Installing and servicing heating equipment can be hazardous due to
gas and electrical components. Only trained and qualified personnel should install, repair, or service heating equipment.
Untrained personnel can perform basic maintenance functions
such as cleaning and replacing air filters. All other operations must
be performed by trained service personnel. When working on
heating equipment, observe precautions in the literature, on tags,
and on labels attached to or shipped with the unit and other safety
precautions that may apply.
→
Follow all safety codes. In the United States, follow all safety
codes including the National Fuel Gas Code (NFGC) NFPA No.
54-1992/ANSI Z223.1-1992. In Canada, refer to the current
edition of the National Standard of Canada CAN/CGA-B149.1-
Series G
Cancels: II 395C-40-9II 395C-40-10
1-96
®
and .2-M95 Natural Gas and Propane Installation Codes (NSCNGPIC). Wear safety glasses and work gloves. Have fire extinguisher available during start-up and adjustment procedures and
service calls.
Recognize safety information. This is the safety-alert symbol
When you see this symbol on the furnace and in instructions or
manuals, be alert to the potential for personal injury.
Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe
personal injury or death. WARNING signifies a hazard which
could result in personal injury or death. CAUTION is used to
identify unsafe practices which would result in minor personal
injury or product and property damage.
These instructions cover minimum requirements and conform to
existing national standards and safety codes. In some instances,
these instructions exceed certain local codes and ordinances,
especially those that may not have kept up with changing residential construction practices. We require these instructions as a
minimum for a safe installation.
TABLE 1—MINIMUM CLEARANCES FROM
COMBUSTIBLE MATERIALS (IN.)
UNIT SIZE045 AND 070 091-155
SidesSingle-Wall Vent10
Type B-1 Double-Wall Vent00
Back00
Plenum Top11
VentSingle-Wall Vent66
Type B-1 Double-Wall Vent11
FrontSingle-Wall Vent66
Type B-1 Double-Wall Vent33
Service3030
NOTES:
1. Provide 30-in. front clearance for servicing. An open door in front of the unit
can meet this requirement.
2. A minimum clearance of 3 in. must be provided in front of the unit for
combustion air and proper operation.
ama
CANADIAN GAS ASSOCIATION
APPROVED
R
.
—1—
39 7⁄8″
28 1⁄2″
FLUE COLLAR
7
⁄8-IN. DIA HOLE
POWER ENTRY
7
⁄8-IN. DIA
ACCESSORY
1 3⁄4-IN.DIA HOLE
GAS ENTRY
1
⁄2-IN. DIA HOLE
THERMOSTAT
WIRE ENTRY
2 1⁄16″
1″
5 3⁄8″
5 13⁄16″
2 3⁄8″
12 5⁄16″
AIRFLOW
A
D
13
⁄16″
5 3⁄8″
5 13⁄16″
2 3⁄8″
2 11⁄16″
2 1⁄16″
1″
7
⁄8-IN. DIA
POWER ENTRY
1 1⁄2-IN.DIA
R.H. GAS ENTRY
7
⁄8-IN. DIA ACCESSORY
1
⁄2-IN. DIA THERMOSTAT
WIRE ENTRY
19″
OUTLET
13
⁄16″
SIDE INLET
TYP 1″
11
11
⁄16″
24 5⁄16″
AIR INLET
3″
NOTES:
11
⁄16″
E
1. Two additional 7⁄8-in. dia knockouts are located in the top plate.
⁄16″
5
TYP
⁄8″
SIDE INLET
231⁄4″
SIDE RETURN
DUCT LOCATION
2. Minimum return-air opening at furnace:
a. For 800 CFM–16-in. round or 141⁄2 x 12-in. rectangle.
b. For 1200 CFM–20-in. round or 141⁄2 x 191⁄2-in. rectangle.
c. For 1600 CFM–22-in. round or 141⁄2 x 231⁄4-in. rectangle.
d. For airflow requirements above 1800 CFM, use both side inlets,
a combination of 1 side inlet and the bottom, or the bottom only.
CAUTION: Electrostatic discharge can affect electronic
components. Take precautions during furnace installation
and servicing to protect the furnace electronic control.
Precautions will prevent electrostatic discharges from
personnel and hand tools which are held during the
procedure. These precautions will help to avoid exposing
the control to electrostatic discharge by putting the
furnace, the control, and the person at the same electro-
static potential.
