Many electrical and mechanical parts in this chassis have special safety-related characteristics. These parts are identified by in the
Schematic Diagram and Exploded View.
It is essential that these special safety parts should be replaced with the same components as recommended in this manual to prevent
Shock, Fire, or other Hazards.
Do not modify the original design without permission of manufacturer.
General Guidance
An isolation Transformer should always be used during the
servicing of a receiver whose chassis is not isolated from the AC
power line. Use a transformer of adequate power rating as this
protects the technician from accidents resulting in personal injury
from electrical shocks.
It will also protect the receiver and it's components from being
damaged by accidental shorts of th e cir cuitry that may be
inadvertently introduced during the service operation.
If any fuse (or Fusible Resistor) in this TV receiver is blown,
replace it with the specified.
When replacing a high wattage resistor (Oxide Metal Film Resistor,
over 1 W), keep the resistor 10 mm away from PCB.
Keep wires away from high voltage or high temperature parts.
Before returning the receiver to the customer,
always perform an AC leakage current check on the exposed
metallic parts of the cabinet, such as antennas, terminals, etc., to
be sure the set is safe to operate without damage of electrical
shock.
Leakage Current Cold Check(Antenna Cold Check)
With the instrument AC plug removed from AC source, connect an
electrical jumper across the two AC plug prongs. Place the AC
switch in the on position, connect one lead of ohm-meter to the AC
plug prongs tied together and touch other ohm-meter lead in turn to
each exposed metallic parts such as antenna terminals, phone
jacks, etc.
If the exposed metallic part has a return path to the chassis, the
measured resistance should be between 1 MΩ and 5.2 MΩ.
When the exposed metal has no return path to the chassis the
reading must be infinite.
An other abnormality exists that must be corrected before the
receiver is returned to the customer.
Leakage Current Hot Check(See below Figure)
Plug the AC cord directly into the AC outlet.
Do not use a line Isolation Transformer during this check.
Connect 1.5 K / 10 watt resistor in parallel with a 0.15 uF capacitor
between a known good earth ground (Water Pipe, Conduit, etc.)
and the exposed metallic parts.
Measure the AC voltage across the resistor using AC voltmeter
with 1000 ohms/volt or more sensitivity.
Reverse plug the AC cord into the AC outlet and repeat AC voltage
measurements for each exp ose d metallic par t. Any voltage
measured must not exceed 0.75 volt RMS which is corresponds to
0.5 mA.
In case any measurement is out of the limits specified, there is
possibility of shock hazard and the set must be checked and
repaired before it is returned to the customer.
CAUTION: Before servicing receivers covered by this service
manual and its supplements and addenda, read and follow the
SAFETY PRECAUTIONS on page 3 of this publication.
NOTE: If unforeseen circumstances create conict between the
following servicing precautions and any of the safety precautions
on page 3 of this publication, always follow the safety precautions.
Remember: Safety First.
General Servicing Precautions
1. Always unplug the receiver AC power cord from the AC power
source before;
a. Removing or reinstalling any component, circuit board mod-
ule or any other receiver assembly.
b. Disconnecting or reconnecting any receiver electrical plug or
other electrical connection.
c. Connecting a test substitute in parallel with an electrolytic
capacitor in the receiver.
CAUTION: A wrong part substitution or incorrect polarity
installation of electrolytic capacitors may result in an explosion hazard.
2. Test high voltage only by measuring it with an appropriate
high voltage meter or other voltage measuring device (DVM,
FETVOM, etc) equipped with a suitable high voltage probe.
Do not test high voltage by "drawing an arc".
3. Do not spray chemicals on or near this receiver or any of its
assemblies.
4. Unless specied otherwise in this service manual, clean
electrical contacts only by applying the following mixture to the
contacts with a pipe cleaner, cotton-tipped stick or comparable
non-abrasive applicator; 10 % (by volume) Acetone and 90 %
(by volume) isopropyl alcohol (90 % - 99 % strength)
CAUTION: This is a ammable mixture.
Unless specied otherwise in this service manual, lubrication of
contacts in not required.
5. Do not defeat any plug/socket B+ voltage interlocks with which
receivers covered by this service manual might be equipped.
6. Do not apply AC power to this instrument and/or any of its
electrical assemblies unless all solid-state device heat sinks are
correctly installed.
7. Always connect the test receiver ground lead to the receiver
chassis ground before connecting the test receiver positive
lead.
Always remove the test receiver ground lead last.
