d.1.
Route the electrode and work cables together - Secure
them with tape when possible.
2.d.2. Never coil the electrode lead around your body.
2.d.3. Do not place your body between the electrode and
work cables. If the electrode cable is on your right
side, the work cable should also be on your right side.
1.g. To prevent accidentally starting gasoline engines while
turning the engine or welding generator during maintenance
work, disconnect the spark plug wires, distributor cap or
magneto wire as appropriate.
2.d.4. Connect the work cable to the workpiece as close as
possible to the area being welded.
2.d.5. Do not work next to welding power source.
Mar ‘95
ii
SAFETY
ii
ELECTRIC SHOCK can
kill.
3.a. The electrode and work (or ground) circuits
are electrically “hot” when the welder is on.
Do not touch these “hot” parts with your bare
skin or wet clothing. Wear dry, hole-free
gloves to insulate hands.
3.b. Insulate yourself from work and ground using dry insulation.
Make certain the insulation is large enough to cover your full
area of physical contact with work and ground.
In addition to the normal safety precautions, if welding
must be performed under electrically hazardous
conditions (in damp locations or while wearing wet
clothing; on metal structures such as floors, gratings or
scaffolds; when in cramped positions such as sitting,
kneeling or lying, if there is a high risk of unavoidable or
accidental contact with the workpiece or ground) use
the following equipment:
• Semiautomatic DC Constant Voltage (Wire) Welder.
• DC Manual (Stick) Welder.
• AC Welder with Reduced Voltage Control.
3.c. In semiautomatic or automatic wire welding, the electrode,
electrode reel, welding head, nozzle or semiautomatic
welding gun are also electrically “hot”.
3.d. Always be sure the work cable makes a good electrical
connection with the metal being welded. The connection
should be as close as possible to the area being welded.
3.e. Ground the work or metal to be welded to a good electrical
(earth) ground.
3.f.
Maintain the electrode holder, work clamp, welding cable and
welding machine in good, safe operating condition. Replace
damaged insulation.
3.g. Never dip the electrode in water for cooling.
3.h. Never simultaneously touch electrically “hot” parts of
electrode holders connected to two welders because voltage
between the two can be the total of the open circuit voltage
of both welders.
3.i. When working above floor level, use a safety belt to protect
yourself from a fall should you get a shock.
3.j. Also see Items 6.c. and 8.
ARC RAYS can burn.
4.a. Use a shield with the proper filter and cover
plates to protect your eyes from sparks and
the rays of the arc when welding or observing
open arc welding. Headshield and filter lens
should conform to ANSI Z87. I standards.
4.b. Use suitable clothing made from durable flame-resistant
material to protect your skin and that of your helpers from
the arc rays.
4.c. Protect other nearby personnel with suitable, non-flammable
screening and/or warn them not to watch the arc nor expose
themselves to the arc rays or to hot spatter or metal.
FUMES AND GASES
can be dangerous.
5.a. Welding may produce fumes and gases
hazardous to health. Avoid breathing these
fumes and gases. When welding, keep
your head out of the fume. Use enough
ventilation and/or exhaust at the arc to keep
fumes and gases away from the breathing zone. When
welding with electrodes which require special
ventilation such as stainless or hard facing (see
instructions on container or MSDS) or on lead or
cadmium plated steel and other metals or coatings
which produce highly toxic fumes, keep exposure as
low as possible and below Threshold Limit Values (TLV)
using local exhaust or mechanical ventilation. In
confined spaces or in some circumstances, outdoors, a
respirator may be required. Additional precautions are
also required when welding on galvanized steel.
5. b. The operation of welding fume control equipment is affected
by various factors including proper use and positioning of
the equipment, maintenance of the equipment and the specific welding procedure and application involved. Worker
exposure level should be checked upon installation and
periodically thereafter to be certain it is within applicable
OSHA PEL and ACGIH TLV limits.
5.c.
Do not weld in locations near chlorinated hydrocarbon
coming from degreasing, cleaning or spraying operations.
