Lenox XC14 User Manual

INSTALLATION
201 Lennox Industries Inc.
Dallas, Texas, USA
RETAIN THESE INSTRUCTIONS
FOR FUTURE REFERENCE
These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities having jurisdiction before installation.
WARNING
Improper installation, adjustment, alteration, service or maintenance can cause personal injury, loss of life, or damage to property.
Installation and service must be performed by a licensed professional installer (or equivalent) or a service agency.
IMPORTANT
The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFCs, HCFCs and HFCs) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for noncompliance.
IMPORTANT
INSTRUCTIONS
Elite® Series XC14 Units
AIR CONDITIONER
506636−01 07/11 Supersedes 11/10
TABLE OF CONTENTS
General 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shipping and Packing List 1. . . . . . . . . . . . . . . . . . . . . .
Unit Dimensions 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Model Number Identification 2. . . . . . . . . . . . . . . . . . . .
Unit Parts Arrangement 3. . . . . . . . . . . . . . . . . . . . . . . .
Operating Gauge Set and Service Valves 4. . . . . . . . .
Recovering Refrigerant from Existing System 6. . . . .
Unit Placement 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Removing and Installing Panels 9. . . . . . . . . . . . . . . . .
New or Replacement Line Set 10. . . . . . . . . . . . . . . . . . .
Brazing Connections 12. . . . . . . . . . . . . . . . . . . . . . . . . . .
Flushing Line Set and Indoor Coil 15. . . . . . . . . . . . . . . .
Installing Indoor Metering Device 16. . . . . . . . . . . . . . . .
Leak Test Line Set and Indoor Coil 17. . . . . . . . . . . . . . .
Evacuating Line Set and Indoor Coil 18. . . . . . . . . . . . .
Electrical 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Servicing Units Delivered Void of Charge 23. . . . . . . . .
Unit Start−Up 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Refrigerant 23. . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Operation 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maintenance 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start−Up and Performance Checklist 30. . . . . . . . . . . . .
General
Litho U.S.A.
This unit must be matched with an indoor coil as speci­fied in Lennox XC14 Engineering Handbook. Coils pre- viously charged with HCFC−22 must be flushed.
NOTICE TO INSTALLER
UNIT PLACEMENT
It is critical for proper unit operation to place outdoor unit on an elevated surface as described in Unit Placement section on page 7.
BRAZING LINE SET TO SERVICE VALVES
It is imperative to follow the brazing technique illustrated starting on page 12 to avoid damaging the service valve’s internal seals.
07/11 506636−01
The XC14 Air Conditioners, which will also be referred to in this instruction as the outdoor unit, uses HFC−410A refrigerant. This outdoor unit must be installed with a matching indoor unit and line set as outlined in the Lennox XC14 Engineering Handbook.
Shipping and Packing List
Check the unit for shipping damage and listed times below are intact. If damaged, or if parts are missing, immediately contact the last shipping carrier.
1  Assembled outdoor unit.
1  Refrigerant flow control (RFC) kit (Fixed Orifice)
Page 1
*2P0711* *P506636-01*
Unit Dimensions − Inches (mm)
A
LIQUID LINE CONNECTION
ELECTRICAL INLETS
SUCTION LINE CONNECTION
C
UNIT SUPPORT
FEET
8−1/2"
(216)
8−3/4 (222)
5−1/2"
(140)
XC14−018 BASE SECTION
SIDE VIEW
Model
XC14−018−230 31 (787)
XC14−024−230 35 (889) XC14−030−230 39 (991) XC14−036−230 39 (991) XC14−042−230 31 (787) XC14−041−230 39 (991) XC14−048−230 39 (991) XC14−047 −230 35 (889)
XC14−060−230 35 (889)
A B C D E F G H J K
13−1/2"
(343)
30−1/2
35−1/2
27
(686)
(775)
(902)
28
(711)
35
(889)
39−1/2 (1003)
9−1/2"
(241)
8−1/4"
(210)
4−3/4"
(121)
UNIT SUPPORT
FEET
D
E
4−1/2"
(108)
XC14 Dimensions − in. (mm)
See XC14−018 base section above.