8. Use with this receiver only the test xtures specied in this
service manual.
CAUTION: Do not connect the test xture ground strap to any
heat sink in this receiver.
Electrostatically Sensitive (ES) Devices
Some semiconductor (solid-state) devices can be damaged easily by static electricity. Such components commonly are called
Electrostatically Sensitive (ES) Devices. Examples of typical ES
devices are integrated circuits and some eld-effect transistors
and semiconductor “chip” components. The following techniques
should be used to help reduce the incidence of component damage caused by static by static electricity.
1. Immediately before handling any semiconductor component or
semiconductor-equipped assembly, drain off any electrostatic
charge on your body by touching a known earth ground. Alternatively, obtain and wear a commercially available discharging
wrist strap device, which should be removed to prevent potential shock reasons prior to applying power to the unit under test.
2. After removing an electrical assembly equipped with ES
devices, place the assembly on a conductive surface such as
aluminum foil, to prevent electrostatic charge buildup or exposure of the assembly.
3. Use only a grounded-tip soldering iron to solder or unsolder ES
devices.
4. Use only an anti-static type solder removal device. Some solder
removal devices not classied as “anti-static” can generate
electrical charges sufcient to damage ES devices.
5. Do not use freon-propelled chemicals. These can generate
electrical charges sufcient to damage ES devices.
6. Do not remove a replacement ES device from its protective
package until immediately before you are ready to install it.
(Most replacement ES devices are packaged with leads electrically shorted together by conductive foam, aluminum foil or
comparable conductive material).
7. Immediately before removing the protective material from the
leads of a replacement ES device, touch the protective material
to the chassis or circuit assembly into which the device will be
installed.
CAUTION: Be sure no power is applied to the chassis or circuit,
and observe all other safety precautions.
8. Minimize bodily motions when handling unpackaged replacement ES devices. (Otherwise harmless motion such as the
brushing together of your clothes fabric or the lifting of your
foot from a carpeted oor can generate static electricity sufcient to damage an ES device.)
General Soldering Guidelines
1. Use a grounded-tip, low-wattage soldering iron and appropriate
tip size and shape that will maintain tip temperature within the
range or 500 °F to 600 °F.
2. Use an appropriate gauge of RMA resin-core solder composed
of 60 parts tin/40 parts lead.
3. Keep the soldering iron tip clean and well tinned.
4. Thoroughly clean the surfaces to be soldered. Use a mall wirebristle (0.5 inch, or 1.25 cm) brush with a metal handle.
Do not use freon-propelled spray-on cleaners.
5. Use the following unsoldering technique
a. Allow the soldering iron tip to reach normal temperature.
(500 °F to 600 °F)
b. Heat the component lead until the solder melts.
c. Quickly draw the melted solder with an anti-static, suction-
type solder removal device or with solder braid.
CAUTION: Work quickly to avoid overheating the circuit
board printed foil.
6. Use the following soldering technique.
a. Allow the soldering iron tip to reach a normal temperature
(500 °F to 600 °F)
b. First, hold the soldering iron tip and solder the strand against
the component lead until the solder melts.
c. Quickly move the soldering iron tip to the junction of the
component lead and the printed circuit foil, and hold it there
only until the solder ows onto and around both the component lead and the foil.
CAUTION: Work quickly to avoid overheating the circuit
board printed foil.
d. Closely inspect the solder area and remove any excess or
Some chassis circuit boards have slotted holes (oblong) through
which the IC leads are inserted and then bent at against the circuit foil. When holes are the slotted type, the following technique
should be used to remove and replace the IC. When working with
boards using the familiar round hole, use the standard technique
as outlined in paragraphs 5 and 6 above.
Removal
1. Desolder and straighten each IC lead in one operation by
gently prying up on the lead with the soldering iron tip as the
solder melts.
2. Draw away the melted solder with an anti-static suction-type
solder removal device (or with solder braid) before removing
the IC.
Replacement
1. Carefully insert the replacement IC in the circuit board.
2. Carefully bend each IC lead against the circuit foil pad and
solder it.
3. Clean the soldered areas with a small wire-bristle brush.
(It is not necessary to reapply acrylic coating to the areas).
1. Remove the defective transistor by clipping its leads as close
as possible to the component body.
2. Bend into a "U" shape the end of each of three leads remaining
on the circuit board.