1. Disconnect all power to the furnace. DO NOT TOUCH
THE CONTROL OR ANY WIRE CONNECTED TO THE
CONTROL PRIOR TO DISCHARGING YOUR BODY’S
ELECTROSTATIC CHARGE TO GROUND.
2. Firmly touch a clean, unpainted, metal surface of the
furnace chassis which is close to the control. Tools held in
a person’s hand during grounding will be satisfactorily
discharged.
3. After touching the chassis you may proceed to service the
control or connecting wires as long as you do nothing that
recharges your body with static electricity (for example; DO
NOT move or shuffle your feet, DO NOT touch ungrounded objects, etc.).
—2—
4. If you touch ungrounded objects (recharge your body with
static electricity), firmly touch furnace again before touching control or wires.
5. Use this procedure for installed and uninstalled (ungrounded) furnaces.
6. Before removing a new control from its container, discharge your body’s electrostatic charge to ground to protect
the control from damage. If the control is to be installed in
a furnace, follow items 1 through 5 before bringing the
control or yourself into contact with the furnace. Put all
used AND new controls into containers before touching
ungrounded objects.
7. An ESD service kit (available from commercial sources)
may also be used to prevent ESD damage.
INTRODUCTION
→
The Model 395CAV, Series G Furnace is available in sizes 45,000
through 155,000 Btuh input capacities.
The design of the upflow gas-fired furnace is A.G.A./C.G.A.
certified for natural and propane gas and for installation on
combustible flooring, in alcoves, attics, basements, closets, or
utility rooms. The design of this furnace line is not A.G.A./C.G.A.
certified for installation in mobile homes, recreation vehicles, or
outdoors.
Before installing the furnace, refer to the current edition of the
NFGC. Canadian installations must be installed in accordance with
NSCNGPIC and all authorities having jurisdiction. For further
information, the NFGC is available from National Fire Protection
Association Inc., Batterymarch Park, Quincy, MA 02269; American Gas Association, 1515 Wilson Boulevard, Arlington, VA
22209; or from Literature Distribution.
Installation must conform to the regulations of the serving gas
supplier and the local building, heating, and plumbing codes in
effect in the area in which the installation is made, or in the
absence of local codes with the requirements of the NFGC.
CAUTION: Application of this furnace should be indoors with special attention given to vent sizing and
material, gas input rate, air temperature rise, and unit
sizing. Improper installation or misapplication of the
furnace can require excessive servicing or cause premature component failure.
This furnace is designed for a minimum continuous return-air
temperature of 60°F db or an intermittent operation down to 55°F
db such as when used with a night setback thermostat. Return-air
temperature must not exceed a maximum of 85°F db.
WARNING: Improper installation, adjustment, alteration, service, maintenance, or use can cause carbon
monoxide poisoning, explosion, fire, electrical shock, or
other conditions which may cause personal injury or
property damage. Consult a qualified installer, service
agency, local gas supplier, or your distributor or branch
for information or assistance. The qualified installer or
agency must use only factory-authorized and listed kits or
accessories when modifying this product. Failure to
follow this warning can cause electrical shock, fire,
personal injury, or death.
For accessory installation details, refer to the applicable instruction
literature.
NOTE:Remove all shipping brackets and materials before
operating the furnace.
I. LOCATION
A. General
CAUTION: Do not install furnace in a corrosive or
contaminated atmosphere. Make sure all combustion and
circulating air requirements are met, in addition to all
local codes and ordinances.
→
CAUTION: Do not use this furnace during construction
when adhesives, sealers, and/or new carpets are being
installed. If the furnace is required during construction,
use clean outside air for combustion and ventilation.
Compounds of chlorine and fluorine when burned with
combustion air form acids which cause corrosion of the
heat exchangers and metal vent system. Some of these
compounds are found in paneling and dry wall adhesives,
paints, thinners, masonry cleaning materials, and many
other solvents commonly used in the construction process.
Excessive exposure to contaminated combustion air will
result in safety and performance related problems.
This furnace must be installed so the electrical components are
protected from water. This furnace shall not be installed directly on
carpeting, tile, or any combustible material other than wood
flooring.
Locate furnace as close to the chimney/vent and as near the center
of the air distribution system as possible. The furnace should be
installed as level as possible.
When a furnace is installed so that the supply ducts carry air to
areas outside the space containing the furnace, the return air must
also be handled by a duct(s) sealed to the furnace casing and
terminating outside the space containing the furnace.
Provide ample space for servicing and cleaning. Always comply
with the minimum fire protection clearances shown on the unit
rating plate.
