Lincoln arc welding equipment is
designed and built with safety in
mind. However, your overall safety
can be increased by proper installation ... and thoughtful operation
on your part.
OPERATE OR REPAIR THIS
EQUIPMENT WITHOUT READING THIS MANUAL AND THE
SAFETY PRECAUTIONS CONTAINED THROUGHOUT.
most importantly, think before you
act and be careful.
DO NOT INSTALL
And,
IM366-B
November 1993
SP-100
OPERATOR'S MANUAL
For use with machines having Code Number 9284 and above.
World's Leader in Welding and Cutting ProductsPremier Manufacturer of Industrial Motors
Sales and Service through Subsidiaries and Distributors Worldwide
PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN
AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.
Read and understand the following safety highlights. For additional safety information it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040,
Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the
Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE, AND REPAIR PROCEDURES ARE
PERFORMED ONLY BY QUALIFIED INDIVIDUALS.
ELECTRIC SHOCK can
kill.
1.a. The electrode and work (or ground) circuits
are electrically “hot” when the welder is on.
Do not touch these “hot” parts with your bare
skin or wet clothing. Wear dry, hole-free
gloves to insulate hands.
1.b. Insulate yourself from work and ground using dry insulation.
Make certain the insulation is large enough to cover your full
area of physical contact with work and ground.
In addition to the normal safety precautions, if welding
must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing;
on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:
• Semiautomatic DC Constant Voltage (Wire)
Welder.
• DC Manual (Stick) Welder.
• AC Welder with Reduced Voltage Control.
1.c. In semiautomatic or automatic wire welding, the electrode,
electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically“hot”.
1.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should
be as close as possible to the area being welded.
1.e. Ground the work or metal to be welded to a good electrical
(earth) ground.
1.f. Maintain the electrode holder, work clamp, welding cable and
welding machine in good, safe operating condition. Replace
damaged insulation.
1.g. Never dip the electrode in water for cooling.
1.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage
between the two can be the total of the open circuit voltage
of both welders.
1.i. When working above floor level, use a safety belt to protect
yourself from a fall should you get a shock.
1.j. Also see Items 4.c. and 6.
ARC RAYS can burn.
2.a. Use a shield with the proper filter and cover
plates to protect your eyes from sparks and
the rays of the arc when welding or observing
open arc welding. Headshield and filter lens
should conform to ANSI Z87. I standards.
2.b. Use suitable clothing made from durable flame-resistant
material to protect your skin and that of your helpers from
the arc rays.
2.c. Protect other nearby personnel with suitable non-flammable
screening and/or warn them not to watch the arc nor expose
themselves to the arc rays or to hot spatter or metal.
FUMES AND GASES
can be dangerous.
3.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these
fumes and gases.When welding, keep your
head out of the fume. Use enough ventilation and/or exhaust at the arc to keep fumes
and gases away from the breathing zone. When welding
with electrodes which require special ventilation such
as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and
other metals or coatings which produce highly toxic
fumes, keep exposure as low as possible and below
Threshold Limit Values (TLV) using local exhaust or
mechanical ventilation. In confined spaces or in some
circumstances, outdoors, a respirator may be required.
Additional precautions are also required when welding
on galvanized steel.
3.b. Do not weld in locations near chlorinated hydrocarbon vapors
coming from degreasing, cleaning or spraying operations.
The heat and rays of the arc can react with solvent vapors to
form phosgene, a highly toxic gas, and other irritating products.
3.c. Shielding gases used for arc welding can displace air and
cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.
3.d. Read and understand the manufacturer’s instructions for this
equipment and the consumables to be used, including the
material safety data sheet (MSDS) and follow your employer’s safety practices. MSDS forms are available from your
welding distributor or from the manufacturer.
3.e. Also see item 7b.
WELDING SPARKS can
cause fire or explosion.
4.a..Remove fire hazards from the welding area.
If this is not possible, cover them to prevent
the welding sparks from starting a fire.
Remember that welding sparks and hot
materials from welding can easily go through small cracks
and openings to adjacent areas. Avoid welding near
hydraulic lines. Have a fire extinguisher readily available.
4.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI
Standard Z49.1) and the operating information for the equipment being used.
4.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can
cause overheating and create a fire hazard.
4.d. Do not heat, cut or weld tanks, drums or containers until the
proper steps have been taken to insure that such procedures
will not cause flammable or toxic vapors from substances
inside. They can cause an explosion even though they have
been “cleaned.” For information purchase “Recommended
Safe Practices for the Preparation for Welding and Cutting of
Containers and Piping That Have Held Hazardous
Substances”, AWS F4.1 from the American Welding Society
(see address above).