3. Bend into a "U" shape the replacement transistor leads.
4. Connect the replacement transistor leads to the corresponding
leads extending from the circuit board and crimp the "U" with
long nose pliers to insure metal to metal contact then solder
each connection.
Power Output, Transistor Device
Removal/Replacement
1. Heat and remove all solder from around the transistor leads.
2. Remove the heat sink mounting screw (if so equipped).
3. Carefully remove the transistor from the heat sink of the circuit
board.
4. Insert new transistor in the circuit board.
5. Solder each transistor lead, and clip off excess lead.
6. Replace heat sink.
Diode Removal/Replacement
1. Remove defective diode by clipping its leads as close as possible to diode body.
2. Bend the two remaining leads perpendicular y to the circuit
board.
3. Observing diode polarity, wrap each lead of the new diode
around the corresponding lead on the circuit board.
4. Securely crimp each connection and solder it.
5. Inspect (on the circuit board copper side) the solder joints of
the two "original" leads. If they are not shiny, reheat them and if
necessary, apply additional solder.
3. Solder the connections.
CAUTION: Maintain original spacing between the replaced
component and adjacent components and the circuit board to
prevent excessive component temperatures.
Circuit Board Foil Repair
Excessive heat applied to the copper foil of any printed circuit
board will weaken the adhesive that bonds the foil to the circuit
board causing the foil to separate from or "lift-off" the board. The
following guidelines and procedures should be followed whenever
this condition is encountered.
At IC Connections
To repair a defective copper pattern at IC connections use the
following procedure to install a jumper wire on the copper pattern
side of the circuit board. (Use this technique only on IC connections).
1. Carefully remove the damaged copper pattern with a sharp
knife. (Remove only as much copper as absolutely necessary).
2. carefully scratch away the solder resist and acrylic coating (if
used) from the end of the remaining copper pattern.
3. Bend a small "U" in one end of a small gauge jumper wire and
carefully crimp it around the IC pin. Solder the IC connection.
4. Route the jumper wire along the path of the out-away copper
pattern and let it overlap the previously scraped end of the
good copper pattern. Solder the overlapped area and clip off
any excess jumper wire.
At Other Connections
Use the following technique to repair the defective copper pattern
at connections other than IC Pins. This technique involves the
installation of a jumper wire on the component side of the circuit
board.
1. Remove the defective copper pattern with a sharp knife.
Remove at least 1/4 inch of copper, to ensure that a hazardous
condition will not exist if the jumper wire opens.
2. Trace along the copper pattern from both sides of the pattern
break and locate the nearest component that is directly connected to the affected copper pattern.
3. Connect insulated 20-gauge jumper wire from the lead of the
nearest component on one side of the pattern break to the lead
of the nearest component on the other side.
Carefully crimp and solder the connections.
CAUTION: Be sure the insulated jumper wire is dressed so the
it does not touch components or sharp edges.
Fuse and Conventional Resistor
Removal/Replacement
1. Clip each fuse or resistor lead at top of the circuit board hollow
stake.
2. Securely crimp the leads of replacement component around
notch at stake top.
This spec. sheet applies to LA34N Chassis applied LED TV all
models manufactured in TV factory
2. Specification
(1) Because this is not a hot chassis, it is not necessary to use
an isolation transformer. However, the use of isolation
transformer will help protect test instrument.
(2) Adjustment must be done in the correct order.
(3) The adjustment must be performed in the circumstance of
25 ±5 ºC of temperature and 65±10% of relative humidity if
there is no specific designation
(4) The input voltage of the receiver must keep 100~240V,
50/60Hz
(5) The receiver must be operated for about 5 minutes prior to
the adjustment when module is in the circumstance of over
15
ºC
In case of keeping module is in the circumstance of 0°C, it
should be placed in the circumstance of above 15°C for 2
hours
In case of keeping module is in the circumstance of below
-20°C, it should be placed in the circumstance of above
15°C for 3 hours.
※ Caution
When still image is displayed for a period of 20 minutes or
longer (especially where W/B scale is strong.
Digital pattern 13ch and/or Cross hatch pattern 09ch), there
can some afterimage in the black level area
- An ADC cali bra tion is not necessary because MA IN SoC
(LGExxxx) is already calibrated from IC Maker
- If it needs to adjust manually, refer to appendix.
4.2. MAC Address, ESN Key and Widevine
Key download
4.2.1. Equipment & Condition
1) Play file: keydownload.exe
4.2.2. Communication Port connection
1) Key Write: Com 1,2,3,4 and 115200 (Baudrate)
2) Barcode: Com 1,2,3,4 and 9600 (Baudrate)
4.2.3. Download process
1) Select the download items.
