11AK45 is a 50Hz colour television capable of driving 24” + CRT sizes( beginning from 24” 16:9 up to
33”).
The chassis is capable of operation in PAL, SECAM, NTSC (playback) colour standards and multiple
transmission standards as B/G, D/K, I/I’, and L/L´.
Sound system output is supplying 2x10W (10%THD) for left and right outputs of 8ohm speakers.
TV supports FASTTEXT. It is possible to decode transmissions including high graphical data.
The chassis is equipped with three full EuroScarts, only one of them supports RGB input, one
headphone output, one FAV input, one SVHS input (via SCART)
2.TUNER
The hardware and software of the TV is suitable for tuners, supplied by different companies, which are
selected from the Service Menu. These tuners can be combined VHF, UHF tuners suitable for CCIR
systems B/G, H, L, L´, I/I´, and D/K. The tuning is available through the digitally controlled I
2
C bus (PLL).
Below you will find info on one of the Tuners in use.
General description of UV1316:
The UV1316 tuner belongs to the UV 1300 family of tuners, which are designed to meet a wide range of
applications. It is a combined VHF, UHF tuner suitable for CCIR systems B/G, H, L, L’, I and I’. The low
IF output impedance has been designed for direct drive of a wide variety of SAW filters with sufficient
suppression of triple transient.
Features of UV1316:
1. Member of the UV1300 family small sized UHF/VHF tuners
2. Systems CCIR: B/G, H, L, L’, I and I’; OIRT: D/K
3. Digitally controlled (PLL) tuning via I
2
C-bus
4. Off-air channels, S-cable channels and Hyperband
5. World standardized mechanical dimensions and world standard pinning
6. Compact size
7. Complies to “CENELEC EN55020” and “EN55013”
Pinning:
1. Gain control voltage (AGC) : 4.0V, Max: 4.5V
2. Tuning voltage
3. I²C-bus address select : Max: 5.5V
4. I²C-bus serial clock : Min:-0.3V, Max: 5.5V
5. I²C-bus serial data : Min:-0.3V, Max: 5.5V
6. Not connected
7. PLL supply voltage : 5.0V, Min: 4.75V, Max: 5.5V
8. ADC input
9. Tuner supply voltage : 33V, Min: 30V, Max: 35V
10. Symmetrical IF output 1
11. Symmetrical IF output 2
3.IF PART (TDA9885/86)
The TDA9885 is an alignment-free single standard (without positive modulation) vision and sound IF signal
PLL.
The TDA9886 is an alignment-free multistandard (PAL, SECAM and NTSC) vision and sound IF signal PLL
Both devices can be used for TV, VTR, PC and set-top box applications.
The following figure shows the simplified block diagram of the integrated circuit.
The integrated circuit comprises the following functional blocks:
VIF amplifier, Tuner and VIF-AGC, VIF-AGC detector, Frequency Phase-Locked Loop (FPLL) detector, VCO
and divider, Digital acquisition help and AFC, Video demodulator and amplifier, Sound carrier trap, SIF
amplifier, SIF-AGC detector, Single reference QSS mixer, AM demodulator, FM demodulator and acquisition
help, Audio amplifier and mute time constant, I
voltage stabilizer.
2
C-bus transceivers and MAD (module address), Internal
1
4.VIDEO SWITCH TEA6415
In case of three or more external sources are used, the video switch IC TEA6415 is used. The main
function of this device is to switch 8 video-input sources on the 6 outputs.
Each output can be switched on only one of each input. On each input an alignment of the lowest level
of the signal is made (bottom of sync. top for CVBS or black level for RGB signals).
Each nominal gain between any input and output is 6.5dB.For D2MAC or Chroma signal the alignment
is switched off by forcing, with an external resistor bridge, 5VDC on the input. Each input can be used
as a normal input or as a MAC or Chroma input (with external Resistor Bridge). All the switching
possibilities are changed through the BUS. Driving 75ohm load needs an external resistor. It is possible
to have the same input connected to several outputs.
5.MULTI STANDARD SOUND PROCESSOR
The MSP 34x10G family of single-chip Multi-standard Sound Processors covers the sound processing
of all analog TV-Standards worldwide, as well as the NICAM digital sound standards. The full TV sound
processing, starting with analog sound IF signal-in, down to processed analog AF-out, is performed on
a single chip.