The heat and rays of the arc can react with solvent vapors
form phosgene, a highly toxic gas, and other irritating products.
5.d. Shielding gases used for arc welding can displace air and
cause injury or death. Always use enough ventilation,
especially in confined areas, to insure breathing air is safe.
vapors
to
5.e. Read and understand the manufacturer’s instructions for this
equipment and the consumables to be used, including the
material safety data sheet (MSDS) and follow your
employer’s safety practices. MSDS forms are available from
your welding distributor or from the manufacturer.
5.f. Also see item 1.b.
AUG 06
iii
SAFETY
iii
WELDING SPARKS can
cause fire or explosion.
6.a.
Remove fire hazards from the welding area.
If this is not possible, cover them to prevent
the welding sparks from starting a fire.
materials from welding can easily go through small cracks
and openings to adjacent areas. Avoid welding near
hydraulic lines. Have a fire extinguisher readily available.
6.b. Where compressed gases are to be used at the job site,
special precautions should be used to prevent hazardous
situations. Refer to “Safety in Welding and Cutting” (ANSI
Standard Z49.1) and the operating information for the
equipment being used.
6.c. When not welding, make certain no part of the electrode
circuit is touching the work or ground. Accidental contact
can cause overheating and create a fire hazard.
6.d. Do not heat, cut or weld tanks, drums or containers until the
proper steps have been taken to insure that such procedures
will not cause flammable or toxic vapors from substances
inside. They can cause an explosion even
been “cleaned”. For information, purchase “Recommended
Safe Practices for the
Containers and Piping That Have Held Hazardous
Substances”, AWS F4.1 from the American Welding Society
(see address above).
6.e. Vent hollow castings or containers before heating, cutting or
welding. They may explode.
Sparks and spatter are thrown from the welding arc. Wear oil
6.f.
free protective garments such as leather gloves, heavy shirt,
cuffless trousers, high shoes and a cap over your hair. Wear
ear plugs when welding out of position or in confined places.
Always wear safety glasses with side shields when in a
welding area.
6.g. Connect the work cable to the work as close to the welding
area as practical. Work cables connected to the building
framework or other locations away from the welding area
increase the possibility of the welding current passing
through lifting chains, crane cables or other alternate circuits. This can create fire hazards or overheat lifting chains
or cables until they fail.
6.h. Also see item 1.c.
Remember that welding sparks and hot
though
they have
Preparation
for Welding and Cutting of
CYLINDER may explode
if damaged.
7.a. Use only compressed gas cylinders
containing the correct shielding gas for the
process used and properly operating
regulators designed for the gas and
pressure used. All hoses, fittings, etc. should be suitable for
the application and maintained in good condition.
7.b. Always keep cylinders in an upright position securely
chained to an undercarriage or fixed support.
7.c. Cylinders should be located:
• Away from areas where they may be struck or subjected to
physical damage.
• A safe distance from arc welding or cutting operations and
any other source of heat, sparks, or flame.
7.d. Never allow the electrode, electrode holder or any other
electrically “hot” parts to touch a cylinder.
7.e. Keep your head and face away from the cylinder valve outlet
when opening the cylinder valve.
7.f. Valve protection caps should always be in place and hand
tight except when the cylinder is in use or connected for
use.
7.g. Read and follow the instructions on compressed gas
cylinders, associated equipment, and CGA publication P-l,
“Precautions for Safe Handling of Compressed Gases in
Cylinders,” available from the Compressed Gas Association
1235 Jefferson Davis Highway, Arlington, VA 22202.
FOR ELECTRICALLY
powered equipment.
8.a. Turn off input power using the disconnect
switch at the fuse box before working on
the equipment.
8.b. Install equipment in accordance with the U.S. National
Electrical Code, all local codes and the manufacturer’s
recommendations.
8.c. Ground the equipment in accordance with the U.S. National
Electrical Code and the manufacturer’s recommendations.