2) Mode check: Online Only
3) Check the test process
- US, C anada m odels : DETEC T -> M AC_ WR IT E ->
WIDEVINE_WRITE
- Korea, Mexico m odels: DET ECT -> MAC_WRI TE ->
WIDEVINE_WRITE
4) Play : START
5) Check of result: Ready, Test, OK or NG
6) Printer out (MAC Address Label)
4.2.4. Communication Port connection
1) Connect: PCBA Jig -> RS-232C Port == PC -> RS-232C
Port
※ Remark
- Above adjustment items can be also performed in Final
Assembly if needed. Adjustment items in both PCBA and
final assembly tages can be checked by using the INSTART
Menu -> 1.ADJUST CHECK
3.2. Final assembly adjustment
(1) White Balance adjustment
(2) RS-232C functionality check
(3) Factory Option setting per destination
(4) Shipment mode setting (In-Stop)
(5) GND and HI-POT test
3.3. Appendix
(1) Tool option menu, USB Download (S/W Update, Option and
Service only)
(2) Manual adjustment for ADC calibration and White balance.
(3) Shipment conditions, Channel pre-set
Only for training and service purposes
4.2.5. Download
1) US, Canada models (13Y LCD TV + MAC + Widevine +
ESN Key + DTCP Key + HDCP1.4 and HDCP2.0)
(1) Objective : To check PCBA’s CAMERA Port.
(2) How-it-works
i) Connect the PCBA like below Picture.
ii) Send specific RS-232C Command for displaying Camera
Preview.
* CAMERA need to be status of Slide up.
(3) RS-232C Command
RS-232C COMMAND
CMDDATAID
Ai0023Camera Function Start.
Ai0024Camera Function End.
Explanation
5. Final Assembly Adjustment
5.1. White Balance Adjustment
5.1.1. Overview
5.1.1.1. W/B adj. Objective & How-it-works
(1) Objective: To reduce each Panel’s W/B deviation
(2) How-it-works: When R/G/B gain in the OSD is at 192, it
means the panel is at its Full Dynamic Range. In order to
prevent saturation of Full Dynamic range and data, one of
R/G/B is fixed at 192, and the other two is lowered to find
the desired value.
(3) Adj. condition: normal temperature
- Surrounding Temperature: 25±5 °C
- Warm-up time: About 5 Min
- Surrounding Humidity: 20% ~ 80%
- Before White balance adjustment, Keep power on status,
don’t power off
5.1.1.2. Adj. condition and cautionary items
(1) Lighting condition in surrounding area surrounding lighting
should be lower 10 lux. Try to isolate adj. area into dark
surrounding.
(2) Probe location: Color Analyzer (CA-210) probe should be
within 10cm and perpendicular of the module surface
(80°~ 100°)
(3) Aging time
- After Aging Start, Keep the Power ON sta tus during 5
Minutes.
- In case of LCD, Back-light on should be checked using no
5.1.5.1. Auto WB calibration
(1) Set TV in ADJ mode using P-ONLY key (or POWER ON
key)
(2) Place optical probe on the center of the display
- It need to check probe condition of zero calibration before
adjustment.
(3) Connect RS-232C Cable
(4) Select mode in ADJ Program and begin a adjustment.
(5) When WB adjustment is completed with OK message,
check adjustment status of pre-set mode (Cool, Medium,
Warm)
(6) Remove probe and RS-232C cable.
▪ W/B Adj. must begin as start command “wb 00 00” , and
finish as end command “wb 00 ff”, and Adj. offset if need
5.1.5.2. LED White balance table
(1) Cool Mode
- Purpose : Especial ly G-ga in fix ad just leads to the
luminance enhancement. Adjust the color temperature to
reduce the deviation of the module color temperature.
- Prin ciple : To adju st the white bala nce witho ut the
saturation, Adjust the G gain more than 172 ( If R gain or G
gain is more than 255 , G gain can adjust less than 172 )
and change the others ( R/B Gain ).
- Adjustment mode : mode – Cool
(2) Medium / Warm Mode
- Purpose : Adjust the color temperature to reduce the
deviation of the module color temperature.
- Prin ciple : To adju st the white bala nce witho ut the
saturation, Fix the one of R/G/B gain to 192 (default data)
and decrease the others.