The DBX noise reduction, or alternatively, MICRONAS Noise Reduction (MNR) is performed alignment
free. Other processed standards are the Japanese FM-FM multiplex standard (EIA-J) and the FM
Stereo Radio standard.
6.SOUND OUTPUT STAGE WITH TDA7269A
The TDA7269A is class AB dual Audio power amplifier assembled in the Multi-watt package, specially
designed for high quality sound application as Hi-Fi music centers and stereo TV sets.
7.BERTICAL OUTPUT STAGE WITH STV9379FA
The IC STV9379FA is the vertical deflection booster circuit. Two supply voltages, +14V and –14V are
needed to scan the inputs VERT+ and VERT-, respectively. And a third supply voltage, +60V for the
flyback limiting are needed. The vertical deflection coil is connected in series between the output and
feedback to the input.
8.VIDEO OUTPUT AMPLIFIER TDA6108
The TDA6108Q includes three video output amplifiers is intended to drive the three cathodes of a
colour picture tube.
2
9.POWER SUPPLY (SMPS)
The DC voltages required at various parts of the chassis are provided by an SMPS transformer
controlled by the IC MC44608, which is designed for driving, controlling and protecting switching
transistor of SMPS. The transformer generates 145V for FBT input, +/-14V for audio amplifier, 5V and
3.3V stand by voltage and 8V, 12V and 5V supplies for other different parts of the chassis.
An optocoupler is used to control the regulation of line voltage and stand-by power consumption. There
is a regulation circuit in secondary side. This circuit produces a control voltage according to the
changes in 145V DC voltage, via an optocoupler (TCET1102G) to pin3 of the IC.
During the switch on period of the transistor, energy is stored in the transformer. During the switch off
period energy is fed to the load via secondary winding. By varying switch-on time of the power
transistor, it controls each portion of energy transferred to the second side such that the output voltage
remains nearly independent of load variations.
10.MICROCONTROLLER SDA55XX
10.1.General Features
• Feature selection via special function register
• Simultaneous reception of TTX, VPS, PDC, and WSS (line 23)
• Supply Voltage 2.5 and 3.3 V
• ROM version package PSDIP52-2, PMQFP64-1
• Romless version package PMQFP100-2, PLCC84-2
10.2.External Crystal and Programmable Clock Speed
• Single external 6MHz crystal, all necessary clocks are generated internally
• CPU clock speed selectable via special function registers.
• Normal Mode 33.33 MHz CPU clock, Power Save mode 8.33 MHz
10.3.Microcontroller Features
• 8bit 8051 instruction set compatible CPU.
• 33.33-MHz internal clock (max.)
• 0.360 ms (min.) instruction cycle
• Two 16-bit timers
• Watchdog timer
• Capture compare timer for infrared remote control decoding
• Noise Measurement and Controlled Noise Compensation
• Attenuation Measurement and Compensation
• Group Delay Measurement and Compensation
• Exact Decoding of Echo Disturbed Signals
10.7.Ports
• One 8-bit I/O-port with open drain output and optional I
2
C Bus emulation support (Port0)
• Two 8-bit multifunction I/O-ports (Port1, Port3)
• One 4-bit port working as digital or analogue inputs for the ADC (Port2)
• One 2-bit I/O port with secondary function (P4.2, 4.3, 4.7)
• One 4-bit I/O-port with secondary function (P4.0, 4.1, 4.4) (Not available in P-SDIP 52)
11.CLASS AB STEREO HEADPHONE DRIVER TDA1308
The TDA1308 is an integrated class AB stereo headphone driver contained in a DIP8 plastic package.
The device is fabricated in a 1 mm CMOS process and has been primarily developed for portable digital
audio applications.
