Many electrical and mechanical parts in this chassis have special safety-related characteristics. These parts are identified by in the
Exploded View.
It is essential that these special safety parts should be replaced with the same components as recommended in this manual to prevent
Shock, Fire, or other Hazards.
Do not modify the original design without permission of manufacturer.
General Guidance
An isolation Transformer should always be used during the
servicing of a receiver whose chassis is not isolated from the AC
power line. Use a transformer of adequate power rating as this
protects the technician from accidents resulting in personal injury
from electrical shocks.
It will also protect the receiver and it's components from being
damaged by accidental shorts of the circuitry that may be
inadvertently introduced during the service operation.
If any fuse (or Fusible Resistor) in this TV receiver is blown,
replace it with the specified.
When replacing a high wattage resistor (Oxide Metal Film Resistor,
over 1 W), keep the resistor 10 mm away from PCB.
Keep wires away from high voltage or high temperature parts.
Before returning the receiver to the customer,
always perform an AC leakage current check on the exposed
metallic parts of the cabinet, such as antennas, terminals, etc., to
be sure the set is safe to operate without damage of electrical
shock.
Leakage Current Cold Check(Antenna Cold Check)
With the instrument AC plug removed from AC source, connect an
electrical jumper across the two AC plug prongs. Place the AC
switch in the on position, connect one lead of ohm-meter to the AC
plug prongs tied together and touch other ohm-meter lead in turn to
each exposed metallic parts such as antenna terminals, phone
jacks, etc.
If the exposed metallic part has a return path to the chassis, the
measured resistance should be between 1 MΩ and 5.2 MΩ.
When the exposed metal has no return path to the chassis the
reading must be infinite.
An other abnormality exists that must be corrected before the
receiver is returned to the customer.
Leakage Current Hot Check(See below Figure)
Plug the AC cord directly into the AC outlet.
Do not use a line Isolation Transformer during this check.
Connect 1.5 K / 10 watt resistor in parallel with a 0.15 uF capacitor
between a known good earth ground (Water Pipe, Conduit, etc.)
and the exposed metallic parts.
Measure the AC voltage across the resistor using AC voltmeter
with 1000 ohms/volt or more sensitivity.
Reverse plug the AC cord into the AC outlet and repeat AC voltage
measurements for each exposed metallic part. Any voltage
measured must not exceed 0.75 volt RMS which is corresponds to
0.5 mA.
In case any measurement is out of the limits specified, there is
possibility of shock hazard and the set must be checked and
repaired before it is returned to the customer.
Leakage Current Hot Check circuit
- 3 -
SERVICING PRECAUTIONS
CAUTION: Before servicing receivers covered by this service
manual and its supplements and addenda, read and follow the
SAFETY PRECAUTIONS on page 3 of this publication.
NOTE: If unforeseen circumstances create conict between the
following servicing precautions and any of the safety precautions
on page 3 of this publication, always follow the safety precautions.
Remember: Safety First.
General Servicing Precautions
1. Always unplug the receiver AC power cord from the AC power
source before;
a. Removing or reinstalling any component, circuit board mod-
ule or any other receiver assembly.
b. Disconnecting or reconnecting any receiver electrical plug or
other electrical connection.
c. Connecting a test substitute in parallel with an electrolytic
capacitor in the receiver.
CAUTION: A wrong part substitution or incorrect polarity
installation of electrolytic capacitors may result in an explosion hazard.
2. Test high voltage only by measuring it with an appropriate
high voltage meter or other voltage measuring device (DVM,
FETVOM, etc) equipped with a suitable high voltage probe.
Do not test high voltage by "drawing an arc".
3. Do not spray chemicals on or near this receiver or any of its
assemblies.
4. Unless specied otherwise in this service manual, clean
electrical contacts only by applying the following mixture to the
contacts with a pipe cleaner, cotton-tipped stick or comparable
non-abrasive applicator; 10 % (by volume) Acetone and 90 %
(by volume) isopropyl alcohol (90 % - 99 % strength)
CAUTION: This is a ammable mixture.