Mar ‘95
iv
SAFETY
iv
PRÉCAUTIONS DE SÛRETÉ
Pour votre propre protection lire et observer toutes les instructions
et les précautions de sûreté specifiques qui parraissent dans ce
manuel aussi bien que les précautions de sûreté générales suivantes:
Sûreté Pour Soudage A L’Arc
1. Protegez-vous contre la secousse électrique:
a. Les circuits à l’électrode et à la piéce sont sous tension
quand la machine à souder est en marche. Eviter toujours
tout contact entre les parties sous tension et la peau nue
ou les vétements mouillés. Porter des gants secs et sans
trous pour isoler les mains.
b. Faire trés attention de bien s’isoler de la masse quand on
soude dans des endroits humides, ou sur un plancher
metallique ou des grilles metalliques, principalement dans
les positions assis ou couché pour lesquelles une grande
partie du corps peut être en contact avec la masse.
c. Maintenir le porte-électrode, la pince de masse, le câble
de soudage et la machine à souder en bon et sûr état
defonctionnement.
d.Ne jamais plonger le porte-électrode dans l’eau pour le
refroidir.
e. Ne jamais toucher simultanément les parties sous tension
des porte-électrodes connectés à deux machines à souder
parce que la tension entre les deux pinces peut être le
total de la tension à vide des deux machines.
f. Si on utilise la machine à souder comme une source de
courant pour soudage semi-automatique, ces precautions
pour le porte-électrode s’applicuent aussi au pistolet de
soudage.
2. Dans le cas de travail au dessus du niveau du sol, se protéger
contre les chutes dans le cas ou on recoit un choc. Ne jamais
enrouler le câble-électrode autour de n’importe quelle partie
du corps.
5. Toujours porter des lunettes de sécurité dans la zone de
soudage. Utiliser des lunettes avec écrans lateraux dans les
zones où l’on pique le laitier.
6. Eloigner les matériaux inflammables ou les recouvrir afin de
prévenir tout risque d’incendie dû aux étincelles.
7. Quand on ne soude pas, poser la pince à une endroit isolé de
la masse. Un court-circuit accidental peut provoquer un
échauffement et un risque d’incendie.
8. S’assurer que la masse est connectée le plus prés possible
de la zone de travail qu’il est pratique de le faire. Si on place
la masse sur la charpente de la construction ou d’autres
endroits éloignés de la zone de travail, on augmente le risque
de voir passer le courant de soudage par les chaines de levage, câbles de grue, ou autres circuits. Cela peut provoquer
des risques d’incendie ou d’echauffement des chaines et des
câbles jusqu’à ce qu’ils se rompent.
9. Assurer une ventilation suffisante dans la zone de soudage.
Ceci est particuliérement important pour le soudage de tôles
galvanisées plombées, ou cadmiées ou tout autre métal qui
produit des fumeés toxiques.
10. Ne pas souder en présence de vapeurs de chlore provenant
d’opérations de dégraissage, nettoyage ou pistolage. La
chaleur ou les rayons de l’arc peuvent réagir avec les vapeurs
du solvant pour produire du phosgéne (gas fortement toxique)
ou autres produits irritants.
11. Pour obtenir de plus amples renseignements sur la sûreté,
voir le code “Code for safety in welding and cutting” CSA
Standard W 117.2-1974.
PRÉCAUTIONS DE SÛRETÉ POUR
3. Un coup d’arc peut être plus sévère qu’un coup de soliel,
donc:
a. Utiliser un bon masque avec un verre filtrant approprié
ainsi qu’un verre blanc afin de se protéger les yeux du rayonnement de l’arc et des projections quand on soude ou
quand on regarde l’arc.
b. Porter des vêtements convenables afin de protéger la
peau de soudeur et des aides contre le rayonnement de
l‘arc.
c. Protéger l’autre personnel travaillant à proximité au
soudage à l’aide d’écrans appropriés et non-inflammables.
4. Des gouttes de laitier en fusion sont émises de l’arc de
soudage. Se protéger avec des vêtements de protection libres
de l’huile, tels que les gants en cuir, chemise épaisse, pantalons sans revers, et chaussures montantes.