12.SAW FILTERS
K3953M:
Standard
B/G, D/K, I, L/L’
Features
TV IF filter with Nyquist slopes at 33,90 MHz and 38,90 MHz
Constant group delay
Suitable for CENELEC EN 55020
TV IF filter with Nyquist slopes at 33.90 MHz and 38.90 MHz
Constant group delay
Terminal and Pin configuration are the same with
K3953M
4
K9356M:
Standard
B/G, D/K, I, L
Features
TV IF audio filter with pass band for sound carriers at 32,40 MHz (D/K, L), 32,90 MHz (I) and 33,40 MHz
(B/G)
Terminal and Pin configuration are the same with
K3953M
K9656M:
Standard
B/G, D/K, I, L/L’
Features
TV IF audio filter with two channels
Channel 1 (L’) with one pass band for sound carriers at 40,40 MHz (L’) and 39,75 MHz (L’- NICAM)
Channel 2 (B/G, D/K, L, I) with one pass band for sound carriers between 32,35 MHz and 33,40 MHz
Terminal and Pin configuration are the same with
The LM317T is an adjustable 3 terminal positive voltage regulator capable of supplying in excess of 1.5
amps over an output range of 1.25 to 37 volts. This voltage regulator is exceptionally easy to use and
requires only two external resistors to set the output voltage. Further, it employs internal current limiting,
thermal shutdown and safe area compensation, making it essentially blow–out proof. The LM317
serves a wide variety of applications including local, on card regulation. This device can also be used to
make a programmable output regulator, or by connecting a fixed resistor between the adjustment and
output, the LM317 can be used as a precision current regulator.
13.1.2.Features
• Output Current in Excess of 1.5 A
• Output Adjustable between 1.2 V and 37 V
• Internal Thermal Overload Protection
• Internal Short Circuit Current Limiting Constant with Temperature
• Output Transistor Safe–Area Compensation
• Floating Operation for High Voltage Applications
• Available in Surface Mount D
2
PAK, and Standard 3–Lead Transistor Package
• Eliminates Stocking many Fixed Voltages
13.2.TDA1308T
13.2.1.General Description
The TDA1308 is an integrated class AB stereo headphone driver contained in an SO8 or a DIP8 plastic
package. The device is fabricated in a 1 mm CMOS process and has been primarily developed for
portable digital audio applications. It gets its input from two analog audio outputs (DACA_L and
DACA_R) of MSP 34x0G. The gain of the output is adjustable by the feedback resistor between the
inputs and outputs.
13.2.2.Features
Wide temperature range
•
No switch ON/OFF clicks
•
Excellent power supply ripple rejection
•
5
Low power consumption
•
Short-circuit resistant
•
High performance
•
high signal-to-noise ratio
•
High slew rate
•
Low distortion
•
Large output voltage swing.
•
13.2.3.Pinning
SYMBOL PIN DESCRIPTION
OUTA 1 Output A
INA(neg) 2 Inverting input A
INA(pos) 3 Non-inverting input A
VSS 4 Negative supply
INB(pos) 5 Non-inverting input B
INB(neg) 6 Inverting input B
OUTB 7 Output B
VDD 8 Positive supply
13.3.MSP34X0G (MSP3410G)
13.3.1.Description
The MSP 34x0G family of single-chip Multi standard Sound Processors covers the sound processing of
all analog TV-Standards worldwide, as well as the NICAM digital sound standards. The full TV sound
processing, starting with analog sound IF signal-in, down to processed analog AF-out, is performed on
a single chip. Figure shows a simplified functional block diagram of the MSP 34x0G.
This new generation of TV sound processing ICs now includes versions for processing the multi
channel television sound (MTS) signal conforming to the standard recommended by the Broadcast
Television Systems Committee (BTSC). The DBX noise reduction, or alternatively, MICRONAS Noise
Reduction (MNR) is performed alignment free. Other processed standards are the Japanese FM-FM
multiplex standard (EIA-J) and the FM Stereo Radio standard. Current ICs have to perform adjustment
procedures in order to achieve good stereo separation for BTSC and EIA-J. The MSP 34x0G has
optimum stereo performance without any adjustments.
All MSP 34x0G versions are pin and software downward compatible to the MSP34x0D. The MSP34x0G
further simplifies controlling software. Standard selection requires a single I
2
C transmission only.
The MSP 34x0G has built-in automatic functions: The IC is able to detect the actual sound standard
automatically (Automatic Standard Detection). Furthermore, pilot levels and identification signals can be
evaluated internally with subsequent switching between mono/stereo/bilingual; no I2C interaction is
necessary (Automatic Sound Selection).