Unless specied otherwise in this service manual, lubrication of
contacts in not required.
5. Do not defeat any plug/socket B+ voltage interlocks with which
receivers covered by this service manual might be equipped.
6. Do not apply AC power to this instrument and/or any of its
electrical assemblies unless all solid-state device heat sinks are
correctly installed.
7. Always connect the test receiver ground lead to the receiver
chassis ground before connecting the test receiver positive
lead.
Always remove the test receiver ground lead last.
8. Use with this receiver only the test xtures specied in this
service manual.
CAUTION: Do not connect the test xture ground strap to any
heat sink in this receiver.
Electrostatically Sensitive (ES) Devices
Some semiconductor (solid-state) devices can be damaged easily by static electricity. Such components commonly are called
Electrostatically Sensitive (ES) Devices. Examples of typical ES
devices are integrated circuits and some eld-effect transistors
and semiconductor “chip” components. The following techniques
should be used to help reduce the incidence of component damage caused by static by static electricity.
1. Immediately before handling any semiconductor component or
semiconductor-equipped assembly, drain off any electrostatic
charge on your body by touching a known earth ground. Alternatively, obtain and wear a commercially available discharging
wrist strap device, which should be removed to prevent potential shock reasons prior to applying power to the unit under test.
2. After removing an electrical assembly equipped with ES
devices, place the assembly on a conductive surface such as
aluminum foil, to prevent electrostatic charge buildup or exposure of the assembly.
3. Use only a grounded-tip soldering iron to solder or unsolder ES
devices.
4. Use only an anti-static type solder removal device. Some solder
removal devices not classied as “anti-static” can generate
electrical charges sufcient to damage ES devices.
5. Do not use freon-propelled chemicals. These can generate
electrical charges sufcient to damage ES devices.
6. Do not remove a replacement ES device from its protective
package until immediately before you are ready to install it.
(Most replacement ES devices are packaged with leads electrically shorted together by conductive foam, aluminum foil or
comparable conductive material).
7. Immediately before removing the protective material from the
leads of a replacement ES device, touch the protective material
to the chassis or circuit assembly into which the device will be
installed.
CAUTION: Be sure no power is applied to the chassis or circuit,
and observe all other safety precautions.
8. Minimize bodily motions when handling unpackaged replacement ES devices. (Otherwise harmless motion such as the
brushing together of your clothes fabric or the lifting of your
foot from a carpeted oor can generate static electricity sufcient to damage an ES device.)
General Soldering Guidelines
1. Use a grounded-tip, low-wattage soldering iron and appropriate
tip size and shape that will maintain tip temperature within the
range or 500 °F to 600 °F.
2. Use an appropriate gauge of RMA resin-core solder composed
of 60 parts tin/40 parts lead.
3. Keep the soldering iron tip clean and well tinned.
4. Thoroughly clean the surfaces to be soldered. Use a mall wirebristle (0.5 inch, or 1.25 cm) brush with a metal handle.
Do not use freon-propelled spray-on cleaners.
5. Use the following unsoldering technique
a. Allow the soldering iron tip to reach normal temperature.
(500 °F to 600 °F)
b. Heat the component lead until the solder melts.
c. Quickly draw the melted solder with an anti-static, suction-
type solder removal device or with solder braid.
CAUTION: Work quickly to avoid overheating the circuit
board printed foil.
6. Use the following soldering technique.
a. Allow the soldering iron tip to reach a normal temperature
(500 °F to 600 °F)
b. First, hold the soldering iron tip and solder the strand against
the component lead until the solder melts.
c. Quickly move the soldering iron tip to the junction of the
component lead and the printed circuit foil, and hold it there
only until the solder ows onto and around both the component lead and the foil.
CAUTION: Work quickly to avoid overheating the circuit
board printed foil.
d. Closely inspect the solder area and remove any excess or
splashed solder with a small wire-bristle brush.
- 4 -
IC Remove/Replacement
Some chassis circuit boards have slotted holes (oblong) through
which the IC leads are inserted and then bent at against the circuit foil. When holes are the slotted type, the following technique
should be used to remove and replace the IC. When working with
boards using the familiar round hole, use the standard technique
as outlined in paragraphs 5 and 6 above.