13−7/8
(352)
16−7/8
(429)
7−3/4 (197)
8−3/4 (222)
B
TOP VIEW
F
G
XC14−024 TO −060 BASE WITH
ELONGATED LEGS
3−1/4
(83)
3−1/8
(79)
27−1/8
(689)
30−3/4
(781)
3−5/8
(92)
4−5/8 (117)
4−1/2 (114)
3−3/4
(95)
K
J
H
20−5/8
(524)
26−7/8
(683)
Model Number Identification
Refrigerant Type
X = R−410A
Unit Type
C = Air Conditioner
Series
506636−01
X
C 14
XXX
230
Nominal Cooling Capacity
018 = 1.5 tons 024 = 2 tons 030 = 2.5 tons 036 = 3 tons 041 = 3.5 tons 042 = 3.5 tons 047 = 4 tons 048 = 4 tons 060 = 5 tons
03
Page 2
Minor Revision Number
Voltage 230 = 208/230V−1ph−60hz
Typical Unit Parts Arrangement
CONTROL PANEL
CONTACTOR−1POLE (K1−1)
THERMAL PROTECTION
SWITCH (S173) (ONLY ON
−036 AND −060)
SWITCH
COVER
SINGLE POLE
GROUND LUG
COMPRESSOR
DUAL RUN CAPACITOR (C12)
DISCHARGE LINE
COMPRESSOR
HARNESS
MUFFLER
CRANKCASE HEATER THERMO-
STAT (S40) (−041, −047, −048 AND
DRIER (SINGLE−FLOW)
−060 UNITS ONLY)
LIQUID LINE FILTER
LIQUID LINE SERVICE
VALV E
FIELD CONNECTION
FOR LIQUID LINE SET
PLUMBING AND SWITCHES COMPONENTS
Figure 1. Typical Parts Arrangements
Page 3
FIELD CONNECTION FOR SUCTION LINE
THERMAL PROTECTION SWITCH (S5)
HIGH PRESSURE SWITCH (S4)
SUCTION LINE SERVICE VALVE
XC14 SERIES
WARNING
Electric Shock Hazard. Can cause injury or death. Unit must be grounded in accordance with national and local codes.
Line voltage is present at all components when unit is not in operation on units with single-pole contactors. Disconnect all remote electric power supplies before opening access panel. Unit may have multiple power supplies.
CAUTION
Physical contact with metal edges and corners while applying excessive force or rapid motion can result in personal injury. Be aware of, and use caution when working near these areas during installation or while servicing this equipment.
Operating Gauge Set and Service Valves
These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities who have jurisdiction before installation.
TORQUE REQUIREMENTS
When servicing or repairing heating, ventilating, and air conditioning components, ensure the fasteners are appropriately tightened. Table 1 lists torque values for fasteners.
IMPORTANT
Only use Allen wrenches of sufficient hardness (50Rc − Rockwell Harness Scale minimum). Fully insert the wrench into the valve stem recess.
Service valve stems are factory−torqued (from 9 ft−lbs for small valves, to 25 ft−lbs for large valves) to prevent refrigerant loss during shipping and handling. Using an Allen wrench rated at less than 50Rc risks rounding or breaking off the wrench, or stripping the valve stem recess.
See the Lennox Service and Application Notes #C−08−1 for further details and information.
IMPORTANT
To prevent stripping of the various caps used, the appropriately sized wrench should be used and fitted snugly over the cap before tightening.
Table 1. Torque Requirements
Parts Recommended Torque
Service valve cap 8 ft.− lb. 11 NM
Sheet metal screws 16 in.− lb. 2 NM
Machine screws #10 28 in.− lb. 3 NM
Compressor bolts 90 in.− lb. 10 NM
Gauge port seal cap 8 ft.− lb. 11 NM
USING MANIFOLD GAUGE SET
When checking the system charge, only use a manifold gauge set that features low loss anti−blow back fittings.
Manifold gauge set used with HFC−410A refrigerant systems must be capable of handling the higher system operating pressures. The gauges should be rated for use with pressures of 0 − 800 psig on the high side and a low side of 30" vacuum to 250 psig with dampened speed to 500 psi. Gauge hoses must be rated for use at up to 800 psig of pressure with a 4000 psig burst rating.
OPERATING SERVICE VALVES
The liquid and vapor line service valves are used for removing refrigerant, flushing, leak testing, evacuating, checking charge and charging.
Each valve is equipped with a service port which has a factory−installed valve stem. Figure 2 provides information on how to access and operating both angle and ball service valves.