4.e. Vent hollow castings or containers before heating, cutting or
welding. They may explode.
Apr. ‘93-2-
4.f. Sparks and spatter are thrown from the welding arc. Wear oil
free protective garments such as leather gloves, heavy shirt,
cuffless trousers, high shoes and a cap over your hair. Wear
ear plugs when welding out of position or in confined places.
Always wear safety glasses with side shields when in a welding area.
4.g. Connect the work cable to the work as close to the welding
area as practical. Work cables connected to the building
framework or other locations away from the welding area
increase the possibility of the welding current passing through
lifting chains, crane cables or other alternate circuits. This can
create fire hazards or overheat lifting chains or cables until
they fail.
4.h. Also see item 7c.
7.c.Do not add the fuel near an open flame welding arc or when the engine is running. Stop
the engine and allow it to cool before refueling to prevent spilled fuel from vaporizing on
contact with hot engine parts and igniting.
Do not spill fuel when filling tank. If fuel is
spilled, wipe it up and do not start engine
until fumes have been eliminated.
7.d. Keep all equipment safety guards, covers
and devices in position and in good repair.
Keep hands, hair, clothing and tools away
from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.
CYLINDER may explode
if damaged.
5.a. Use only compressed gas cylinders containing the correct shielding gas for the process
used and properly operating regulators
designed for the gas and pressure used. All
hoses, fittings, etc. should be suitable for the application and
maintained in good condition.
5.b. Always keep cylinders in an upright position securely
chained to an undercarriage or fixed support.
5.c. Cylinders should be located:
• Away from areas where they may be struck or subjected to
physical damage.
• A safe distance from arc welding or cutting operations and
any other source of heat, sparks, or flame.
5.d. Never allow the electrode, electrode holder or any other
electrically “hot” parts to touch a cylinder.
5.e. Keep your head and face away from the cylinder valve outlet
when opening the cylinder valve.
5.f. Valve protection caps should always be in place and hand
tight except when the cylinder is in use or connected for
use.
5.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l,
“Precautions for Safe Handling of Compressed Gases in
Cylinders,”available from the Compressed Gas Association
1235 Jefferson Davis Highway, Arlington, VA 22202.
FOR ELECTRICALLY
powered equipment.
6.a. Turn off input power using the disconnect
switch at the fuse box before working on
the equipment.
6.b. Install equipment in accordance with the U.S. National
Electrical Code, all local codes and the manufacturer’s recommendations.
6.c. Ground the equipment in accordance with the U.S. National
Electrical Code and the manufacturer’s recommendations.
FOR ENGINE
powered equipment.
7.a. Turn the engine off before troubleshooting and maintenance
work unless the maintenance work requires it to be running.
7.e. In some cases it may be necessary to remove safety
guards to perform required maintenance. Remove
guards only when necessary and replace them when the
maintenance requiring their removal is complete.
Always use the greatest care when working near moving
parts.
7.f. Do not put your hands near the engine fan. Do not
attempt to override the governor or idler by pushing on
the throttle control rods while the engine is running.
7.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance
work, disconnect the spark plug wires, distributor cap or
magneto wire as appropriate.
7.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.
ELECTRIC AND MAGNETIC FIELDS
may be dangerous
8.a. Electric current flowing through any conductor causes localized Electric and
Magnetic Fields (EMF). Welding current
creates EMF fields around welding cables
and welding machines.
8.b. EMF fields may interfere with some pacemakers, and
welders having a pacemaker should consult their physician
before welding.
8.c. Exposure to EMF fields in welding may have other health
effects which are now not known.
8d. All welders should use the following procedures in order to
minimize exposure to EMF fields from the welding circuit:
8.d.1. Route the electrode and work cables together - Secure
them with tape when possible.
8.d.2. Never coil the electrode lead around your body.
8.d.3. Do not place your body between the electrode and
work cables. If the electrode cable is on your right side,
the work cable should also be on your right side.
8.d.4. Connect the work cable to the workpiece as close as
possible to the area being welded.
8.d.5. Do not work next to welding power source.
7.b. Operate engines in open, well-ventilated
areas or vent the engine exhaust fumes outdoors.
Parts Lists........................................................................................................................28 - 39
Book Order Form ................................................................................................................41
Nine Language Warning Information...............................................................................42 - 43
Waranty Information ....................................................................................................Back Cover
-5-
for selecting a QUALITY product by Lincoln Electric.
We want you to take pride in operating this Lincoln
Thank You
Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims
for material damaged in shipment must be made by the purchaser against the transportation company at the time
the shipment is received.