LES MACHINES À SOUDER À
TRANSFORMATEUR ET À
REDRESSEUR
1. Relier à la terre le chassis du poste conformement au code de
l’électricité et aux recommendations du fabricant. Le dispositif
de montage ou la piece à souder doit être branché à une
bonne mise à la terre.
2. Autant que possible, I’installation et l’entretien du poste seront
effectués par un électricien qualifié.
3. Avant de faires des travaux à l’interieur de poste, la debrancher à l’interrupteur à la boite de fusibles.
4. Garder tous les couvercles et dispositifs de sûreté à leur
place.
Mar. ‘93
for selecting a QUALITY product. We want you to take pride in
Thank You
operating this product ••• as much pride as we have in bringing
this product to you!
Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims
for material damaged in shipment must be made by the purchaser against the transportation company at the
time the shipment is received.
Please record your equipment identification information below for future reference. This information can be
found on your machine nameplate.
Model Number ___________________________________________________________________________
Code Number or Date Code_________________________________________________________________
Serial Number____________________________________________________________________________
Date Purchased___________________________________________________________________________
vv
Where Purchased_________________________________________________________________________
Whenever you request replacement parts or information on this equipment, always supply the information you
have recorded above. The code number is especially important when identifying the correct replacement parts.
On-Line Product Registration
- Register your machine with Lincoln Electric either via fax or over the Internet.
• For faxing: Complete the form on the back of the warranty statement included in the literature packet
accompanying this machine and fax the form per the instructions printed on it.
• For On-Line Registration: Go to our
“Product Registration”. Please complete the form and submit your registration.
Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it
handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection.
The level of seriousness to be applied to each is explained below:
WEB SITE at www.lincolnelectric.com. Choose “Quick Links” and then
WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or
loss of life.
CAUTION
This statement appears where the information must be followed to avoid minor personal injury or damage to
this equipment.
vi
TABLE OF CONTENTS
Page
Installation .. .......................................................................................................Section A
Observe additional guidelines detailed in the
beginning of this manual.
LOCATION
The machine should be located in a clean dry place
where there is free circulation of clean air such that air
movement in through the front and out through the
back will not be restricted. Dirt and dust that can be
drawn into the machine should be kept to a minimum.
Failure to observe these precautions can result in
excessive operating temperatures and nuisance shutdown of the machine.
OUTPUT CABLE CONNECTIONS
The output leads are connected to the output terminals marked “+” and “-”. They are located at the lower
right and lower left corners of the front panel. Strain
relief for the electrode and work cables is provided by
routing the leads through the rectangular holes in the
base before connecting them to the output terminals.
Lift the output stud cover to gain access to the output
studs. Lower stud cover after connecting output leads.
OUTPUT CABLES
Installation of Field Installed Options
CABLE SIZES FOR COMBINED LENGTH OF ELEC-
TRODE AND GROUND CABLE
MACHINE LOAD
500A (50%
DUTY
CYCLE)
2/0
87 mm
(2)
2/0
67 mm
(2)
3/0
85 mm
(2)
3/0
85 mm
(2)
4/0
107 mm
(2)
CABLE
LENGTHS
UP TO 50 ft
(15m)
50 to 100 ft
(15-30 m)
100-150 ft
(30-46 m)
150-200 ft
(46-61 m)
200-250 ft
(67-76 m)
400A (100%
DUTY
CYCLE)
3/0
85 mm
(2)
3/0
85 mm
(2)
3/0
85 mm
(2)
3/0
85 mm
(2)
4/0
107 mm
(2)
REMOTE OUTPUT CONTROL
(K857 WITH K864 ADAPTER OR K775 )
CAUTION
DO NOT MOUNT OVER COMBUSTIBLE SURFACES.
Where there is a combustible surface directly under stationary or fixed electrical equipment, the surface shall be covered with a steel plate at least .06”(1.6mm) thick, which shall
extend not more than 5.90”(150mm) beyond the equipment
on all sides.
