Lincoln Electric 205-TAC-DCTIG User Manual

®
INVER
TEC V
20
5-T
AC/DC
RETURN TO MAIN MENU
INVERTEC V205-T DC & V205-T AC/DC TIG
IM937
April, 2007
For use with machines having Code Numbers:
Safety Depends on You
Lincoln arc welding and cutting equipment is designed and built with safety in mind. However, your overall safety can be increased by proper installation ... and thought­ful operation on your part. DO
NOT INSTALL, OPERATE OR REPAIR THIS EQUIPMENT WITHOUT READING THIS MANUAL AND THE SAFETY PRECAUTIONS CONTAINED THROUGHOUT. And, most
importantly, think before you act and be careful.
11426, 11430
INVE
AC/DC
5-T
V20
TEC
R
Cleveland, Ohio 44117-1199 U.S.A. TEL: 216.481.8100 FAX: 216.486.1751 WEB SITE: www.lincolnelectric.com
OPERATOR’S MANUAL
Copyright © 2007 Lincoln Global Inc.
• World's Leader in Welding and Cutting Products •
• Sales and Service through Subsidiaries and Distributors Worldwide •
i
SAFETY
WARNING
CALIFORNIA PROPOSITION 65 WARNINGS
Diesel engine exhaust and some of its constituents are known to the State of California to cause can­cer, birth defects, and other reproductive harm.
The Above For Diesel Engines
ARC WELDING CAN BE HAZARDOUS. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.
Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of “Safety in Welding & Cutting - ANSI Standard Z49.1” from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of “Arc Welding Safety” booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.
The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.
The Above For Gasoline Engines
i
FOR ENGINE powered equipment.
1.a. Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.
____________________________________________________
1.b. Operate engines in open, well-ventilated areas or vent the engine exhaust fumes outdoors.
____________________________________________________
1.c. Do not add the fuel near an open flame welding arc or when the engine is running. Stop the engine and allow it to cool before refueling to prevent spilled fuel from vaporiz­ing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.
____________________________________________________
1.d. Keep all equipment safety guards, covers and devices in position and in good repair.Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.
____________________________________________________
1.e. In some cases it may be necessary to remove safety
guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.
___________________________________________________
1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.
1.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.
ELECTRIC AND MAGNETIC FIELDS may be dangerous
2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines
2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.
2.c. Exposure to EMF fields in welding may have other health effects which are now not known.
2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:
2.d.1.
Route the electrode and work cables together - Secure them with tape when possible.
2.d.2. Never coil the electrode lead around your body.
2.d.3. Do not place your body between the electrode and
work cables. If the electrode cable is on your right side, the work cable should also be on your right side.
___________________________________________________
1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.
2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.
2.d.5. Do not work next to welding power source.
Mar ʻ95
ii
SAFETY
ii
ELECTRIC SHOCK can kill.
3.a. The electrode and work (or ground) circuits are electrically “hot” when the welder is on. Do not touch these “hot” parts with your bare skin or wet clothing. Wear dry, hole-free
gloves to insulate hands.
3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.
In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:
• Semiautomatic DC Constant Voltage (Wire) Welder.
• DC Manual (Stick) Welder.
• AC Welder with Reduced Voltage Control.
3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically “hot”.
3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.
3.e. Ground the work or metal to be welded to a good electrical (earth) ground.
ARC RAYS can burn.
4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.
4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.
4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.
FUMES AND GASES can be dangerous.
5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases. When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep
fumes and gases away from the breathing zone. When
welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and below Threshold Limit Values (TLV) using local exhaust or mechanical ventilation. In confined spaces or in some circumstances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.
3.f.
Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.
3.g. Never dip the electrode in water for cooling.
3.h. Never simultaneously touch electrically “hot” parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.
3.i. When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.
3.j. Also see Items 6.c. and 8.