Removal
1. Desolder and straighten each IC lead in one operation by
gently prying up on the lead with the soldering iron tip as the
solder melts.
2. Draw away the melted solder with an anti-static suction-type
solder removal device (or with solder braid) before removing
the IC.
Replacement
1. Carefully insert the replacement IC in the circuit board.
2. Carefully bend each IC lead against the circuit foil pad and
solder it.
3. Clean the soldered areas with a small wire-bristle brush.
(It is not necessary to reapply acrylic coating to the areas).
1. Remove the defective transistor by clipping its leads as close
as possible to the component body.
2. Bend into a "U" shape the end of each of three leads remaining
on the circuit board.
3. Bend into a "U" shape the replacement transistor leads.
4. Connect the replacement transistor leads to the corresponding
leads extending from the circuit board and crimp the "U" with
long nose pliers to insure metal to metal contact then solder
each connection.
Power Output, Transistor Device
Removal/Replacement
1. Heat and remove all solder from around the transistor leads.
2. Remove the heat sink mounting screw (if so equipped).
3. Carefully remove the transistor from the heat sink of the circuit
board.
4. Insert new transistor in the circuit board.
5. Solder each transistor lead, and clip off excess lead.
6. Replace heat sink.
Diode Removal/Replacement
1. Remove defective diode by clipping its leads as close as possible to diode body.
2. Bend the two remaining leads perpendicular y to the circuit
board.
3. Observing diode polarity, wrap each lead of the new diode
around the corresponding lead on the circuit board.
4. Securely crimp each connection and solder it.
5. Inspect (on the circuit board copper side) the solder joints of
the two "original" leads. If they are not shiny, reheat them and if
necessary, apply additional solder.
3. Solder the connections.
CAUTION: Maintain original spacing between the replaced
component and adjacent components and the circuit board to
prevent excessive component temperatures.
Circuit Board Foil Repair
Excessive heat applied to the copper foil of any printed circuit
board will weaken the adhesive that bonds the foil to the circuit
board causing the foil to separate from or "lift-off" the board. The
following guidelines and procedures should be followed whenever
this condition is encountered.
At IC Connections
To repair a defective copper pattern at IC connections use the
following procedure to install a jumper wire on the copper pattern
side of the circuit board. (Use this technique only on IC connections).
1. Carefully remove the damaged copper pattern with a sharp
knife. (Remove only as much copper as absolutely necessary).
2. carefully scratch away the solder resist and acrylic coating (if
used) from the end of the remaining copper pattern.
3. Bend a small "U" in one end of a small gauge jumper wire and
carefully crimp it around the IC pin. Solder the IC connection.
4. Route the jumper wire along the path of the out-away copper
pattern and let it overlap the previously scraped end of the
good copper pattern. Solder the overlapped area and clip off
any excess jumper wire.
At Other Connections
Use the following technique to repair the defective copper pattern
at connections other than IC Pins. This technique involves the
installation of a jumper wire on the component side of the circuit
board.
1. Remove the defective copper pattern with a sharp knife.
Remove at least 1/4 inch of copper, to ensure that a hazardous
condition will not exist if the jumper wire opens.
2. Trace along the copper pattern from both sides of the pattern
break and locate the nearest component that is directly connected to the affected copper pattern.
3. Connect insulated 20-gauge jumper wire from the lead of the
nearest component on one side of the pattern break to the lead
of the nearest component on the other side.
Carefully crimp and solder the connections.
CAUTION: Be sure the insulated jumper wire is dressed so the
it does not touch components or sharp edges.
Fuse and Conventional Resistor
Removal/Replacement
1. Clip each fuse or resistor lead at top of the circuit board hollow
stake.
2. Securely crimp the leads of replacement component around
notch at stake top.
- 5 -
SPECIFICATION
NOTE : Specifications and others are subject to change without notice for improvement
.
1. Application range
This specification is applied to the LED TV used UA71M
chassis.