Please record your equipment identification information below for future reference. This information can be found
on your machine nameplate.
Model Number ____________________________________
Serial or Product Number ____________________________
Date of Purchase __________________________________
Whenever you request replacement parts for or information on this equipment always supply the information you
have recorded above.
Read this Operators Manual completely before attempting to use this equipment. Save this
manual and keep it handy for quick reference. Pay particular attention to the safety instructions
we have provided for your protection. The level of seriousness to be applied to each is
explained below:
Electric Company product ••• as much pride as we
have in bringing this product to you!
WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or loss of life.
CAUTION
This statement appears where the information must be followed to avoid minor personal
injury or damage to this equipment.
EXPLANATION OF SYMBOLS THAT APPEAR ON THIS EQUIPMENT
OFF
ARC VOLTS
O
ON
WIRE SPEED
-6-
PRODUCT DESCRIPTION
The SP-100, Type K462, is a complete semiautomatic
constant voltage DC arc welding machine. Included is
a solid state controlled, single phase constant voltage
transformer/ rectifier power source and a wire feeder
for feeding .023 – .030" (0.6 – 0.8 mm) solid steel
electrode and .035" (0.9 mm) cored electrode.
The SP-100 is ideally suited for individuals having
access to 115 volt AC input power, and wanting the
ease of use, quality and dependability of both gas
metal arc welding or GMAW (also known as MIG
welding) and the Innershield
shielded flux-cored or FCAW). A convenient chart is
mounted inside the wire feed section door for setting
welding procedures for 24 gauge through 12 gauge
(0.6 – 2.5 mm) mild steel (Chart also may be found in
this manual). The SP-100 is a rugged and reliable
machine that has been designed for dependable service and long life.
®
electrode process (self-
The recommended gas and electrode for GMAW is
welding grade CO2gas and .025" (0.6 mm) diameter
Lincoln L-56 mild-steel welding wire [supplied on 12
1/2 lb (6 kg) spools]. For 14 gauge (2.0 mm) and thinner, CO2gas is recommended because it gives equal
or better performance than a blended gas at a lower
cost. A mixed gas consisting of 75 to 80% Argon and
20 to 25% CO
is recommended for welding on heav-
2
ier gauge [12 gauge (2.5 mm) for example] steel.
The recommended electrode for the self-shielded
process is .035" (0.9 mm) diameter Lincoln
Innershield NR-211-MP on 10 lb (4.5 kg) spools. This
electrode can be used for all position welding of 20
gauge through 5/16" (1.0 – 8.0 mm) thick steel [multiple passes are required for 1/4" and 5/16" (6.0 and 8.0
mm)].
WARNING
RECOMMENDED PROCESSES AND
EQUIPMENT
The SP-100 can be used for welding mild steel using
the GMAW, single pass, process which requires a
supply of shielding gas or it can be used for the selfshielded, Innershield electrode process.
Comparison of the GMAW (MIG) and FCAW (Innershield) Processes
Maximum Gauge14 gauge (2.0 mm)Can be used to weld 1/4" and 5/16" (6.3 mm
Penetration intoGoodExcellent
Base Metal
Smoke LevelLowHigh
Amount of SlagLow, little or no cleaning requiredSlag must be removed
or blendedNone (Self Shielded)
2
NOTE: Can be used for 12 gauge (2.5 mm)and 8.0 mm) thick steel with multiple passes.
with Argon-CO
OPTIONAL ACCESSORIES
1.K463 CO2Gas Regulator and Hose Kit —
Includes a preset, nonadjustable pressure and
flow regulator for use on CO2cylinders. Also
included is a 10 foot (3.0 m) gas hose which connects to the rear of the SP-100.
2.K499 Ar-Mixed Gas Regulator and Hose Kit —
Includes a preset, nonadjustable pressure and
flow regulator for use on argon-mixed gas cylinders. Also included is a 10 foot (3.0 m) gas hose
which connects to the rear of the SP-100.
3..035 (0.9 mm) Innershield
Includes a contact tip, a gasless nozzle and a
cable liner to permit the SP-100 gun and cable to
use a .035" (0.9 mm) diameter flux-cored elec-
®
Welding Kit —
2
Use of the GMAW process with the SP-100 on
thicker materials than recommended may result in
poor welds. The welds may “look” good, but may
just be “sitting” on top of the plate. This is called
“cold casting” and will result in weld failure.
Two kits are available:
K549-1 kit is for use with the Magnum™ 100L gun
(with red trigger).