By removing the rear access panel the three phase
input power is connected to the three line terminals on
the input contactor, and the earth grounding lead to
the grounding terminal on the input box floor marked
with the symbol . Install and reconnect panel for
the proper input voltage per the diagram pasted inside
the access panel cover. See Technical Data on A-1.
The K857 has a 6-pin MS-style connector. The K857
requires a K864 adapter cable which connects to the
14-pin connector on the machine.
An optional “remote output control” is available. This is
the same remote control that is used on the Lincoln
R3R, and DC-600 power sources (K775). The K775
consists of a control box with 28 ft (8.5m) of four conductor cable. This connects to terminals 75, 76, and
77 on the terminal strip and the case grounding screw
so marked with the symbol on the machine.
These terminals are located behind the control panel
on the front of the power source. This control will give
the same control as the output control on the
machine.
DC-400
A-3
STRAIGHT PLUG (14 PIN)
TO POWER SOURCE
CABLE RECEPTACLE (6 SOCKET)
CABLE RECEPTACLE (14 SOCKET)
TO: 1) K857 REMOTE CONTROL
2) K963 HAND AMPTROL
3) K870 FOOT AMPTROL
TO LN-7 WIRE FEEDER
The Amptrol provides remote
current control through the full range
of the power source.
The Amptrol provides remote
current control from the minimum of
the power source to a maximum set
by the remote limit control.
POWER
SOURCE
75 76 77
K963*, K813* or
K870 Amptrol
Power source
terminal
strip
Black and white leads
not used. Tape
and insulate.
K843
Adapter
FIG. 1
75
76
77
POWER
SOURCE
K963*, K813* or
K870 Amptrol
K775 Remote
Limit Control
K843
Adapter
77
76
Black and white
leads not used.
Tape and
insulate.
Bolt and nut
connection.
Insulate
and tape.
FIG. 2
The Amptrol will start the Hi-Freq
kit to turn on gas and high frequency
starting for DC TIG welding. The
Amptrol controls current through
the full range of the power source.
The Amptrol switch will start the
Hi-Freq kit to turn on gas and high
frequency starting for DC TIG
welding. The Amptrol controls
current from the minimum of the
power source to a maximum set by
the remote limit control.
POWER
SOURCE
757776
{
K963*,K813*
or K870
Amptrol
K799
Hi-Freq Kit
Arc start cable
(included with
K799)
K843 Adapter
CUT OFF
ARC START
SWITCH and connect black
lead to black and white
lead to white.
FIG. 3
POWER
SOURCE
757776
{
76
77
CUT OFF
ARC START
SWITCH and
connect black
lead to black and
white lead to white.
K799
K843
K775
FIG. 4
Bolt and nut
connection.
insulate
and tape.
Arc start cable
(included
with K799)
K963*,K813*
or K870
Amptrol
K843 Adapter
K775 Remote
Limit Control
K799
Hi-Freq
Kit
REMOTE CONTROL ADAPTER CABLE (K864)
A “V” cable 12” (.30m) long to connect a K857
Remote Control, K963 Hand Amptrol or K870 Foot
Amptrol (6-pin connector) with a wire-feeder (14-pin
connector) and the machine (14-pin connector). If a
remote control or amptrol is used alone the wire-feeder connection is then not used.
A five wire cable, 12” (.30m) long, is available for easy
connection of standard K963 Hand Amptrol or K870
Foot Amptrol. The cable has a 6-pin MS-style connector which connects to the Amptrol and terminals
which connect to 75, 76 and 77 on the machine terminal strip and to the case grounding screw. The
Amptrol will control the same range of output as the
current control on the welder. (If a smaller range of
control is desired for finer adjustment, a K775
Remote may be used in conjunction with the Amptrol
Adapter Cable Kit.) The Amptrol arc start switch is
nonfunctional unless used with a K799 Hi-Frequency
Kit.