2. Test condition
Each part is tested as below without special appointment.
(1) Temperature: 25 °C ± 5 °C, CST: 40 °C ± 2 °C
(2) Relative Humidity: 65 % ± 10 %
(3) Power Voltage
: Standard input voltage (AC 100-240 V~, 50/60 Hz)
* Standard Voltage of each products is marked by models.
(4) Specification and performance of each parts are followed
each drawing and specification by part number in
accordance with BOM.
(5) The receiver must be operated for about 5 minutes prior to
the adjustment.
3. Test method
(1) Performance: LGE TV test method followed
(2) Demanded other specification
- Safety : CE, IEC specification
- EMC : CE, IEC
4. General Specification
NoItemSpecicationRemark
1MarketNorth America
2Broadcasting systemATSC / NTSC-M, 64 & 256 QAM
3Available ChannelVHF : 02~13
UHF : 14~69
DTV : 02-69
CATV : 01~135
CADTV : 01~135
4Receiving systemDigital : ATSC, 64 & 256 QAM
Analog : NTSC-M
5Video InputNTSC-MRear gender(1EA)
6HDMI InputHDMI 1PC / DTV formatSide, Support 6Gbps
HDMI 2PC / DTV formatSide, Support 6Gbps, Support ARC
HDMI 3PC / DTV formatRear, Support 6Gbps
HDMI 4PC / DTV formatRear, Support 6Gbps Except for UJ63
7Audio InputAV Audio / DVI Audio L/R Input ; Rear(Gender)
AV and DVI use same jack
8SPDIF out(1EA)Optical Audio outRear (1EA),
9USB Input(3EA)EMF, DivX HD, For SVC (download)JPEG, MP3, DivX HD
(1) Insert the USB memory Stick to the USB port
(2) Automatically detect the SW Version and show the below
message
(3) Click [YES]: initiate the download and install of the update.
2. NSU
(This Function is needed to connect to the internet)
(1) Menu -> All Settings -> General -> About This TV
(2) Click [CHEK FOR UPDATES] : system check newest
version
(4) Click [Check Now]: move to “About This TV” page for
update
(5) TV is updating
(6) After finished the update, below Pop-up appear
(7) Click [Yes] : TV will be DC OFF -> ON
(8) After TV turned on, Check the updated SW Version and
Tool Option
(3) Click [DOWNLOAD AND INSTALL]
(4) TV is updating
(5) After finished the update, below Pop-up appear
(6) Turn OFF the TV and On. Check the updated SW Version
and Tool Option
- 9 -
OCP
1.5A
Audio 2 AMP