K464 kit is for use with the original Lincoln
Electric® gun (with black trigger).
4.
M15448-1 Reversible Drive Roll with double
knurled grooves for .035 cored electrode.
5.K467 Input Line Cord — Same as line cord sup-
plied with the SP-100 but has a NEMA type 5-20P
plug for use on 25 amp branch circuits.
To install optional features refer to instructions
included with the kit, and/or in this manual.
– 7 –
SPECIFICATIONS
TypeK462
Rated DC Output (For use on 20 ampere90 amps @ 18 volts
branch circuit)20% duty cycle
Maximum DC Output (For use on 25
ampere branch circuit with optional100 amps @ 17 volts
K467 input line cord installed)30% duty cycle
CSA Rated DC Output63 amps @ 20 volts
(For use on 15 ampere branch circuit)20% duty cycle
Input Power @ CSA rated Output115 volts
AC only60 hertz
Maximum Open Circuit Voltage28 volts
Input Power @ Rated Output, AC only60 hertz
Input Power @60 hertz
Maximum Output, AC only25 amps
Wire Speed Range50 to 400 in./min
Wire Sizes.023 – .030" (0.6 – 0.8 mm) Solid Steel
Spool Sizes8" OD x 2" ID x 2.2" wide
Weight54 lbs (24.3 kg)
Dimensions (H x W x D) (Less Handle)12" x 9 3/4" x 16 1/2"
1)
Requires optional Innershield Welding Kit
.035" (0.9 mm) Flux-Cored
(200 mm x 50 mm x 56 mm)
4" OD x 5/8" ID x 1.7" wide
(100 mm x 16 mm x 43 mm)
(305 mm x 248 mm x 419 mm)
15 amps
115 volts
20 amps
115 volts
(1.3 to 10.2 m/min)
(1)
INSTALLATION
SAFETY PRECAUTIONS
●Read the safety precautions at the beginning of
this Operator's Manual before proceeding.
●Only personnel that have read and under-
stood the SP-100 Operating Manual should
install and operate this equipment.
●Machine must be plugged into a receptacle which
is grounded per any national, local or other applicable electrical codes.
●The SP-100 power switch is to be in the OFF
(“O”) position when installing work cable and gun
and when connecting power cord to input power.
UNPACKING THE SP-100 (K462)
Unpack the SP-100 from its carton and remove all
packing material around the SP-100. Remove the following loose items from the carton:
1.SP-100.
2.Gun and cable assembly
(0.6 mm) diameter wire (also .023 and .024 diameter wire).
3.Literature envelope which contains:
a) This operating manual, and
b) A contact tip for .030" (0.8 mm) diameter wire.
4.10 ft (3.0 m) work cable.
5.Work clamp.
(1)
K474 model gun is ready to feed .035 (0.9 mm) Innershield
with conversion parts for .030 (0.8) wire.
(1)
— ready to feed .025"
– 8 –
DESCRIPTION OF CONTROLS
Become familiar with the SP-100 controls and components before attempting to weld. Refer to illustrations
and lettered items below for brief descriptions.
A. Wire speed — Controls the wire speed from 50 –
400 in./min (1.3 – 10 m/min). The control can be
preset on the dial to the setting specified on the
SP-100 Application Chart located on the inside of
the wire feed section door. Wire speed is not
affected when changes are made in the voltage
control. The control is marked (“olo”)
B. Power ON/OFF switch — When the power is on,
the fan motor will run and air will be exhausted
out the louvers in the front of the machine. The
welding output and wire feeder remain off until the
gun trigger is pressed.
C. Voltage control — A continuous control that gives
full range adjustment of power source output volt-
age. Can be adjusted while welding.
D. Thumbscrew — secures gun and cable assembly.
E. Positive (+) and negative (–) output terminals.
F.Shielding gas hose (factory installed, not shown)
— routed from gas solenoid inside rear of
machine to gun connector block.
G. Gun trigger lead connectors.
H. Circuit breaker — Protects machine from damage
if maximum output is exceeded. Button will extend
out when tripped. (Manual reset.)
I.Wire spool spindle.
J.Gas solenoid inlet fitting.
K. Power cord.
L.Spring loaded pressure arm — adjusts pressure
of idle roll on wire.
M. Wire feed gearbox and gun connector block.
N. Wire feed section door — With application chart
for machine setting procedures.
O. Gun cable and control lead access hole.
P. Work cable access hole.
LOCATION
Locate the welder in a dry location where there is free
circulation of clean air into the louvers in the back and
out the front. A location that minimizes the amount of
smoke and dirt drawn into the rear louvers reduces
the chance of dirt accumulation that can block air passages and cause overheating.