5. b. The operation of welding fume control equipment is affected by various factors including proper use and positioning of the equipment, maintenance of the equipment and the spe­cific welding procedure and application involved. Worker exposure level should be checked upon installation and periodically thereafter to be certain it is within applicable OSHA PEL and ACGIH TLV limits.
5.c.
Do not weld in locations near chlorinated hydrocarbon coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors form phosgene, a highly toxic gas, and other irritating prod­ucts.
5.d. Shielding gases used for arc welding can displace air and
cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.
5.e. Read and understand the manufacturerʼs instructions for this
equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employerʼs safety practices. MSDS forms are available from your welding distributor or from the manufacturer.
5.f. Also see item 1.b.
vapors
AUG 06
to
iii
SAFETY
iii
WELDING and CUTTING SPARKS can cause fire or explosion.
6.a.
Remove fire hazards from the welding area.
If this is not possible, cover them to prevent
Remember that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.
6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.
6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.
6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even been “cleaned”. For information, purchase “Recommended Safe Practices for the Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society
(see address above).
6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.
6.f.
Sparks and spatter are thrown from the welding arc. Wear oil free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.
6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate cir­cuits. This can create fire hazards or overheat lifting chains or cables until they fail.
6.h. Also see item 1.c.
the welding sparks from starting a fire.
though
they have
Preparation
for Welding and Cutting of
CYLINDER may explode if damaged.
7.a. Use only compressed gas cylinders containing the correct shielding gas for the process used and properly operating regulators designed for the gas and
pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.
7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.
7.c. Cylinders should be located:
• Away from areas where they may be struck or subjected to
physical damage.
• A safe distance from arc welding or cutting operations and
any other source of heat, sparks, or flame.
7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.
7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.
7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.
7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.
FOR ELECTRICALLY powered equipment.
8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.
8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturerʼs recommendations.
8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturerʼs recommendations.
6.I. Read and follow NFPA 51B “ Standard for Fire Prevention During Welding, Cutting and Other Hot Work”, available from NFPA, 1 Batterymarch Park,PO box 9101, Quincy, Ma 022690-9101.
6.j. Do not use a welding power source for pipe thawing.
Jan, 07
iv
SAFETY
iv
PRÉCAUTIONS DE SÛRETÉ
Pour
votre propre protection lire et observer toutes les instructions et les précautions de sûreté specifiques qui parraissent dans ce manuel aussi bien que les précautions de sûreté générales suiv­antes:
Sûreté Pour Soudage A LʼArc
1. Protegez-vous contre la secousse électrique:
a. Les circuits à lʼélectrode et à la piéce sont sous tension
quand la machine à souder est en marche. Eviter toujours tout contact entre les parties sous tension et la peau nue ou les vétements mouillés. Porter des gants secs et sans trous pour isoler les mains.
b. Faire trés attention de bien sʼisoler de la masse quand on
soude dans des endroits humides, ou sur un plancher metallique ou des grilles metalliques, principalement dans les positions assis ou couché pour lesquelles une grande partie du corps peut être en contact avec la masse.
c. Maintenir le porte-électrode, la pince de masse, le câble
de soudage et la machine à souder en bon et sûr état defonctionnement.
d.Ne jamais plonger le porte-électrode dans lʼeau pour le
refroidir.
e. Ne jamais toucher simultanément les parties sous tension
des porte-électrodes connectés à deux machines à souder parce que la tension entre les deux pinces peut être le total de la tension à vide des deux machines.
f. Si on utilise la machine à souder comme une source de
courant pour soudage semi-automatique, ces precautions pour le porte-électrode sʼapplicuent aussi au pistolet de soudage.
6. Eloigner les matériaux inflammables ou les recouvrir afin de prévenir tout risque dʼincendie dû aux étincelles.
7. Quand on ne soud la masse. Un court-circuit accidental peut provoquer un échauffement et un risque dʼincendie.
8. Sʼassurer que la masse est connectée le plus prés possible de la zone de travail quʼil est pratique de le faire. Si on place la masse sur la charpente de la construction ou dʼautres endroits éloignés de la zone de travail, on augmente le risque de voir passer le courant de soudage par les chaines de lev­age, câbles de grue, ou autres circuits. Cela peut provoquer des risques dʼincendie ou dʼechauffement des chaines et des câbles jusquʼà ce quʼils se rompent.