6
13.3.2.Features
2
Standard Selection with single I
C transmission
Automatic Standard Detection of terrestrial TV standards
Automatic Sound Selection (mono/stereo/bilingual), new registers MODUS, STATUS
Two selectable sound IF (SIF) inputs
Automatic Carrier Mute function
Interrupt output programmable (indicating status change)
Loudspeaker / Headphone channel with volume, balance, bass, treble, loudness
AVC: Automatic Volume Correction
Subwoofer output with programmable low-pass and complementary high-pass filter
5-band graphic equalizer for loudspeaker channel
Spatial effect for loudspeaker channel
Four Stereo SCART (line) inputs, one Mono input; two Stereo SCART outputs
Complete SCART in/out switching matrix
Two I2S inputs; one I2S output
Dolby Pro Logic with DPL 351xA coprocessor
All analog FM-Stereo A2 and satellite standards; AM-SECAM L standard
Simultaneous demodulation of (very) high-deviation FM-Mono and NICAM
Adaptive deemphasis for satellite (Wegener-Panda, acc. to ASTRA specification)
ASTRA Digital Radio (ADR) together with DRP 3510A
All NICAM standards
Korean FM-Stereo A2 standard
13.3.3.Pin connections
NC = not connected; leave vacant
LV = if not used, leave vacant
X = obligatory; connect as described in circuit diagram
DVSS: if not used, connect to DVSS
AHVSS: connect to AHVSS
Pin No.
PLCC
68-pin
1 16 14 9 8 ADR_WS OUT LV ADR word strobe
2 - - - - NC LV Not connected
3 15 13 8 7 ADR_DA OUT LV ADR Data Output
4 14 12 7 6 I2S_DA_IN1 IN LV I2S1 data input
5 13 11 6 5 I2S_DA_OUT OUT LV I2S data output
6 12 10 5 4 I2S_WS IN/OUT LV I2S word strobe
7 11 9 4 3 I2S_CL IN/OUT LV I2S clock
8 10 8 3 2 I2C_DA IN/OUT X I2C data
9 9 7 2 1 I2C_CL IN/OUT X I2C data
10 8 - 1 64 NC LV Not connected
11 7 6 80 63 STANDBYQ IN X Stand-by (low-active)
12 6 5 79 62 ADR_SEL IN X I2C bus address select
13 5 4 78 61 D_CTR_I/O_0 IN/OUT LV D_CTR_I/O_0
14 4 3 77 60 D_CTR_I/O_1 IN/OUT LV D_CTR_I/O_1
15 3 - 76 59 NC LV Not connected
16 2 - 75 58 NC LV Not connected
17 - - - - NC LV Not connected
18 1 2 74 57 AUD_CL_OUT OUT LV
19 64 1 73 56 TP LV Test pin
20 63 52 72 55 XTAL_OUT OUT X Crystal oscillator
21 62 51 71 54 XTAL_IN IN X Crystal oscillator
22 61 50 70 53 TESTEN IN X Test pin
23 60 49 69 52 ANA_IN2+ IN
24 59 48 68 51 ANA_IN- IN
25 58 47 67 50 ANA_IN1+ IN LV IF input 2
26 57 46 66 49 AVSUP X Analog power supply 5v
- - - 65 - AVSUP X Analog power supply 5v
PSDIP
64-pin
PSDIP
52-pin
PQFP
80-pin
PLQFP
64-pin
Pin Name
Type
Connection
(if not used)
AVSS via 56
pF/LV
AVSS via 56
pF/LV
Short Description
Audio clock output
(18.432 MHz)
IF Input 2 (can be left
vacant, only if IF input 1 is
also not in use)
IF common (can be left
vacant, only if IF input 1 is
also not in use)
7
- - - 64 - NC LV Not connected
- - - 63 - NC LV Not connected
27 56 45 62 48 AVSS X Analog ground
- - - 61 - AVSS X Analog ground
28 55 44 60 47 MONO_IN IN LV Mono input
- - - 59 - NC LV Not connected
29 54 43 58 46 VREFTOP X
30 53 42 57 45 SC1_IN_R IN LV SCART 1 input, right
31 52 41 56 44 SC1_IN_L IN LV SCART 1 input, left
32 51 - 55 43 ASG1 AHVSS Analog Shield Ground 1
33 50 40 54 42 SC2_IN_R IN LV SCART 2 input, right
34 49 39 53 41 SC2_IN_L IN LV SCART 2 input, left
35 48 - 52 40 ASG2 AHVSS Analog Shield Ground 2
36 47 38 51 39 SC3_IN_R IN LV SCART 3 input, right
37 46 37 50 38 SC3_IN_L IN LV SCART 3 input, left
38 45 - 49 37 ASG4 AHVSS Analog Shield Ground 4
39 44 - 48 36 SC4_IN_R IN LV SCART 4 input, right