K843 AMPTROL™ ADAPTER INSTALLATION INSTRUCTION
For use with: DC-250, DC-400, R3R or Weldanpower
250 (D-10 and Pro) with remote control power
sources.
INSTALLATION
WARNING
ELECTRIC SHOCK can kill.
• Turn the power switch of the welding
power source “OFF” before installing
plugs on cables or when connecting
or disconnecting plugs to welding
power source.
A-3
This K843 adapter is used to connect AMPTROL™
(K963*, K813* or K870), remote control (K775), and
HI-FREQ™ (K799) accessories to DC-250, DC-400,
R3R or Weldanpower 250 (D-10 and Pro) with remote
control power sources. The power source
"machine/remote" switch must be in "remote" for
Amptrol™ to control current. Accessories may be
combined and connected in four different ways, as
shown in Figure 1,2,3, & 4.
• Turn the power switch of the welding
power source “OFF” before installing
plugs on cables or when connecting
or disconnecting plugs to welding
power source.
DC-400
A-4
INSTALLATION
HI-FREQUENCY KIT (K799 CODES 8634
AND ABOVE ONLY)
Kit supplies the high frequency plus gas valve for DC
TIG welding. The DC-400 is shipped with proper R.F.
bypass circuitry installed to protect the control circuit
when welding with a HI-FREQ unit. K844 Water
Valve Option Kit can be used with K799 when TIG
welding with water cooled torches. See Hi-Frequency
Kit Instruction Manual for installation information.
AMPTROL ADAPTER FOR K799 HI-FREQUENCY KIT (K915-1, REQUIRES K864
ADAPTER)
A “V” cable to connect a K799 Hi-Freq Kit (5-pin connector) with either a K963 Hand Amptrol or a K870
Foot Amptrol (6-pin connector) and the machine. The
cable going to the machine has a 6-pin connector
which requires a K864 adapter to connect with the 14pin connector on the DC-400. Refer to S20909
instructions for connection information.
A-4
3) DC-400 is used with any semiautomatic wire-feeder and possible small spark, if electrode touches
work just after gun trigger is released, is objectionable.
Install per M17060 instructions included with the
Kit.
UNDERCARRIAGES (K817, K817R, K841)
For easy moving of the machine, optional undercarriages are available with either steel (K817) or rubber
tired (K817R) wheels or a platform undercarriage
(K841) with mountings for two gas cylinder at rear of
welder.
Install per instructions provided with undercarriage.
INSTALLATION OF EQUIPMENT
REQUIRED FOR RECOMMENDED
PROCESSES
WIRE FEEDER CONTROL CABLE CONNECTIONS
MULTIPROCESS SWITCH (K804-1)
Kit that mounts on the front of the DC-400, and
includes hinged covers over its output studs. The
switch has three positions: Positive
semiautomatic/automatic, negative semiautomatic
/automatic, and stick/air carbon arc. Required when
using the DC-400 for both semiautomatic/automatic
stick/air carbon arc.
and
Install per M17137 instructions included with the field
installed kit.
CAPACITOR DISCHARGE CIRCUIT (K828-1)
Circuit that mounts inside the DC-400.
Recommended when:
1) DC-400 is used in conjunction with any LN-23P or
older LN-8 or LN-9 semiautomatic wire-feeder.
Eliminates possible arc flash re-start of weld when
trigger interlock is used. Not required with current
LN-8 (above Code 8700), or LN-9’s with serial
numbers above 115187 (manufactured after
12/83), or any LN-9 having an L6043-1 Power PC
Board.
2) DC-400 is used with an LN-22 equipped with an
older K279 Contactor-Voltage Control Option.
Eliminates electrode overrun when gun trigger is
released. Not required when later K279 (above
Code 8800) is used.
For control cable with 14-pin connector:
Connect control cable to 14-pin connector on the front
panel of the machine. See the appropriate connection
diagram for the exact instructions for the wire feeder
being used. Refer to Section 2.4.1 for connector pin
functions.