9. Assurer une ventilation suffisante dans la zone de soudage. Ceci est particuliérement important pour le soudage de tôles galvanisées plombées, ou cadmiées ou tout autre métal qui produit des fumeés toxiques.
10. Ne pas souder en présence de vapeurs de chlore provenant dʼopérations de dégraissage, nettoyage ou pistolage. La chaleur ou les rayons de lʼarc peuvent réagir avec les vapeurs du solvant pour produire du phosgéne (gas fortement toxique) ou autres produits irritants.
11. Pour obtenir de plus amples renseignements sur la sûreté, voir le code “Code for safety in welding and cutting” CSA Standard W 117.2-1974.
e pas, poser la pince à une endroit isolé de
2. Dans le cas de travail au dessus du niveau du sol, se protéger contre les chutes dans le cas ou on recoit un choc. Ne jamais enrouler le câble-électrode autour de nʼimporte quelle partie du corps.
3. Un coup dʼarc peut être plus sévère quʼun coup de soliel, donc:
a. Utiliser un bon masque avec un verre filtrant approprié
ainsi quʼun verre blanc afin de se protéger les yeux du ray­onnement de lʼarc et des projections quand on soude ou quand on regarde lʼarc.
b. Porter des vêtements convenables afin de protéger la
peau de soudeur et des aides contre le rayonnement de lʻarc.
c. Protéger lʼautre personnel travaillant à proximité au
soudage à lʼaide dʼécrans appropriés et non-inflammables.
4. Des gouttes de laitier en fusion sont émises de lʼarc de soudage. Se protéger avec des vêtements de protection libres de lʼhuile, tels que les gants en cuir, chemise épaisse, pan­talons sans revers, et chaussures montantes.
5. Toujours porter des lunettes de sécurité dans la zone de soudage. Utiliser des lunettes avec écrans lateraux dans les zones où lʼon pique le laitier.
PRÉCAUTIONS DE SÛRETÉ POUR LES MACHINES À SOUDER À TRANSFORMATEUR ET À REDRESSEUR
1. Relier à la terre le chassis du poste conformement au code de lʼélectricité et aux recommendations du fabricant. Le dispositif de montage ou la piece à souder doit être branché à une bonne mise à la terre.
2. Autant que possible, Iʼinstallation et lʼentretien du poste seront effectués par un électricien qualifié.
3. Avant de faires des travaux à lʼinterieur de poste, la debranch­er à lʼinterrupteur à la boite de fusibles.
4. Garder tous les couvercles et dispositifs de sûreté à leur place.
Mar. ʻ93
v
EN 60974-10
SAFETY
v
V205-T DC & V205-T AC/DC TIG
vi
SAFETY
vi
EN 60974-10:
V205-T DC & V205-T AC/DC TIG
Thank You
viivii
for selecting a QUALITY product by Lincoln Electric. We want you to take pride in operating this Lincoln Electric Company product
••• as much pride as we have in bringing this product to you!
The business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equip­ment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for advice or information about their use of our products. We respond to our customers based on the best information in our posses­sion at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such infor­mation or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customerʼs particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any warranty with respect to the sale of our products.
Lincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.
Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to www.lincolnelectric.com for any updated information.
CUSTOMER ASSISTANCE POLICY
Please Examine Carton and Equipment For Damage Immediately
When this equipment is shipped, title passes to the purchaser upon receipt by the carrier. Consequently, Claims for material damaged in shipment must be made by the purchaser against the transportation company at the time the shipment is received.
Please record your equipment identification information below for future reference. This information can be found on your machine nameplate.