MainSOC
IF (+/-)
USB1 (3.0)
OPTIC
LAN
DDR3 2133 X 16
(512MB X 2EA)
HDMI1 (2.0)
HDMI2 (2.0)
HDMI3 (2.0)
SYSTEM EEPROM
(256Kb)
USB2 (2.0)
USB3 (2.0)
eMMC
(4GB)
Sub Micom
DDR3 2133 X 16
(512MB X 2EA)
P_TS
X_TAL
24MHz
I2S Out
H/P
AV
D-Demod : I2C 2
R
E
A
R
S
I
D
E
R
E
A
R
(H)
HP
AMP
SPDIF OUT
BLUTOOTH
IR / KEY/EYE
WIFI
SUB
ASSY
IR
KEY
Tuner : I2C 5
I2C
CVBS/SIF
Tuner
COMP
(ARC)
X_TAL
32.768kHz
OCP
1.5A
OCP
1.5A
Component Spec Out
HDMI4 (2.0)
Apply only CI Slot model
1. SOC
BLOCK DIAGRAM
- 10 -
MAIN
SOC
AC29 [TP_DVB_CLK]
AC30 [TP_DVB_SOP]
AB30 [TP_DVB_VAL]
AN31 [DMD_ADC_INP]
AN32 [DMD_ADC_INN]
TUNER
[FE_DEMOD1_TS_ERROR_TU] 14
[FE_DEMOD1_1_TS_CLK] 15
[FE_DEMOD1_TS_SYNC] 16
[FE_DEMOD1_TS_VAL] 17
FE_DEMOD1_TS_DATA[0] 18
FE_DEMOD1_TS_DATA[1] 19
FE_DEMOD1_TS_DATA[2] 20
FE_DEMOD1_TS_DATA[3] 21
FE_DEMOD1_TS_DATA[4] 22
FE_DEMOD1_TS_DATA[5] 23
FE_DEMOD1_TS_DATA[6] 24
FE_DEMOD1_TS_DATA[7] 25
+1.2V_Demod_Core
[+3.3V_LNA_TU] 3
+3.3V_TUNER
[I2C_SCL5_TU] 1
[I2C_SDA5_TU] 2
[IF_AGC_TU] 5
[/TU_RESET1_TU] 10
FILTER
FE_DEMOD1_TS_CLK
FE_DEMOD1_TS_SYNC
FE_DEMOD1_TS_VAL
FE_DEMOD1_TS_DATA [0-7]
IF_P
IF_N
IF_AGC
ADC_I_INP
ADC_I_INN
I2C_SCL5
I2C_SDA5
33 Ω
/TU_RESET1
AH25[SCL5]
AH26[SDA5]
AK14 [GPIO26]
AL31[IF_AGC]
FE_DEMOD1_TS_ERROR
[+3.3V_TUNER] 11
[D_Demod_Core] 13
[IF_P] 7
[IF_N] 8
AB28 [TP_DVB_DATA0]
AC28 [TP_DVB_DATA1]
AD28 [TP_DVB_DATA2]
AD29 [TP_DVB_DATA3]
AE29 [TP_DVB_DATA4 ]
AE30 [TP_DVB_DATA5 ]
AF29 [TP_DVB_DATA6]
AF30 [TP_DVB_DATA7]
+3.3V_TUNER
1.2KΩ
33 Ω
TPO_DATA[0-7] CI_IN_TS_DATA[0-7]
CI Slot
100 Ω
TPI_DATA [0-7] CI_TS_DATA[0-7]
/PCM_WE
/PCM_OE
/PCM_IRQA
/PCM_REG
PCM_INPACK
/PCM_WAIT
PCM_RESET
CI_TS_DATA[0-7]
CI_ADDR[0-14]
/PCM_IORD
/PCM_IOWR
/PCM_CE1.2
CI_TS_VAL
/CI_CD1,2
CI 5V
Power detect
PCM_5V_CTL
+5V_CI_ON
CI_IN_TS_SYNC
CI_IN_TS_VAL
CI_IN_TS_CLK
[TPO_DATA[ 0~7] CI_IN_TS_DATA[0-7]
[TPI_DATA 0~7] CI_TS_DATA[0~7]
/CI_CD1,2
C23[CAM_CD1_N]
B23[CAM_CD2_N]
CI_TS_VAL G28[TPI_VAL]
B25[CAM_CE1_N]
B26[CAM_CE2_N]
/PCM_CE1.2
10K Ω
B29 [EB_BE_N1]
E28 [EB_EB_N0]
/PCM_IOWR
/PCM_IORD
[EB_ADDR_0~14]
[EB_DATA_0~7]
CI_ADDR[0-14]
CI_DAT[0-7]
A24[CAM_RESET]
C24[CAM_WAIT_N]
A25[CAM_REG_N]
B24[CAM_IREQ_N]
A32 [EB_OE_N]
D28 [EB_WE_N]