506636−01
Page 4
Operating Angle Type Service Valve:
1. Remove stem cap with an appropriately sized wrench.
2. Use a service wrench with a hex−head extension (3/16" for liquid line valve sizes and 5/16" for vapor line valve sizes) to back the stem out counterclockwise as far as it will go.
SERVICE PORT CAP
SERVICE PORT CORE
(VALVE STEM SHOWN
TO INDOOR
UNIT
(VALVE STEM SHOWN OPEN) INSERT HEX WRENCH HERE
CLOSED) INSERT HEX WRENCH HERE
SERVICE PORT
CORE
TO OUTDOOR UNIT
ANGLE−TYPE SERVICE VALVE
(BACK−SEATED OPENED)
When service valve is OPEN, the service port is open to linE set, indoor and outdoor unit.
Operating Ball Type Service Valve:
1. Remove stem cap with an appropriately sized wrench.
2. Use an appropriately sized wrenched to open. To open valve, rotate stem counterclockwise 90°. To close rotate stem clockwise 90°.
TO INDOOR UNIT
TO OPEN ROTATE STEM COUNTERCLOCKWISE 90°.
TO CLOSE ROTATE STEM CLOCKWISE 90°.
SERVICE PORT
SERVICE PORT
SERVICE PORT
CORE
CAP
TO OUTDOOR
UNIT
BALL (SHOWN CLOSED)
VALV E STEM
STEM CAP
STEM CAP
ANGLE−TYPE SERVICE VALVE
(FRONT−SEATED CLOSED)
WHEN SERVICE VALVE IS CLOSED, THE SERVICE PORT IS OPEN TO
THE LINE SET AND INDOOR UNIT.
To Access Service Port:
A service port cap protects the service port core from contamination and serves as the primary leak seal.
1. Remove service port cap with an appropriately sized wrench.
2. Connect gauge set to service port.
3. When testing is completed, replace service port cap and tighten as follows:
With torque wrench: Finger tighten and
torque cap per table 1.
Without torque wrench: Finger tighten and
use an appropriately sized wrench to turn an additional 1/6 turn clockwise.
Reinstall Stem Cap:
Stem cap protects the valve stem from damage and serves as the primary seal. Replace the stem cap and tighten as follows:
9
10
8
11
12
7
6
With Torque Wrench: Finger tighten and
then torque cap per table 1.
Without Torque Wrench: Finger tight-
en and use an appropriately sized wrench to turn an additional 1/12 turn clockwise.
9
10
8
11
12
7
6
1/6 TURN
1
2
3
4
5
1/12 TURN
1
2
3
4
5
NOTE  A label with specific torque requirements may be affixed to the stem cap. If the label is present, use the specified torque.
Figure 2. Angle and Ball Service Valves
Page 5
XC14 SERIES
Recovering Refrigerant from Existing System
DISCONNECT POWER
Disconnect all power to the existing outdoor unit at the disconnect
12
switch or main fuse box/breaker panel.
MAIN FUSE BOX/BREAKER PANEL
MAIN FUSE
BOX/BREAKER
PANEL
DISCONNECT
SWITCH
RECOVERING REFRIGERANT
Remove existing HCFC−22 refrigerant using one of the following procedures:
3
IMPORTANT  Some system configurations may contain higher than normal refrigerant charge due to either large internal coil volumes,
and/or long line sets.
CONNECT MANIFOLD GAUGE SET
Connect a gauge set, clean recovery cylinder and a recovery machine to the service ports of the existing unit. Use the instructions provided with the recovery machine to make the connections.
MANIFOLD GAUGES
RECOVERY MACHINE
LOW
CLEAN RECOVERY CYLINDER
OUTDOOR UNIT
HIGH
METHOD 1:
Us this method if the existing outdoor unit is not equipped with shut−off valves, or if the unit is not operational and you plan to use the existing HCFC−22 to flush the system.
Remove all HCFC−22 refrigerant from the existing system. Check gauges after shutdown to confirm that the entire system is completely void of refrigerant.
METHOD 2:
Use this method if the existing outdoor unit is equipped with manual shut−off valves, and you plan to use new HCFC−22 refrigerant to flush the system.