40 43 - 47 35 SC4_IN_L IN LV SCART 4 input, left
41 - - 46 - NC LV or AHVSS Not connected
42 42 36 45 34 AGNDC X Analog reference voltage
43 41 35 44 33 AHVSS X Analog ground
- - - 43 - AHVSS X Analog ground
- - - 42 - NC LV Not connected
- - - 41 - NC LV Not connected
44 40 34 40 32 CAPL_M X Volume capacitor MAIN
45 39 33 39 31 AHVSUP X Analog power supply 8V
46 38 32 38 30 CAPL_A X Volume capacitor AUX
47 37 31 37 29 SC1_OUT_L OUT LV SCART output 1, left
48 36 30 36 28 SC1_OUT_R OUT LV SCART output 1, right
49 35 29 35 27 VREF1 X Reference ground 1
50 34 28 34 26 SC2_OUT_L OUT LV SCART output 2, left
51 33 27 33 25 SC2_OUT_R OUT LV SCART output 2, right
52 - - 32 - NC LV Not connected
53 32 - 31 24 NC LV Not connected
54 31 26 30 23 DACM_SUB OUT LV Subwoofer output
55 30 - 29 22 NC LV Not connected
56 29 25 28 21 DACM_L OUT LV Loudspeaker out, left
57 28 24 27 20 DACM_R OUT LV Loudspeaker out, right
58 27 23 26 19 VREF2 X Reference ground 2
59 26 22 25 18 DACA_L OUT LV Headphone out, left
60 25 21 24 17 DACA_R OUT LV Headphone out, right
- - - 23 - NC LV Not connected
- - - 22 - NC LV Not connected
61 24 20 21 16 RESETQ IN X Power-on-reset
62 23 - 20 15 NC LV Not connected
63 22 - 19 14 NC LV Not connected
64 21 19 18 13 NC LV Not connected
65 20 18 17 12 I2S_DA_IN2 IN LV I2S2-data input
66 19 17 16 11 DVSS X Digital ground
- - - 15 - DVSS X Digital ground
- - - 14 - DVSS X Digital ground
67 18 16 13 10 DVSUP X Digital power supply 5V
- - - 12 - DVSUP X Digital power supply 5V
- - - 11 - DVSUP X Digital power supply 5V
68 17 15 10 9 ADR_CL OUT LV ADR clock
Reference voltage IF A/D
converter
13.4.VDP313xY
13.4.1.Introduction
The VDP 313xY is a video IC family of high-quality single-chip video processors. Modular design and a
sub-micron technology allow the economic integration of features in all classes of TV sets. The VDP
RCB
313xY family is based on the VDP 31xxB including YC
inputs for DVD component signals.
The VDP 313xY includes complete video, display and deflection processing. All processing is done
digitally, the video frontend and video backend are interfacing to the analog world. Most functions of the
VDP can be controlled by software via I2C-Bus interface
8
13.4.2.Features
Video Decoding and Processing
– four CVBS, one S-VHS input, one YC
R C B
component input
– integrated high-quality A/D converters and associated clamp and AGC circuits
– adaptive 2H comb filter Y/C separator
– multistandard color decoder PAL/NTSC/SECAM including all substandards
– multistandard sync decoder
– automatic standard recognition
– black-line detector
– linear horizontal scaling (0.25...4), as well as nonlinear horizontal scaling “Panoramavision”
– black-level expander
– dynamic peaking
– soft limiter (gamma correction)
– color transient improvement
RGB Processing and Deflection
– programmable RGB matrix
– two analog RGB / Fastblank inputs
– half-contrast switch
– picture frame generator
– scan velocity modulation output
– high-performance H/V deflection
– separate ADC for tube measurements
– EHT compensation
– angle and bow correction
– one 20.25 MHz crystal, few external components
2
C-Bus Interface
–I
– 64-pin PSDIP package
13.4.3.Pin Connections and short descriptions
NC = not connected LV = if not used, leave vacant
X = obligatory; connect as described in circuit diagram IN = Input
OUT = Output SUPPLY = Supply Pin
Pin no
PSDIP 64-pin
1 TEST IN GNDD Test Input
2 RESQ IN X Reset Input
3 SCL IN/OUT X I2C Bus Clock