Product _________________________________________________________________________________
Model Number ___________________________________________________________________________
Code Number or Date Code_________________________________________________________________
Serial Number____________________________________________________________________________
Date Purchased___________________________________________________________________________
Where Purchased_________________________________________________________________________
Whenever you request replacement parts or information on this equipment, always supply the information you have recorded above. The code number is especially important when identifying the correct replacement parts.
On-Line Product Registration
- Register your machine with Lincoln Electric either via fax or over the Internet.
• For faxing: Complete the form on the back of the warranty statement included in the literature packet accompanying this machine and fax the form per the instructions printed on it.
• For On-Line Registration: Go to our
“Product Registration”. Please complete the form and submit your registration.
Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection. The level of seriousness to be applied to each is explained below:
WEB SITE at www.lincolnelectric.com. Choose “Quick Links” and then
WARNING
This statement appears where the information must be followed exactly to avoid serious personal injury or loss of life.
CAUTION
This statement appears where the information must be followed to avoid minor personal injury or damage to this equipment.
viii
TABLE OF CONTENTS
Page
Installation.......................................................................................................................Section A
Technical Specifications.......................................................................................................A-1
Select Suitable Location.......................................................................................................A-2
Stacking................................................................................................................................A-2
Tilting....................................................................................................................................A-2
Environmental Area..............................................................................................................A-2
Machine Grounding and High Frequency Interference Protection .......................................A-2
Input Connections ................................................................................................................A-3
Reconnect Procedure...........................................................................................................A-3
230V Input.....................................................................................................................A-4
115V Input.....................................................................................................................A-4
Attachment Plug Installation, Engine Driven Generator................................................A-4
Output Connections..............................................................................................................A-5
Output and Gas Connection for Tig Welding........................................................................A-5
Work Cable Connection .......................................................................................................A-5
Output Connection for Stick Welding ...................................................................................A-5
Quick Disconnect Plug ..................................................................................................A-6
Shielding Gas Connection.............................................................................................A-6
Remote Control Connection..........................................................................................A-6
________________________________________________________________________________
Operation.........................................................................................................................Section B
Safety Instructions................................................................................................................B-1
General Description..............................................................................................................B-1
Welding Capability................................................................................................................B-1
Limitations ............................................................................................................................B-1
Rear Control Panel...............................................................................................................B-2
Controls and Settings, 2 Step and 4 Step Tig Sequence ..............................................B-3,B-5
Welding Parameter Defaults and Ranges ............................................................................B-5
Set Up Menu ........................................................................................................................B-6
Output Limitations ...............................................................................................................B-7
DC Tig Welding ...................................................................................................................B-7
Welding Polarity ...................................................................................................................B-7
DC Electrode Negative Polarity.....................................................................................B-7
DC Electrode Positive Polarity ......................................................................................B-8
D.C.-Pulsed TIG............................................................................................................B-8
A.C. (Alternating Current)..............................................................................................B-8
A.C.-Pulsed TIG (Alternating Current Pulsed) ..............................................................B-8
Steel Tig Welding .................................................................................................................B-9
Copper Tig Welding..............................................................................................................B-9
Tips For AC TIG Welding .....................................................................................................B-9
GTAW Process.....................................................................................................................B-9
Protective Gas, Tips For Improved TIG Starting ................................................................B-10
AC Tig Welding Quick Start Up ..........................................................................................B-11
DC Tig Welding Quick Start Up..........................................................................................B-12
________________________________________________________________________________
Accessories.....................................................................................................Section C
Optional Accessories and Compatible Equipment ................................................C-1
Factory, Field Installed ..........................................................................................C-1
________________________________________________________________________
viii
Maintenance ....................................................................................................Section D
Safety Precautions ................................................................................................D-1
Input Filter Capacitor Discharge Procedure ..........................................................D-1
Routine Maintenance.............................................................................................D-1
________________________________________________________________________
Troubleshooting..............................................................................................Section E
How to Use Troubleshooting Guide.......................................................................E-1
Troubleshooting Guide.............................................................................E-2 thru E-4
________________________________________________________________________
Wiring Diagram................................................................................................Section F
________________________________________________________________________
Parts Lists...............................................................................................................P-560
A-1
INSTALLATION
A-1
TECHNICAL SPECIFICATIONS - V205-T DC TIG
K2629-1 (Code Number 11426)
V205-T AC/DC TIG
INPUT - SINGLE PHASE ONLY
Input Voltages * / 50 /60 Hz.