- Adjustment mode : Two modes – Medium / Warm
5.1.6. Reference (White Balance Adj. coordinate and
color temperature)
(1) Luminance: 204 Gray, 80IRE
(2) Standard color coordinate and temperature using CS-1000
(over 26 inch)
5.1.7. Reference (White Balance Adj. coordinate and
color temperature)
▪ Luminance: 204 Gray
▪ Standard color coordinate and temperature using CS-1000
(over 26 inch)
Mode
Cool0.2710.27013,000K0.0000
Medium0.2850.2939,300K0.0000
Warm0.3130.3296,500K0.0000
▪ S ta ndard colo r coo rd ina te an d tem pe rat ur e usi ng
CA-210(CH-14)
Mode
Cool0.271±0.0020.270±0.00213,000K0.0000
Medium0.285±0.0020.293±0.0029,300K0.0000
Warm0.313±0.0020.329±0.0026,500K0.0000
▪ S ta ndard colo r coo rd ina te an d tem pe rat ur e usi ng
Many electrical and mechanical parts in this chassis have special safety-related characteristics. These
parts are identified by in the Schematic Diagram and EXPLODED VIEW.
It is essential that these special safety parts should be replac ed with the same components as
recommended in this manual to prevent X-RADIATION, Shock, Fire, or other Hazards.
Do not modify the original design without permission of manufacturer.
(1) Check the POWER CABLE and SIGNAL CABE insertion
condition
7.2. GND & HI-POT auto-check
(1) Pallet moves in the station. (POWER CORD / AV CORD is
tightly inserted)
(2) Connect the AV JACK Tester.
(3) Controller (GWS103-4) on.
(4) GND Test (Auto)
- If Test is failed, Buzzer operates.
- If Test is passed, execute next process (Hi-pot test).
(Remove A/V CORD from A/V JACK BOX)
(5) HI-POT test (Auto)
- If Test is failed, Buzzer operates.
- If Test is passed, GOOD Lamp on and move to next process
automatically.
7.3. Checkpoint
(1) Test voltage
- GND: 1.5KV/min at 100mA
- SIGNAL: 3KV/min at 100mA
(2) TEST time: 1 second
(3) TEST POINT
- GND Test = POWER CORD GND and SIGNAL CABLE GND.
- Hi-pot Test = POWER CORD GND and LIVE & NEUTRAL.
(4) LEAKAGE CURRENT: At 0.5mArms
8. USB S/W Download
(optional, Service only)
(1) Put the USB Stick to the USB socket
(2) Automatically detecting update file in USB Stick
- If your downloaded program version in USB Stick is lower
than that of TV set, it didn’t work. Otherwise USB data is
automatically detected.
(3) Show the message “Copying files from memory”
(4) Updating is staring
(5) Updating Completed, The TV will restart automatically
(6) If your TV is turned on, check your updated version and
Tool option.
* If downloading version is more high than your TV have, TV
can lost all channel data. In this case, you have to channel
recover. If all channel data is cleared, you didn’t have a DTV/
ATV test on production line.
* After downloading, TOOL OPTION setting is needed again.
(1) Push "IN-START" key in service remote controller.
(2) Select "Tool Option 1" and Push “OK” button.
(3) Punch in the number. (Each model has their number.)
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
BSD-NC4_H001-HD
2012-11-14
H13 D CHIP
LG1154A
Copyright ⓒ 2013 LG Electronics. Inc. All right reserved.
Only for training and service purposes
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
11/05/31
SMD TOP for EMI
SMD_GASKET_8.5T
GASKET_8.0X6.0X8.5H
M200
MDS62110209
SMD_GASKET_11.5T
GASKET_8.0X6.0X12.5H
M200-*1
MDS62110217
+1.5V_DDR
L230
BLM18PG121SN1D
VDDC15_M0
22uF
C303
C302
0.1uF
C306
0.1uF
C308
0.1uF
OPT
C305
0.1uF
C309
VDDC15_M1
+1.5V_Bypass Cap
OPT
OPT
OPT
OPT
0.1uF
C311
0.1uF
C312
0.1uF
C313
0.1uF
C314
OPT
0.1uF
C350
0.1uF
C352
0.1uF
C353
0.1uF
C354
0.1uF
C355
0.1uF
C356
0.1uF
C357
0.1uF
C358
0.1uF
C359
0.1uF
C360
0.1uF
C361
0.1uF
C362
0.1uF
C363
0.1uF
C365
0.1uF
C366
0.1uF
C367
0.1uF
C369
0.1uF
C370
0.1uF
C371
0.1uF
C372
0.1uF
VDDC15_M0
R200
R201
1K 1%
VREF_M0_0
1K 1%
C296
OPT
0.1uF
VDDC15_M0
R202
R203
1K 1%
VREF_M0_1
1K 1%
OPT
C344
0.1uF
+1.5V_DDR
L228
BLM18PG121SN1D
22uFC299
C307
0.1uF
VDDC15_M1
R300
R301
VREF_M1_0
1K 1%
1K 1%
C304
OPT
0.1uF
VDDC15_M1
R302
R303
1K 1%
VREF_M1_1
1K 1%
C310
OPT
0.1uF
BSD-NC4_H002-HD
2012-10-18
MAIN POWER
Place JACK Side
Copyright ⓒ 2013 LG Electronics. Inc. All right reserved.