P30 [TPO_CLK]
P29 [TPO_VAL]
N29 [TPO_SOP]
CI_IN_TS_CLK
CI_IN_TS_VAL
CI_IN_TS_SYNC
PCM_RESET
/PCM_WAIT
PCM_INPACK
/PCM_REG
/PCM_IRQA
/PCM_OE
/PCM_WE
VCC
C25 [CAM_VCCEN_N]
+5V_CI_ON +3.3V_NORMAL
47K Ω
2. Tuner + CI
- 11 -
MAIN SOC
AM24 [CVBS_IN2]
AV_CVBS_IN
AV1
Phone JACK
Component 1
Phone JACK
AV1_CVBS_IN_SOC
AM20 [SOY1_IN]
AN20 [Y1_IN]
AL21 [PB1_IN]
AM22 [PR1_IN]
COMP2_Pb
COMP2_Y
COMP2_Pr
COMP2_SOG2_IN_SOC
COMP2_Y_IN_SOC
COMP2_Pb_IN_SOC
COMP2_Pr_IN_SOC
Jack Side SOC Side
SPDIF_OUT
SPDIF OUT
H/P JACK
HP_LOUT_JACK
HP_ROUT_JACK
AM14 [IEC958OUT]
AL15 [AUDA_OUTL]
AM15 [AUDA_OUTR]
SPDIF_OUT_ARC
[PHY0_ARC_OUT]
COMP2/AV_L_IN
COMP2/AV_R_IN
AL18 [AUAD_L_CH2_IN
AM18 [AUAD_R_CH2_IN]
AUAD_L_CH2_IN
AUAD_R_CH2_IN
HP AMP
TPA6138
ARC OUT
(HDMI2)
Front Speaker
Woofer Speaker
MICOM
AMP_RESET
[SCK]
[LRCK]
[DACLRCH]
[I2C_SCL_0/SDA_0]
I2S
[GPIO23]
Audio
AMP
NTP7515
Audio
AMP
NTP7515
AMP_MUTE
(WOOFER_MUTE)
Component Spec Out
3. Video & Audio IN/OUT
- 12 -
CEC_REMOTE
MICOM
Port_4
DDC_I2C_4
HDMI_HPD_4
HDCP1.4
HDCP2.2
MAIN SOC
HDMI 2
(2.0)_V
ARC
HDMI 1
(2.0)_V
CEC_REMOTE
Port_2
DDC_I2C_2
SPDIF_OUT_ARC
HDMI_HPD_2
CEC_REMOTE
Port_1
DDC_I2C_1
HDMI_HPD_1
HDMI2.0
LGE PHY
HDCP1.4
HDCP2.2
HDCP1.4
HDCP 2.2
HDMI2.0
LGE PHY
HDMI2.0
LGE PHY
+5V
+5V
+5V
HDMI 4
(2.0)_H
HDCP1.4
HDCP2.2
HDMI 3
(2.0)_H
CEC_REMOTE
Port_3
DDC_I2C_3
SPDIF_OUT_ARC
HDMI_HPD_3
HDMI2.0
LGE PHY
+5V
[HDMI2_3_HPD]
[HDMI2_3_SDA]
[HDMI2_3_SCL]
[HDMI2_2_HPD]
[HDMI2_2_SDA]
[HDMI2_2_SCL]
[HDMI2_1_HPD]
[HDMI2_1_SDA]
[HDMI2_1_SCL]
[HDMI2_0_HPD]
[HDMI2_0_SDA]
[HDMI2_0_SCL]
[PHY0_ARC_OUT]
4. HDMI 2.0
- 13 -
IR + Wi-Fi /BT
Wafer 25P
[UART0_RXD/GPIO106]
USB3.0_1_TX_DP0 / DM0
USB3.0_1_RX_DP0 / DM0
USB3.0_1_DP0 / DM0
[USB3_0_TX0_P / M]
RS232 IC
WIFI_DP / DM
MICOM
WOL/WIFI_POWER_ON
[USB2_2_DP0 / DM0]
SOC_RX/TX
[USB3_0_DP0 / DM0]
[USB3_0_RX0_P / M]
[USB2_1_DP0 / DM0]
USB2.0_2_DP1 / DM1
USB2.0_3_DP0 / DM0
[USB2_0_DP0 / DM0]
[UART1_RXD / TXD]
Debug Wafer
UART1_RX/TX
JK6200
RS232C phone Jack
SOC_RX/TX
UART wafer
SOC_RX/TX
(*) US model only
USB 1
(3.0)_V
USB 2
(2.0)_H
USB 3
(2.0)_H
WIFI_EN
+3.5V_WIFI
OCP
[GPIO90]
USB_CTL1
+5V_USB_1
OCP
[GPIO95]
USB_CTL2
+5V_USB_2
OCP
[GPIO34]