4 SDA IN/OUT X I2C Bus Data
5 GNDD SUPPLY X Digital Ground
6 HCS IN LV Half Contrast Switch Input
7 FSY OUT LV Front Sync Output
8 CSY OUT LV Composite Sync Output
9 VS OUT LV Vertical Sync Output
10 INTLC OUT LV Intefrace Control Output
11 VPROT IN GNDAB Vertical Protection Input
12 SAFETY IN GNDAB Safety Input
13 HFLB IN HOUT Horizontal Flyback Input
14 GNDD SUPPLY X Digital Ground
15 VSUPD SUPPLY X Digital Supply Voltage (3.3V)
16 GNDD SUPPLY X Digital Ground
17 VSUPD SUPPLY LV Digital Supply Voltage (3.3V)
18 P0 IN/OUT LV Port 1, Bit 0
19 P1 IN/OUT LV Port 1, Bit 1
20 P2 IN/OUT GNDD Port 1, Bit 2
21 P3 IN/OUT GNDD Port 1, Bit 3
22 P4 IN/OUT GNDD Port 1, Bit 4
23 P5 IN/OUT GNDD Port 1, Bit 5
24 P6 IN/OUT GNDD Port 1, Bit 6
Pin name Type Connection
(if not used)
Short description
(=VS Bit of MSY for TPU)
9
25 GNDD SUPPLY X Digital Ground
26 RSW2 OUT GNDAB Range Switch 2 for Measurement ADC
27 RSW1 OUT GNDAB Range Switch 1 for Measurement ADC
28 SENSE IN GNDAB Sense ADC Input
29 GNDM SUPPLY X Ground, MADC ınput
30 VERTQ OUT LV Inverted Vertical Sawtooth Output
31 VERT OUT LV Vertical Sawtooth Output
32 E/w OUT LV Vertical Parabola Output
33 XREF IN X Reference Input for RGB DACs
34 SVMOUT OUT VSUPAB Analog Scan Velocity Modulation Output
35 GNDAB SUPPLY X Analog Ground Backend
36 VSUPAB SUPPLY X Analog Supply Voltage (5.0V) Backend
37 ROUT OUT VSUPAB Analog Red Output
38 GOUT OUT VSUPAB Analog Green Output
39 BOUT OUT VSUPAB Analog Blue Output
40 VRD IN X DAC Reference
41 RIN IN GNDAB Analog Red Input
42 GIN IN GNDAB Analog Green Input
43 BIN IN GNDAB Analog Blue Input
44 FBLIN IN GNDAB Fast Blank Input
45 RIN2 IN GNDAB Analog Red Input2
46 GIN2 IN GNDAB Analog Green Input2
47 BIN2 IN GNDAB Analog Blue Input2
48 FBLIN2 IN GNDAB Fast Blank Input2
49 CLK20 OUT LV 20.25 MHz System Clock Output
50 HOUT OUT X Horizontal Drive Output
51 XTAL 1 IN X Analog Crystal Input
52 XTAL 2 OUT X Analog Crystal Output
53 CIN 2/CRIN LV Analog Chroma 2/Component CR Input
54 CBIN IN LV Component CB Input
55 GNDAF SUPPLY X Analog Ground Frontend
56 SGND IN GNDAF Signal Ground for Analog Input
57 VRT IN X Reference Voltage Top, Video ADC
58 VSUPAF SUPPLY X Analog Supply Voltage (5.0V) Frontend
59 VOUT OUT LV Analog Video Output
60 CIN1 IN VRT Analog Chroma 1 Input
61 VIN1 IN VRT Analog Video 1 Input
62 VIN2 IN VRT Analog Video 2 Input
63 VIN3 IN VRT Analog Video 3 Input
64 VIN4 IN VRT Analog Video 4 Input
13.5.TEA6415C
13.5.1.General Description
The main function of the IC is to switch 8 video input sources on 6 outputs. Each output can be
switched on only one of each input. On each input an alignment of the lowest level of the signal is made
(bottom of synch. top for CVBS or black level for RGB signals). Each nominal gain between any input
and output is 6.5dB. For D2MAC or Chroma signal the alignment is switched off by forcing, with an
external resistor bridge, 5 V
DC on the input. Each input can be used as a normal input or as a MAC or
Chroma input (with external resistor bridge). All the switching possibilities are changed through the BUS.
Driving 75 load needs an external transistor. It is possible to have the same input connected to
several outputs. The starting configuration upon power on (power supply: 0 to 10V) is undetermined. In
this case, 6 words of 16 bits are necessary to determine one configuration. In other case, 1 word of 16
bits is necessary to determine one configuration.