B. Location Relative to Cooling Equipment
The cooling coil must be installed parallel with or on the
downstream side of the unit to avoid condensation in the heat
exchangers. When installed parallel with a furnace, dampers or
other means used to control the flow of air must prevent chilled air
from entering the unit. If the dampers are manually operated, they
must be equipped with means to prevent operation of either unit
unless the damper is in the full-heat or full-cool position.
C. Hazardous Locations
When the furnace is installed in a residential garage, it must be
installed so that the burners and ignition source are located at least
18 in. above the floor. The furnace should be protected from
physical damage by vehicles. When a furnace is installed in public
garages, airplane hangars, or other buildings having hazardous
atmospheres, the unit must be installed in accordance with the
recommended good practice requirements of the National Fire
Protection Association, Inc.
II. AIR FOR COMBUSTION AND VENTILATION
Provisions for adequate combustion and ventilation air must be
provided in accordance with Section 5.3 of the NFGC, Air for
Combustion and Ventilation, or applicable provisions of the local
building codes.
Canadian installations must be installed in accordance with NSCNGPIC and all authorities having jurisdiction.
—3—
CAUTION: Air for combustion must not be contaminated by halogen compounds, which include fluoride,
chloride, bromide, and iodide. These elements are found
in aerosol sprays, detergents, bleaches, cleaning solvents,
salts, air fresheners, and other household products.
SUPPLY
AIR
VENT THROUGH ROOF
All fuel-burning equipment must be supplied with air for combustion of the fuel. Sufficient air MUST be provided to ensure there
will not be a negative pressure in the equipment room or space. In
addition, a positive seal MUST be made between the furnace
cabinet and the return-air duct to prevent pulling air from the
burner area and draft safeguard opening.
CAUTION: The operation of exhaust fans, kitchen ventilation fans, clothes dryers, or fireplaces could create a
NEGATIVE PRESSURE CONDITION at the furnace.
Make-up air MUST BE PROVIDED for the ventilation
devices, in addition to that required by the furnace.
The requirements for combustion and ventilation air depend upon
whether the furnace is located in an unconfined or confined space.
A. Unconfined Space
An unconfined space must have at least 50 cubic ft for each 1000
Btuh of input for all the appliances (such as furnaces, clothes
dryer, water heaters, etc.) in the space.
For Example:
395CAV FURNACE
INPUT BTUH
44,000293
66,000440
88,000587
110,000733
132,000880
154,0001026
MINIMUM SQ FT WITH
7-1/2 FT CEILING
If the unconfined space is constructed unusually tight, air for
combustion and ventilation MUST come from either the outdoors
or spaces freely communicating with the outdoors. Combustion
and ventilation openings must be sized the same as for a confined
space. A minimum opening with a total of at least 1 sq in. per 5000
Btuh of total input rating for all equipment must be provided.
Return air must not be taken from the room unless an equal or
greater amount of air is supplied to the room.
B. Confined Space
A confined space has volume less than 50 cu ft per 1000 Btuh of
the total input rating for all appliances installed in that space. A
confined space MUST have 2 permanent openings, 1 within 12 in.
of the ceiling and the other within 12 in. of the floor. (See Fig. 2.)
NOTE: In determining the free area of an opening, the blocking
effect of the louvers, grilles, and screens must be considered. If the
free area of a louver or grille design is unknown, it may be
assumed that wood louvers have a 20 percent free area, and metal
louvers or grilles have a 60 percent free area. Screens, when used,
must not be smaller than 1/4-in. mesh. Louvers and grilles must be
constructed so they cannot be closed.
The size of the openings depends upon whether the air comes from
inside or outside of the structure.
1. All air from inside the structure:
a. Each opening MUST have at least 1 sq in. of free area
per 1000 Btuh of the total input for all equipment within
the confined space, but not less than 100 sq in. per
opening. (See Fig. 2.)
12″ MAX
1 SQ IN.
PER 1000
BTUH* IN DOOR
OR WALL
INTERIOR
HEATED
SPACE
RETURN AIR
* Minimum opening size is 100 square in. with
minimum dimensions of 3-In.
†
Minimum of 3-In. when type-B1 vent is used.