USB_CTL3
+5V_USB_3
[UART0_TXD/GPIO105]
MAN SOC
5. USB / Wi-Fi / M-Remote / UART
- 14 -
+3.3V_NORMAL
3.3KΩ
NVRAM
3.3KΩ
+3.3V_NORMAL
33Ω
+3.3V_NORMAL
3.3KΩ
AUDIO AMP
100 Ω
TUNER (D emod)
2.7KΩ
+3.3V_TU
33Ω
MAIN SOC
MICOM
33Ω LNB
IR / KEY/EYE
100Ω
3.3KΩ
E
YE_I2C_SDA
E
YE_I2C_SCL
+3.5V_ST
33pF
18pF
Cap Ready
I2C_SCL4: AJ21[SCL4]
I2C_SDA4: AH21[SDA4]
I2C_SCL1: AK22[SCL1]
I2C_SDA1: AJ22[SDA1]
I2C_SCL3: AH24[SCL3]
I2C_SDA3: AJ24[SDA3]
I2C_SCL0: AK23[SCL0]
I2C_SDA0: AJ23[SDA0]
I2C_SCL2: AH23[SCL2]
I2C_SDA2: AH22[SDA2]
I2C_SCL5: AH25[SCL5]
I2C_SDA5: AH26[SDA5]
Tuner
1.2KΩ (EU)
+3.3V_TU
33Ω
47pF
+3.3V_NORMAL
3.3KΩ
PMIC (EPI) WAFER (Vx1)
33 Ω
AUDIO AMP
100 Ω
33pF
6. I2C Map
- 15 -
60P EPI Output
RIGHT
[OUT12P]
:
[OUT17N]
[OUT4P]
:
[OUT9N]
MAIN
SOC
EO, GCLK,
MCLK, GST
[TX_LOCKN]
LOCK_IN
PMIC
Sub
PMIC
EO, GCLK,
MCLK, GST
P-GAMMA Voltage
8 CH OUTPUT
I2C_2
VCC, HVDD,
VGH, VEPI,
VGL2, VCOM1,2
Level shifter
CLK[1:8]
60P EPI Output
LEFT
P-gamma
(8CH)
P-gamma
(8CH)
CLK[1:8]
CLK[1:8]
VDD, VEPI, Vterm,
HVDD,VCOM1,2,
VGL1,2, VGH
VST, RESET,
VGH_E/O
VDD, VEPI, Vterm,
HVDD, VCOM1,2,
VGL1,2, VGH
VST, RESET, VGH_E/O
EPI 6 Lane
EPI 6 Lane
VCOM1FB/
VCOM2FB
PANEL_VCC
PANEL_VCC
VDD, Vterm
VCOM1FB
VCOM2FB
VST, RESET, VGH_E/O
M16p
7. EPI block (PMIC)
- 16 -
200
400
540
521
120
LV1
530
900
910
500
710
200T
AS1
571
570
820
810
300
LV2
AR2
700
A10
A9
EXPLODED VIEW
Many electrical and mechanical parts in this chassis have special safety-related characteristics. These
parts are identified by in the EXPLODED VIEW.
It is essential that these special safety parts should be replaced with the same components as
recommended in this manual to prevent Shock, Fire, or other Hazards.
Do not modify the original design without permission of manufacturer.
IMPORTANT SAFETY NOTICE
- 17 -
DISASSEMBLY GUIDE
1. Stand
(1) Pull Center of Cable Cover and Pull down Cable Cover
(2) Disassemble Stand Cover
(3) Disassemble Screw (4EA)
- 18 -
2. Screw
O
FAB31843216 (3EA) : M3*5.5, 5~7kgf.cm
O
FAB31843217 (6EA) : M3*8, 5~7kgf.cm
B/C - Side Mounting
FAB31843217 (6EA) : M3*8, 5~7kgf.
- 19 -
Loading...
+ 42 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.