The following devices could prevent full system charge recovery into the outdoor unit:
Outdoor unit’s high or low−pressure switches (if applicable) when tripped can cycle the compressor OFF. Compressor can stop pumping due to tripped internal pressure relief valve. Compressor has internal vacuum protection that is designed to unload the scrolls (compressor stops pumping) when the pressure ratio meets
a certain value or when the suction pressure is as high as 20 psig. (Compressor suction pressures should never be allowed to go into a vacuum. Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and
internal seals.) Once the compressor can not pump down to a lower pressure due to one of the above system conditions, shut off the vapor valve. Turn OFF the main power to unit and use a recovery machine to recover any refrigerant left in the indoor coil and line set.
Perform the following task: A Start the existing HCFC−22 system in the cooling mode and close the liquid line valve. B Use the compressor to pump as much of the existing HCFC−22 refrigerant into the outdoor unit until the outdoor system is full. Turn the outdoor unit
main power OFF and use a recovery machine to remove the remaining refrigerant from the system.
NOTE  It may be necessary to bypass the low pressure switches (if equipped) to ensure complete refrigerant evacuation.
C When the low side system pressures reach 0 psig, close the vapor line valve. D Check gauges after shutdown to confirm that the valves are not allowing refrigerant to flow back into the low side of the system.
Figure 3. Recovering Refrigerant
506636−01
Page 6
CLEARANCE ON ALL SIDES  INCHES (MILLIMETERS)
12 (305)
6 (152)
36 (914)
ACCESS PANEL
CONTROL PANEL
ACCESS
LOCATION
30 (762)
LINE SET CONNECTIONS
MINIMUM CLEARANCE BETWEEN
TWO UNITS
24 (610)
Figure 4. Installation Clearances
NOTES:
Clearance to one of the other three
sides must be 36 inches (914mm).
Clearance to one of the remaining
two sides may be 12 inches (305mm) and the final side may be 6 inches (152mm).
MINIMUM CLEARANCE
ABOVE UNIT
48 (1219)
Unit Placement
CAUTION
In order to avoid injury, take proper precaution when lifting heavy objects.
See Unit Dimensions on page 3 for sizing mounting slab, platforms or supports. Refer to figure 4 for mandatory installation clearance requirements.
POSITIONING CONSIDERATIONS
Consider the following when positioning the unit:
Some localities are adopting sound ordinances based
on the unit’s sound level registered from the adjacent property, not from the installation property. Install the unit as far as possible from the property line.
When possible, do not install the unit directly outside
a window. Glass has a very high level of sound transmission. For proper placement of unit in relation to a window see the provided illustration in figure 5, detail A.
PLACING UNIT ON SLAB
When installing unit at grade level, the top of the slab should be high enough above grade so that water from higher ground will not collect around the unit. The slab should have a slope tolerance as described in figure 5, detail B.
NOTE  If necessary for stability, anchor unit to slab as described in figure 5, detail D.
ELEVATING THE UNIT
Units are outfitted with elongated support feet as illustrated in figure 5, detail C.
If additional elevation is necessary, raise the unit by extending the height of the unit support feet. This may be achieved by using a 2 inch (50.8mm) Schedule 40 female threaded adapter.
The specified coupling will fit snuggly into the recessed portion of the feet. Use additional 2 inch (50.8mm) Schedule 40 male threaded adaptors which can be threaded into the female threaded adaptors to make additional adjustments to the level of the unit.
NOTE  Keep the height of extenders short enough to ensure a sturdy installation. If it is necessary to extend further, consider a different type of field−fabricated framework that is sturdy enough for greater heights.
Page 7
XC14 SERIES
DETAIL A
Install unit away from windows.
 Outside Unit Placement
DETAIL B
Install unit level or, if on a slope, maintain slope tolerance of two (2) degrees (or two inches per five feet [50 mm per 1.5 m]) away from building structure.
 Slab Mounting at Ground Level
BUILDING
STRUCTURE
MOUNTING SLAB
TWO 90° ELBOWS INSTALLED IN LINE SET WILL
REDUCE LINE SET VIBRATION.
DETAIL C
Elevated Slab Mounting
using Feet Extenders
LEG DETAIL
2" (50.8MM) SCH 40
FEMALE THREADED
ADAPTER
BASE
GROUND LEVEL
STABILIZING UNIT ON UNEVEN SURFACES
DETAIL D
#10 1/2" LONG SELF−DRILLING
SHEET METAL SCREWS
STABILIZING BRACKET (18 GAUGE
METAL  2" WIDTH; HEIGHT AS
#10 1−1/4" LONG HEX HD SCREW
Concrete slab  use two plastic anchors (hole drill 1/4")
Wood or plastic slab  no plastic anchor (hole drill 1/8")
DETAIL E
Stabilizing bracket (18 gauge metal  2" (50.8mm) width; height as required); bend to form right angle as exampled below.