115 230
RATED OUTPUT
Duty Cycle
(115V) 35%
60% 100%
(115V) 40%
60%
100%
(230V) 35%
60%
100%
Output Amps Volts at Rated Amperes
(Stick) 110 24.4V
90 23.6V 70 22.8V
(TIG) 150 16V
120 14.8V 100 14V
(Stick) 180 27.2V
150 26V 130 25.2V
K1855-4 (Code Number 11430)
Max. Input Current
34A at Rated Output 30A at Rated Output
Input Amps
34A 28A 20A
34A 25A 20A
30A 23A 19A
(230V) 40%
60%
100%
(TIG) 200 18V
170 16V 140 15.6V
30A 18A 15A
OUTPUT
Output Current
Range
6-200 Amps
Maximum Open
Circuit Voltage
54 Volts Max.
Type of Output
DC (K2629-1)
AC/DC (K1855-4)
RECOMMENDED INPUT WIRE AND FUSE SIZES FOR MAXIMUM RATED OUTPUT
INPUT
VOLTAGE / FREQUENCY
(HZ)
115/50/60 230/50/60
TYPE S, SO ST, STO, OR EXTRA
HARD USAGE INPUT CORD AWG
#12
TIME-DELAY CIRCUIT BREAKER
OR FUSE SIZE (AMPS)
30A
PHYSICAL DIMENSIONS
Height Width Depth Weight
15 in. 8.5 in. 19 in. Approx. 38 lbs. 381 mm 216 mm 483 mm 17 kgs.
TEMPERATURE RANGES
OPERATING TEMPERATURE RANGE
-20°C to +40°C
* Note: Refer to RECONNECT PROCEDURE (Table A.1) for Input
Voltage Operating Range.
V205-T DC & V205-T AC/DC TIG
STORAGE TEMPERATURE RANGE
-50°C to +85°C
A-2
INSTALLATION
A-2
Read entire installation section before starting installation.
Safety Precautions
WARNING
ELECTRIC SHOCK can kill.
Only qualified personnel should per­form this installation.
• Turn the input power OFF and unplug the machine from the recep­tacle before working on this equip­ment. Allow machine to sit for 5 min-
minimum to allow the power
utes capacitors to discharge before working inside this equipment.
Insulate yourself from the work and ground.
Always wear dry insulating gloves.
• Always connect the V205-T to a power supply grounded according to the National Electrical Code and local codes.
------------------------------------------------------------
SELECT SUITABLE LOCATION
The Invertec will operate in harsh environments. Even so, it is important that simple preventative measures are followed in order to assure long life and reliable operation.
MACHINE GROUNDING AND HIGH FRE­QUENCY INTERFERENCE PROTECTION
The Capacitor Discharge Circuit used in the high fre­quency generator, may cause many radio, TV and electronic equipment interference problems. These problems may be the result of radiated interference. Proper grounding methods can reduce or eliminate radiated interference.
The Invertec V205-T DC & V205-T AC/DC have been field tested under recommended installation condi­tions. It complies with FCC allowable limits for radia­tion.
Radiated interference can develop in the following four ways:
1. Direct interference radiated from the welder.
2. Direct interference radiated from the welding leads.
3. Direct interference radiated from feedback into the power lines.
4. Interference from re-radiation of “pickup” by ungrounded metallic objects.
Keeping these contributing factors in mind, installing equipment per the following instructions should mini­mize problems.