For control cable with terminal strip connectors:
The control cable from the wire feeding equipment is
connected to the terminal strips behind the control
panel*. A strain relief box connector is provided for
access into the terminal strip section. A chassis
ground screw is also provided below the terminal strip
marked with the symbol for connecting the automatic equipment grounding wire. See the appropriate
connection diagram for the exact instructions for the
wire feeder being used.
A cover (Lincoln Electric Part Number S17062-3) is
available for the unused 14-pin connector to protect it
against dirt and moisture.
* See Terminal Strip Connections section for access
to the terminal strips.
DC-400
A-5
INSTALLATION
A-5
CONNECTION OF DC-400 TO LN-22 OR LN-25
a) Turn off all power.
b) Place output terminals switch into the “ON” posi-
tion.
c) Connect the electrode cable to the output terminal
of polarity required by electrode. Connect the work
lead to the other terminal.
d) Place the OUTPUT CONTROL Switch at “LOCAL”
position unless a Remote Control is connected to
the DC-400.
e) Place MODE SWITCH in “CONSTANT VOLTAGE
(FCAW, GMAW)”.
NOTE: The output terminals are energized at all
times.
MULTIPROCESS SWITCH CONNECTION AND
OPERATION
PURPOSE
A Multiprocess Switch has been designed for use with
the DC-400 or DC-600. With this switch installed on
the DC-400, it permits easy changing of the polarity of
the wire feed unit connected and also provides separate terminals for connection of stick or air carbon arc.
The Multiprocess Switch is available as either a factory installed or field installed option.
NOTE: IF THE DC-400 IS TO BE USED FOR BOTH
SEMIAUTOMATIC/AUTOMATIC AND STICK
/AIR CARBON ARC, THEN A MULTIPROCESS SWITCH IS REQUIRED.
DESIGN
The Multiprocess Switch consists of a 3-position
switch assembly that is mounted in a sheet metal
enclosure that has two output terminals on each end
of the box. The two terminals on the left side of the
box are for connection of wire feed electrode and work
leads. The two terminals on the right side of the box
are for connection of work and electrode for stick or
air carbon arc. The output terminals are protected
against accidental contact by hinged covers.
The switch mounts to the front of the DC-400 by
means of a bracket that fastens to the case sides.
Two 4/0 (107 mm
bly to each output stud.
2
) leads connect the switch assem-
1. Connect wire feed unit electrode and work cables
through the rectangular strain relief holes in the
base of the DC-400 to the output studs on the left
side of the box.
2. Connect wire feeder control cable and make other
terminal strip connections as specified on the connection diagram for the Lincoln wire feeder being
used. “Electrode” and “Work” are connected to the
left side of the Multiprocess Switch.
3. Connect stick or air carbon arc electrode and work
cables through the rectangular strain relief holes in
the base of the DC-400 to the output studs on the
right side of the box.
OPERATION
The operation of the switch is as follows:
A semiautomatic or automatic wire feed unit electrode
and work cables are connected to the terminals on the
left side of the box. Stick or air carbon arc electrode
and work leads are connected to the terminals on the
right side of the box. There are three positions on the
switch. With the switch in the left position, the wire
feed terminals are electrode negative. In the center
position, the wire feeder terminals are electrode positive. In both the left and center switch position, the
right side stick terminals are disconnected. In the
right switch position, the wire feed terminals are disconnected from the DC-400 and the stick terminals
connected. The polarity of the stick terminals is
marked on the end of the box. To change polarity, the
electrode and work leads must be interchanged. In
the stick position, the stick terminals are energized at
all times.
CONNECTIONS
(For those applications where it is not
have separate work cables for stick and semiautomatic welding.)
If both stick and semiautomatic welding is done on the
same workpiece, only one work lead is required. To
do this, connect a 4/0 (107 mm
work terminal on the semiautomatic side to the terminal to be used for work on the stick side. The work
lead from the semiautomatic side then serves as the
work lead for both semiautomatic and stick welding.
necessary to
2
) jumper from the
DC-400
Loading...
+ 29 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.