13.5.2.Features
• 20MHz Bandwidth
• Cascadable with another TEA6415C (Internal address can be changed by pin 7 voltage)
• 8 Inputs (CVBS, RGB, MAC, CHROMA,...)
• 6 Outputs
• Possibility of MAC or chroma signal for each input by switching-off the clamp with an external resistor
bridge
• Bus controlled
10
• 6.5dB gain between any input and output
• 55dB crosstalk at 5mHz
• Fully ESD protected
13.5.3.Pinning
1. Input : Max : 2Vpp, Input Current: 1mA, Max : 3mA
2. Data : Low level : -0.3V Max: 1.5V,
High level : 3.0V Max : Vcc+0.5V
3. Input : Max : 2Vpp, Input Current: 1mA, Max : 3mA
4. Clock : Low level : -0.3V Max: 1.5V,
High level : 3.0V Max : Vcc+0.5V
5. Input : Max : 2Vpp, Input Current: 1mA, Max : 3mA
6. Input : Max : 2Vpp, Input Current: 1mA, Max : 3mA
10. Input : Max : 2Vpp, Input Current: 1mA, Max : 3mA
11. Input : Max : 2Vpp, Input Current: 1mA, Max : 3mA
12. Ground
13. Output : 5.5Vpp, Min : 4.5Vpp
14. Output : 5.5Vpp, Min : 4.5Vpp
15. Output : 5.5Vpp, Min : 4.5Vpp
16. Output : 5.5Vpp, Min : 4.5Vpp
17. Output : 5.5Vpp, Min : 4.5Vpp
18. Output : 5.5Vpp, Min : 4.5Vpp
19. Ground
20. Input : Max : 2Vpp, Input Current : 1mA, Max : 3mA
13.6.STV9379FA
13.6.1.Description
Designed for monitors and high performance TVs, the STV9379FA vertical deflection booster can
handle flyback voltage up to 90V. Further to this, it is possible to have a flyback voltage, which is more
than the double of the supply (Pin 2). This allows to decrease the power consumption, or to decrease
the flyback time for a given supply voltage. The STV9379FA operates with supplies up to 42V and
provides up to 2.6APP output current to drive the yoke. The STV9379FA is offered in HEPTAWATT
package.
13.6.2.Features
Power Amplifier
Thermal Protection
Output Current Up To 2.6
APP
Flyback Voltage Up To 90V (on Pin 5)
Suitable For DC Coupling Application
External Flyback Supply
The TDA7269A is class AB dual Audio power amplifier assembled in the Multiwatt package, specially
designed for high quality sound application as Hi-Fi music centers and stereo TV sets.
11
13.7.2.Features
Wide Supply Voltage Range Up To ±20V
Split Supply
High Output Power
14 + 14W @THD =10%, R
=8,V
L
= +16V
S
No Pop at Turn-On/Off
Mute (Pop Free)
Stand-By Feature (Low I
)
q
Short Circuit Protection To Gnd
Thermal Overload Protection
13.8.LM7800 (LM7805/LM7808)
13.8.1.Description
The L7800 series of three-terminal positive regulators is available in TO-220 TO-220FP TO-3 and D 2
PAK packages and several fixed output voltages, making it useful in a wide range of applications.
These regulators can provide local on-card regulation, eliminating the distribution problems associated
with single point regulation. Each type employs internal current limiting, thermal shutdown and safe
area protection, making it essentially indestructible. If adequate heat sinking is provided, they can
deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices
can be used with external components to obtain adjustable voltages and currents.
13.8.2.Features
Output Current Up To 1.5 A
Output Voltages of 5; 5.2; 6; 8; 8.5; 9; 12; 15; 18; 24V
Thermal Over load protection
Short Circuit Protection
Output Transition SOA Protection
13.9.AT24C08
13.9.1.Description
The AT24C01A/02/04/08/16 provides 1024/2048/4096/8192/16384 bits of serial electrically erasable
and programmable read-only memory (EEPROM) organized as 128/256/512/1024/2048 words of 8 bits
each. The device is optimized for use in many industrial and commercial applications where low-power
and low-voltage operation are essential. The AT24C01A/02/04/08/16 is available in space-saving 8-pin
PDIP, (AT24C01A/02/04/08/16), 8-lead TSSOP (AT24C01A/02/04/08/16) and 8-lead JEDEC SOIC
(AT24C01A/02/04/08/16) packages and is accessed via a 2-wire serial interface. In addition, the entire
family is available in 5.0V (4.5V to 5.5V), 2.7V (2.7V to 5.5V), 2.5V (2.5V to 5.5V) and 1.8V (1.8V to
5.5V) versions.