 Slab Side Mounting
REQUIRED)
AND FLAT WASHER
 Deck Top Mounting
MINIMUM ONE
PER SIDE
COIL
BASE PAN
CORNER POST
2" (50.8MM) SCH 40
MALE THREADED
ADAPTER
Use additional 2" SCH 40 male threaded adapters which can be threaded into the female threaded adapters to make additional adjustments to the level of the unit.
IMPORTANT  To help stabilize an outdoor unit, some installations may require strapping the unit to the pad using brackets and anchors commonly available in the marketplace.
One bracket per side (minimum). For extra stability, two brackets per side, two inches (51mm) from each corner.
SAME FASTENERS AS SLAB SIDE MOUNTING.
FOR EXTRA
STABILITY
Figure 5. Placement, Slab Mounting and Stabilizing Unit
Page 8
506636−01
ROOF MOUNTING
Removing and Installing Panels
Install the unit a minimum of 6 inches (152 mm) above the roof surface to avoid ice build−up around the unit. Locate the unit above a load bearing wall or area of the roof that can adequately support the unit. Consult local codes for rooftop applications.
NOTICE
Roof Damage! This system contains both refrigerant and oil. Some
rubber roofing material may absorb oil and cause the rubber to swell when it comes into contact with oil. The rubber will then bubble and could cause leaks. Protect the roof surface to avoid exposure to refrigerant and oil during service and installation. Failure to follow this notice could result in damage to roof surface.
LOUVERED PANEL REMOVAL
Remove the louvered panels as follows:
1. Remove two screws, allowing the panel to swing open slightly.
2. Hold the panel firmly throughout this procedure. Rotate bottom corner of
panel away from hinged corner post until lower three tabs clear the slots as illustrated in detail B.
3. Move panel down until lip of upper tab clears the top slot in corner post as
illustrated in detail A.
LOUVERED PANEL INSTALLATION
Position the panel almost parallel with the unit as illustrated in detail D with the screw side as close to the unit as possible. Then, in a continuous motion:
1. Slightly rotate and guide the lip of top tab inward as illustrated in detail A and C; then upward into the top slot of the hinge corner post.
2. Rotate panel to vertical to fully engage all tabs.
3. Holding the panel’s hinged side firmly in place, close the right−hand side of the panel, aligning the screw holes.
4. When panel is correctly positioned and aligned, insert the screws and tighten.
IMPORTANT
Do not allow panels to hang on unit by top tab. Tab is for alignment and not designed to support weight of panel.
WARNING
To prevent personal injury, or damage to panels, unit or structure, be sure to observe the following:
While installing or servicing this unit, carefully stow all removed panels out of the way, so that the panels will not cause injury to personnel, nor cause damage to objects or structures nearby, nor will the panels be subjected to damage (e.g., being bent or scratched).
While handling or stowing the panels, consider any weather conditions, especially windy conditions, that may cause panels to be blown around and battered.
IMPORTANT! DO NOT ALLOW PANELS TO HANG ON UNIT BY TOP TAB. TAB IS FOR ALIGNMENT AND NOT DESIGNED TO SUPPORT WEIGHT OF PANEL.
PANEL SHOWN SLIGHTLY ROTATED TO ALLOW TOP TAB TO EXIT (OR ENTER) TOP SLOT FOR REMOVING (OR INSTALLING) PANEL.
SCREW
LIP
DETAIL A
DETAIL B
HOLES
Detail C
MAINTAIN MINIMUM PANEL ANGLE (AS CLOSE TO PARALLEL WITH THE UNIT AS POSSIBLE) WHILE INSTALLING PANEL.
ANGLE MAY BE TOO EXTREME
PREFERRED ANGLE FOR INSTALLATION
Figure 6. Removing and Installing Panels
HOLD DOOR FIRMLY TO THE HINGED
SIDE TO MAINTAIN
FULLY−ENGAGED TABS
Page 9
ROTATE IN THIS DIRECTION;
THEN DOWN TO REMOVE
PANEL
XC14 SERIES
Loading...
+ 21 hidden pages