UNCONFINED
SPACE
CONFINED
SPACE
6″ MIN
(FRONT)
1 SQ IN.
PER 1000
BTUH* IN DOOR
OR WALL
12″ MAX
A89012
Fig. 2—Air For Combustion and Ventilation (Inside Air)
For Example:
395CAV FURNACE
INPUT BTUH
44,000100
66,000100
88,000100
110,000110
132,000132
154,000154
FREE AREA PER OPENING
(SQ IN.)
b. If the building is constructed unusually tight, a perma-
nent opening directly communicating with the outdoors
should be provided. This opening shall have a minimum
free area of 1 sq in. per 5000 Btuh of total input rating
for all equipment in the enclosure.
c. If the furnace is installed on a raised platform to provide
a return-air plenum, and return air is taken directly from
the hallway or space adjacent to the furnace, all air for
combustion must come from outdoors.
2. All air from outside the structure:
a. If combustion air is taken from outdoors through vertical
ducts, the openings and ducts MUST have at least 1 sq
in. of free area per 4000 Btuh of the total input for all
equipment within the confined space. (See Fig. 3.)
b. If combustion air is taken from the outdoors through
horizontal ducts, the openings and ducts MUST have at
least 1 sq in. of free area per 2000 Btuh of the total input
for all equipment within the confined space.
c. When ducts are used, they must be of the same cross-
sectional area as the free area of the openings to which
they connect. The minimum dimension of rectangular
ducts must not be less than 3 in. (See Fig. 3.)
ROUND PIPE
(IN. DIA)
ROUND PIPE
(IN. DIA)
WARNING: Do not install the furnace on its back;
safety control operation will be adversely affected. Never
connect return-air ducts to the back of the furnace. A
failure to follow this warning can cause a fire, personal
injury, or death.
III. FILTER ARRANGEMENT
The factory-supplied filter(s) is shipped in the blower compartment. Determine location for the filter and relocate filter retaining
wire if necessary. See Fig. 4 for side return application and Fig. 5
for bottom return application. See Table 3 to determine correct
filter size for desired filter location. Table 3 indicates filter size,
location, and quantity shipped with the furnace.
WASHABLE
FILTER
FILTER
RETAINER
DUCTS
A
B
TO
SUPPLY
AIR
D
VENT
THROUGH
ROOF
CONFINED
C
DUCT
TO
OUTDOORS
OUTDOORS
12″ MAX
1 SQ IN.
PER 2000
BTUH*
DUCTS
TO
OUTDOORS
1 SQ IN.
PER 2000
BTUH*
12
″ MAX
RETURN AIR
*Minimum dimensions of 3-In.
Use any of the following
NOTE:
combinations of openings:
A & B C & D D & E F & G
Fig. 3—Air For Combustion and Ventilation
(Outside Air)
SPACE
E
12″ MAX
1 SQ IN.
PER 4000
BTUH*
F
1 SQ IN.
BTUH*
1 SQ IN.
BTUH*
G
1 SQ IN.
PER 4000
BTUH*
12″
MAX
PER
4000
OUTDOORS
PER
4000
12″
MAX
A89013
A93045
Fig. 4—Side Filter Arrangement
(Control Removed for Clarity)
For bottom air-return applications, filter may need to be cut to fit
some furnace casing widths. A bottom closure panel is factory
installed in the bottom of the furnace. When bottom return inlet is
desired, remove and discard the bottom closure panel. Remove
side clip(s) and install in hole. Two sets of hardware are needed for
furnaces in 24-1/2-in. wide casings using 2 filters for bottom
return. All hardware is provided for filter installation.
NOTE: Furnaces with a 17-1/2-in. wide casing require an additional procedure when locating the filter for bottom return-air
application. Field fabricate a sheet metal filler strip1X3X24-1/2
in. and install it along side of the filter as shown in Fig. 5. Drive
2 screws through the casing side and into the filler strip to secure
it in place. Filter should rest on the top of the filler strip when
installed.
WARNING: Never operate unit without a filter or with
filter access door removed. Failure to follow this warning
can cause fire, personal injury, or death.
IV. LEVELING LEGS (IF REQUIRED)
When the furnace is used with side inlet(s) and leveling legs are
required, refer to Fig. 6, and install field-supplied, corrosionresistant 5/16-in. machine bolts and nuts.
NOTE: The maximum length of the bolt should not exceed 1-1/2
in.
1. Lay furnace on its back. Locate and drill 5/16-in. diameter
hole in each bottom corner of furnace as shown in Fig. 6.
2. Install nut on bolt and install bolt and nut in hole. (Install
flat washer if desired.)
3. Install another nut on other side of furnace base. (Install flat
washer if desired.)
—5—
Loading...
+ 11 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.