WORK CABLE AND CLAMP INSTALLATION
Work Clamp Installation
Attach the work clamp to the work cable per the following:
1. Unplug the machine or turn the power switch to the
“Off” position.
2. Insert the work cable terminal lug with the larger
hole through the strain relief hole in the work clamp
as shown below.
3. Fasten securely with the bolt and nut provided.
Work cable
Work clamp
A
B
P
C
O
N
D
E
G
H
I
J
K
F
L
M
– 9 –
Work Cable Installation
1. Open the wire feed section door on the right side of
the SP-100.
2. Pass the end of the work cable that has the terminal lug with the smaller hole through the hole (hole
D) next to the louvers in the case front.
3. Route the cable under and around the back of the
wire feed unit.
4. Using wing nut provided, connect the terminal lug
to the negative (–) output terminal located above
the wire feed unit; item M (make certain that
both
wing nuts are tight).
NOTE: This connection gives the correct electrode
polarity for the GMAW process. If using Innershield,
see Output Polarity Connection Section below for
negative electrode polarity connection.
OUTPUT POLARITY CONNECTION
The SP-100, as shipped, is connected for positive
electrode polarity.
To connect for negative electrode polarity (required for
the Innershield process), connect the short cable
attached to the gun connector block to the negative
(–) output terminal and the work cable to the positive
(+) terminal using the provided wing nuts (make certain that both wing nuts are tight).
GUN INSTALLATION
As shipped from the factory, the SP-100 gun is ready
to feed .023, .024 or .025" (0.6 mm) wire. If .030" (0.8
mm) wire is to be used, install the .030" (0.8 mm) contact tip. .023 – .025" contact tip is stenciled .025
and/or 0.6 mm and .030" contact tip is stenciled .030
and/or 0.8 mm. See Maintenance Section for instructions to change contact tip.
If .035" (0.9 mm) Innershield flux cored wire is to be
used, see Maintenance Section for instructions to
change contact tip, cable liner, and gas nozzle.
Connect the gun cable to the SP-100 per the following:
1. Unplug the machine or turn power switch to the off
“O” position.
2. Pass the insulated terminals of the gun trigger control leads, one at a time, through the rectangular
“keyhole” opening (item F) in the case front. The
leads are to be routed under the wire feed unit and
through the cable hanger on the inner panel.
3. Insert the connector on the gun conductor cable
through the large hole in the SP-100 case front.
Make sure the connector is all the way in the metal
connector block to obtain proper gas flow. Rotate
the connector so control leads are on the underside
and tighten the thumbscrew in the connector block.
4. Connect the insulated control lead terminals to the
two insulated 1/4" (6.4 mm) tab connector bushings
located above the “Gun Trigger Connection” decal
in the wire feed section. Either lead can go to either
connector. Form the leads so that they are as close
as possible to the inside panel.
CAUTION
The gun trigger switch must be a normally open,
momentary switch. The terminals of the switch must
be insulated from the welding circuit. Malfunction of
the SP-100 will result if this switch shorts to the SP100 welding output circuit or is common to any electrical circuit other than the SP-100 trigger circuit.
The SP-100 drive roll has two grooves; one for .023 –
.025" (0.6 mm) solid steel electrode and the other for
.030" (0.8 mm) solid and .035" (0.9 mm) flux-cored
steel electrode. As shipped, the drive roll is installed in
the .023/.025" (0.6 mm) position (as indicated by the
stenciling on the exposed side of the drive roll).
If .030 – .035" (0.8 – 0.9 mm) wire is to be used, the
drive roll must be reversed as follows:
1. Make certain the SP-100 power switch is “off”.
2. Open the quick release arm; lift up the idle roll arm.
3. Remove the drive roll retaining screw and washer
with a screwdriver.
4. Remove the drive roll, flip over and install with the
.030/.035" (0.8/0.9 mm) stencil visible (away from
gearbox). Make certain the small key is in place in
the keyway.
5. Replace the washer and retaining screw.
Idle roll arm
Spring loaded
pressure arm
Drive roll
Retaining Screw
WELDING WIRE LOADING
WARNING
The machine power switch should be turned to
the OFF (“O”) position before working inside the
wirefeed enclosure.
The machine is shipped from the factory ready to feed
8" (200 mm) diameter spools [2.2" (56 mm) max.
width]. These spools fit on a 2" (50 mm) diameter
spindle that has a built-in, adjustable* friction brake to
prevent overrun of the spool and excess slack in the
– 10 –
Loading...
+ 21 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.