Only for training and service purposes
LGE Internal Use Only
AV1_CVBS_IN
SC_CVBS_IN
SC_CVBS_IN_SOY
COMP1_Pb
COMP1_Pr
SCART_Lout
SCART_Rout
HP_LOUT_MAIN
HP_ROUT_MAIN
TU_CVBS
SC_FB
SC_ID
NON_EU
R422-*1
COMP1_Y
5.5V
D404
0
SCART_FB_DIRECT
SC_B
SC_G
SC_R
D403
D401
5.5V
5.5V
Near Place Scart AMP
C6006
1uF 25V
C6001
SC_L_IN
SC_R_IN
COMP1/AV1/DVI_L_IN
COMP1/AV1/DVI_R_IN
+12V
R430
R445
C405
150pF
50V
C408
150pF
50V
EU
C402
150pF
50V
OPT
SCART_FB_DIRECT
R423100
10K
EU
R435
R422
75
10pF
10pF
C473
C472
50V
OPT
D406
5.5V
EU
EU
10K
1uF25V
R60 06
EU
EU
10K
R6005
EU
EU
R408
100K
R403
100K
EU
C403
2.2uF
10V
EU
EU
R404
100K
R409
100K
R6450
100
C400
0.01uF
22K
R6451
C401
0.01uF
22K
L408
L409
50V
OPT
C430
EU
C474
2.2uF
100
10pF
50V
10V
1uH
C410
150pF
1uH
C462
150pF
EU
EU
R436
2.7K
10pF
EU
50V
OPT
10pF
C431
C470
50V
SCART_AMP_R_FB
SCART_AMP_L_FB
EU
C406
+3.3V_NORMAL
R4641K1/16W
1%
R465
390
1/16W
1%
DAC_START_PULLDOWN
R466821/16W
R410
75
1%
R411
75
EU
1%
NON_EU
R436-*1
0
75
75
EU
75
1%
1%
1%
R416
R414
R412
75
10pF
1%
50V
R413
SCART_Lout_SOC
SCART_Rout_SOC
AUDA_OUTL
AUDA_OUTR
C404
0.01uF
50V
EU
75
1%
R415
CLK_54M_VTT
1%
75
1%
R417
FOR EMI
R424
R425
R427
R428
R429
1%
R41827K
1%
R41927K
1%
R42027K
1%
R42127K
SC_FB
Clock for H13A
MAIN Clock(24Mhz)
12pF
C426
12pF
C427
Place SOC Side
R434
C424 0.047uF
100
R433
C425 0.047uF
100
SC_CVBS_IN_SOY
R432
C423 0.047uF
100
C417 0.047uF
33
C418 0.047uF
33
C428 1000pF
C419 0.047uF
33
C420 0.047uF
33
C421 0.047uF
33
C429 1000pF
C422 0.047uF
33
R431
AUDIO IN
C4324.7uF
R43710K 1%
C4334.7uF
R43810K 1%
C4344.7uF
R43910K 1%
C4354.7uF
R44010K 1%
+3.3V_NORMAL
R446
4.7K
R401
470
1/16W
5%
R4061K
SCART_FB_BUFFER
SCART_FB_BUFFER
C
B
E
1/16W
1%
SCART_FB_BUFFER
X-TAL_1
GND_1
1
2
4
3
GND_2
X-TAL_2
AV1_CVBS_IN_SOC