• The machine must be located where there is free cir­culation of clean air such that air movement in the back and out the front will not be restricted.
• Dirt and dust that can be drawn into the machine should be kept to a minimum. Failure to observe these precautions can result in excessive operating temperatures and nuisance shutdown.
STACKING
The Invertec V205-T DC & V205-T AC/DC can stacked.
TILTING
Place the machine directly on a secure, level surface. The machine may topple over if this procedure is not followed.
ENVIRONMENTAL AREA
Keep the machine dry. Do not place it on wet ground or in puddles.
not be
1. Keep the welder power supply lines as short as possible and enclose as much of them as possible in rigid metallic conduit or equivalent shielding for a distance of 50 feet (15.2m). There should be good electrical contact between this conduit and the welder case ground. Both ends of the conduit should be connected to a driven ground and the entire length should be continuous.
2. Keep the work and electrode leads as short as possible and as close together as possible. Lengths should not exceed 25 ft (7.6m).
V205-T DC & V205-T AC/DC TIG
A-3
INSTALLATION
A-3
3. Be sure the torch and work cable rubber cover­ings are free of cuts and cracks that allow high frequency leakage. Cables with high natural rub­ber content, such as Lincoln Stable-Arc resist high frequency leakage than neoprene and other synthetic rubber insulated cables.
4. Keep the torch in good repair and all connections tight to reduce high frequency leakage.
5. The work terminal must be connected to a ground within ten feet of the welder, using one of the fol­lowing methods.
a) A metal underground water pipe in direct con-
tact with the earth for ten feet or more.
b) A 3/4” (19mm) galvanized pipe or a 5/8”
(16mm) solid galvanized iron, steel or copper rod driven at least eight feet into the ground.
The ground should be securely made and the grounding cable should be as short as possible using cable of the same size as the work cable, or larger. Grounding to the building frame electrical conduit or a long pipe system can result in re-radi­ation, effectively making these members radiating antennas.
6. Keep all panels securely in place.
7. All electrical conductors within 50 ft (15.2m) of the welder should be enclosed in grounded, rigid metallic conduit or equivalent shielding. Flexible metallic conduit is generally not suitable.
8. When the welder is enclosed in a metal building, several earth driven electrical grounds connected (as in 5b above) around the periphery of the build­ing are recommended.
Failure to observe these recommended installation procedures can cause radio or TV interference prob­lems.
®
better
INPUT CONNECTIONS
Be sure the voltage, phase, and frequency of the input power is as specified on the rating plate, located on the bottom of the machine.
WARNING
ELECTRIC SHOCK can kill.
• Have a qualified electrician install and service this equipment.
• Turn the input power OFF and unplug
the machine from the receptacle
before working on this equipment.
• Allow machine to sit for 5 minutes allow the power capacitors to discharge before working inside this equipment.
• Do not touch electrically hot parts.
• Machine must be plugged into a receptacle that
is grounded according to the National Electrical Code and local codes.
• Do not remove or defeat the purpose of the
power cord ground pin.
-----------------------------------------------------------------------
minimum to
RECONNECT PROCEDURE
The Invertec V205-T DC & V205-T AC/DC auto recon­nect to either 115V or 230V supply.
This machine is capable of operating within the follow­ing input voltage ranges (Table A.1):
TABLE A.1
NOMINAL
115V
208V / 230V
RANGE
90-140V
184-276V
Fuse the input circuit with time delay fuses or delay type¹ circuit breakers. Using fuses or circuit breakers smaller than recommended may result in “nuisance” shut-offs from welder inrush currents even if not weld­ing at high currents.
The Invertec Power Source is recommended for use on an individual branch circuit.
¹
Also called “inverse time” or “thermal/magnetic” circuit breakers. These circuit breakers have a delay in tripping action that decreases as the magnitude of the current increases.
V205-T DC & V205-T AC/DC TIG
Loading...
+ 28 hidden pages