13.9.2.Features
• Low-voltage and Standard-voltage Operation
– 5.0 (V CC = 4.5V to 5.5V)
– 2.7 (V CC = 2.7V to 5.5V)
– 2.5 (V CC = 2.5V to 5.5V)
– 1.8 (V CC = 1.8V to 5.5V)
• Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)
• 2-wire Serial Interface
• Schmitt Trigger, Filtered Inputs for Noise Suppression
• High-reliability
– Endurance: 1 Million Write Cycles
12
– Data Retention: 100 Years
• Automotive Grade and Extended Temperature Devices Available
• 8-lead JEDEC SOIC, 8-pin PDIP and 8-lead TSSOP Packages
13.9.3.Pin Configurations
Pin name Function
A0-A2 Address Inputs
SDA Serial Data
SCL Serial Clock Input
WP Write Protect
NC No Connect
13.10.SDA5555
13.10.1.General definition
The SDA55XX is a single chip teletext decoder for decoding World System Teletext data as well as
Video Programming System (VPS), Program Delivery Control (PDC), and Wide Screen Signalling
(WSS) data used for PAL plus transmissions (Line 23). The device also supports Closed caption
acquisition and decoding. The device provides an integrated general-purpose, fully 8051-compatible
Microcontroller with television specific hardware features. Microcontroller has been enhanced to provide
powerful features such as memory banking, data pointers, and additional interrupts etc. The on-chip
display unit for displaying Level 1.5 teletext data can also be used for customer defined on screen
displays. Internal XRAM consists of up to 16 Kbytes. Device has an internal ROM of up to 128 KBytes.
ROMless versions can access up to 1 MByte of external RAM and ROM. The SDA 55XX supports a
wide range of standards including PAL, NTSC and contains a digital slicer for VPS, WSS, PDC, TTX
and Closed Caption, an accelerating acquisition hardware module, a display generator for Level 1.5
TTX data and powerful On screen Display capabilities based on parallel attributes, and Pixel oriented
characters (DRCS).
13.10.2.Features
General
• Feature selection via special function register
• Simultaneous reception of TTX, VPS, PDC, and WSS (line 23)
• Supply Voltage 2.5 and 3.3 V
• ROM version package PSDIP52-2, PMQFP64-1
• Romless version package PMQFP100-2, PLCC84-2
External Crystal and Programmable Clock Speed
• Single external 6MHz crystal, all necessary clocks are generated internally
• CPU clock speed selectable via special function registers.
• Normal Mode 33.33 MHz CPU clock, Power Save mode 8.33 MHz
Microcontroller Features
• 8bit 8051 instruction set compatible CPU.
• 33.33-MHz internal clock (max.)
• 0.360ms (min.) instruction cycle
• Two 16-bit timers
• Watchdog timer
• Capture compare timer for infrared remote control decoding
• Noise Measurement and Controlled Noise Compensation
• Attenuation Measurement and Compensation
• Group Delay Measurement and Compensation
• Exact Decoding of Echo Disturbed Signals
Ports
• One 8-bit I/O-port with open drain output and optional I
2
C Bus emulation support (Port 0)
• Two 8-bit multifunction I/O-ports (Port 1, Port 3)
• One 4-bit port working as digital or analog inputs for the ADC (Port 2)
• One 2-bit I/O port with secondary functions (P4.2, 4.3, 4.7)
• One 4-bit I/O-port with secondary function (P4.0, 4.1, 4.4) (Not available in P-SDIP 52)
13.11.MC44608
13.11.1.Description
The MC44608 is a high performance voltage mode controller designed for off–line converters. This high
voltage circuit that integrates the start–up current source and the oscillator capacitor, requires few
external components while offering a high flexibility and reliability. The device also features a very high
efficiency stand–by management consisting of an effective Pulsed Mode operation. This technique
enables the reduction of the stand–by power consumption to approximately 1W while delivering 300mW
in a 150W SMPS.
• Integrated Start–Up Current Source
• Lossless Off–Line Start–Up
• Direct Off–Line Operation
• Fast Start–Up
14
Loading...
+ 40 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.