SC_CVBS_IN_SOC
TU_CVBS_SOC
SC_FB_SOC
SC_ID_SOC
COMP1_PB_IN_SOC
COMP1_Y_IN_SOC
COMP1_Y_IN_SOC_SOY
COMP1_PR_IN_SOC
COMP2_PB_IN_SOC
COMP2_Y_IN_SOC
COMP2_Y_IN_SOC_SOY
COMP2_PR_IN_SOC
SC_FB_BUF
MMBT3904(NXP)
Q400
SCART_FB_BUFFER
R441
X400
24MHz
AUAD_L_CH3_IN
AUAD_R_CH3_IN
AUAD_L_CH2_IN
AUAD_R_CH2_IN
Tuner IF Filter
1M
COMP1_Y_IN_SOC_SOY
COMP2_Y_IN_SOC_SOY
HP_LOUT_AMP
XIN_SUB
XOUT_SUB
XOUT_SUB
XTAL_SEL[0]
XTAL_SEL[1]
SOC_RESET
OPM[0]
OPM[1]
H13A_SCL
H13A_SDA
AV1_CVBS_IN_SOC
SC_CVBS_IN_SOC
TU_CVBS_SOC
DTV/MNT_V_OUT_SOC
OPT
Placed as close as possible to SOC
REFT
REFB
R44768
R44868
R44968
SC_ID_SOC
SC_FB_SOC
COMP1_PB_IN_SOC
COMP1_Y_IN_SOC
COMP1_PR_IN_SOC
COMP2_PB_IN_SOC
COMP2_Y_IN_SOC
COMP2_PR_IN_SOC
+3.3V_NORMAL
VCC
PS
OUT
DTV/MNT_V_OUT
HP_OUT
L400
To ADC
NON_TU_W_BR/TW
NON_TU_W_BR/TW
NON_TU_W_BR/TW
HP_OUT
C407
0.22uF
10V
ADC_I_INN
ADC_I_INP
BLM18PG121SN1D
Place at JACK SIDE
P17
IN
1
GND
2
BIAS
3
TU_W_BR/TW
R443-*1
220
0.01uF
0.01uF
BLM18PG121SN1D
HP_ROUT_AMP
C437
C438
P18
J17
N18
D18
M18
M17
E3
K3
K2
A8
B8
U13
V14
V15
V13
U15
U14
U7
V6
V7
U10
V12
T5
T6
U8
V8
V9
U9
V10
U11
V11
U12
EU
C413
L406
OPT
HP_OUT
L401
4.7uF
R453330
C443 0.047uF
68
R450
C439
100pF
50V
C440 0.047uF
C441 0.047uF
C442 0.047uF
IC400
MM1756DURE
6
5
4
R443
51
C436
22pF
R444
51
Placed as close as possible to IC100
HP_LOUT
OP MODE Setting
& Select XTAL Input
OP MODE[0:1] : SW[2:1]
00 => Normal Operaiton Mode
/T32 Debug Mode
01 => Internal Test Purpose
10 => Internal Test Purpose
11 => Internal Test Purpose
XTAL SEL[1:0] : SW[4:3]
00 => Xtal Input
01 => CLK 24M from H13D
10 => XTAL Bypass from H13D
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
BSD-NC4_H004-HD
2012-11-13
MAIN AUDIO/VIDEO
IC100
Copyright ⓒ 2013 LG Electronics. Inc. All right reserved.
Only for training and service purposes
DDR3 1.5V bypass Cap - Place these caps near Memory
C521
C522
C520
0.1uF
0.1uF
0.1uF
16V
16V
16V
M8
VREFCA
H1
VREFDQ
L8
ZQ
B2
VDD_1
D9
VDD_2
G7
VDD_3
K2
VDD_4
K8
VDD_5
N1
VDD_6
N9
VDD_7
R1
VDD_8
R9
VDD_9
A1
VDDQ_1
A8
VDDQ_2
C1
VDDQ_3
C9
VDDQ_4
D2
VDDQ_5
E9
VDDQ_6
F1
VDDQ_7
H2
VDDQ_8
H9
VDDQ_9
J1
NC_1
J9
NC_2
L1
NC_3
L9
NC_4
A9
VSS_1
B3
VSS_2
E1
VSS_3
G8
VSS_4
J2
VSS_5
J8
VSS_6
M1
VSS_7
M9
VSS_8
P1
VSS_9
P9
VSS_10
T1
VSS_11
T9
VSS_12
B1
VSSQ_1
B9
VSSQ_2
D1
VSSQ_3
D8
VSSQ_4
E2
VSSQ_5
E8
VSSQ_6
F9
VSSQ_7
G1
VSSQ_8
G9
VSSQ_9
J8
VREFCA
E1
VREFDQ
H8
ZQ
A2
VDD_1
A9
VDD_2
D7
VDD_3
G2
VDD_4
G8
VDD_5
K1
VDD_6
K9
VDD_7
M1
VDD_8
M9
VDD_9
B9
VDDQ_1
C1
VDDQ_2
E2
VDDQ_3
E9
VDDQ_4
A1
VSS_1
A8
VSS_2
B1
VSS_3
D8
VSS_4
F2
VSS_5
F8
VSS_6
J1
VSS_7
J9
VSS_8
L1
VSS_9
L9
VSS_10
N1
VSS_11
N9
VSS_12
B2
VSSQ_1
B8
VSSQ_2
C9
VSSQ_3
D1
VSSQ_4
D9
VSSQ_5
M1_1_DDR_VREFCA
M8
H1
L8
ZQ
B2
D9
G7
K2
K8
N1
N9
R1
R9
A1
A8
C1
C9
D2
E9
F1
H2
H9
J1
NC_1
J9
NC_2
L1
NC_3
L9
NC_4
A9
B3
E1
G8
J2
J8
M1
M9
P1
P9
T1
T9
B1
B9
D1
D8
E2
E8
F9
G1
G9
Close to REFOUT pin
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
BSD-NC4_H005-HD
2012-09-14
MAIN DDR
PCM_RESET
Copyright ⓒ 2013 LG Electronics. Inc. All right reserved.
Only for training and service purposes
CI
CI_TS_DATA[3]
CI_TS_DATA[2]
CI_TS_DATA[1]
CI_TS_DATA[0]
AR700
100
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
TPI_DATA[3]
TPI_DATA[2]
TPI_DATA[1]
TPI_DATA[0]
BSD-NC4_H007-HD
2012-10-20
PCMCIA
RL_ON
Copyright ⓒ 2013 LG Electronics. Inc. All right reserved.
Only for training and service purposes
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
LG1154
POWER
BSD-NC4_H023-HD
2012-12-07
Renesas MICOM
Copyright ⓒ 2013 LG Electronics. Inc. All right reserved.
Only for training and service purposes
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
MICOM
2012.02.22
30
DOOR MOTOR Sheet option : 55/65_Motor
Copyright ⓒ 2013 LG Electronics. Inc. All right reserved.
Only for training and service purposes
LGE Internal Use Only
MOTOR_CTRL_C
MOTOR_CTRL_D
MOTOR_CTRL_A
MOTOR_CTRL_B
55/65_Motor
IC3101
KID65003AF
I1
1
I2
2
I3
3
I4
4
I5
5
I6
6
I7
7
GND
8
55/65_Motor
IC3100
KID65003AF
I1
1
I2
2
I3
3
I4
4
I5
5
I6
6
I7
7
GND
8
55/65_Motor
P3100
+12V
SMAW200-H16S2
L3100
C3102
0.1uF
CIS21J121
10
12
14
16
12V
2
12V
4
CTRL_D
6
CTRL_B
8
GND
C3105
0.1uF
C3106
0.1uF
GND
GND
SPK_L+
H_SPK_L+H_SPK_L-
DOOR_CLOSE_DET
O1
16
O2
15
O3
14
O4
13
O5
12
O6
11
O7
10
COMMON
9
C3101
0.1uF
+12V
DOOR_OPEN_DET
C3104
C3103
0.1uF
0.1uF
H_SPK_R-
H_SPK_R+
CLOSE_DET
OPEN_DET
CTRL_C
CTRL_A
GND
SPK_R-
SPK_R+
SPK_L-
1
3
5
7
9
11
13
15
17
GND
O1
16
O2
15
O3
14
O4
13
O5
12
O6
11
O7
10
COMMON
9
C3100
0.1uF
+12V
THE SYMBOL MARK OF THIS SCHEMETIC DIAGRAM INCORPORATES
SPECIAL FEATURES IMPORTANT FOR PROTECTION FROM X-RADIATION.
FILRE AND ELECTRICAL SHOCK HAZARDS, WHEN SERVICING IF IS
ESSENTIAL THAT ONLY MANUFATURES SPECFIED PARTS BE USED FOR
THE CRITICAL COMPONENTS IN THE SYMBOL MARK OF THE SCHEMETIC.
GP4
Motor31
Loading...
+ 85 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.