These instructions are intended as a general guide and do
not supersede local codes in any way. Consult authorities
having jurisdiction before installation.
WARNING
Improper installation, adjustment, alteration, service or
maintenance can cause personal injury, loss of life, or
damage to property.
Installation and service must be performed by a licensed
professional installer (or equivalent) or a service agency.
General
The Lennox XPG15 outdoor units use HFC−410A
refrigerant. This unit must be installed with a matched
indoor coil and line set as outlined in the Lennox
Engineering Handbook. XPG15 series outdoor units are
designed for use in check expansion valve systems only,
and are not designed to be used with other refrigerant flow
control devices. The Lennox Engineering Handbook lists
compatible indoor check expansion valve kits which are
ordered separately.
The Lennox dedicated dual−fuel XPG15 outdoor unit
technology allows the system to alternate between heat
pump heating when outdoor temperature is ABOVE 32°F
{0°C} and automatically switching over to gas furnace
heating when outdoor temperature is BELOW 32°F {0°C},
making the most efficient use of fuel sources.
The ComfortSense 5000 and 7000 are the ONLY room thermostats approved by Lennox for use with the XPG15 series heat pump.
COMFORTSENSE® 5000
CATALOG# X4147
11/10506212−01
COMFORTSENSE
CATALOG# Y0349
*2P1110**P506212-01*
ATTENTION INSTALLERS
®
7000
IMPORTANT Setup is critical to ensure proper system operation.
Thermostat is not included and must be purchased separately.
System setup information and field wiring connections for both thermostat
models are available starting on page 25.
Page 1
Unit Dimensions Inches (mm)
39−1/2 (1003)
SIDE VIEW
UNIT SUPPORT FEET
DISCHARGE AIR
37 (940) [−024 AND −036]
47 (1194) [−048 AND −060]
VAPOR LINE
INLET
LIQUID LINE
INLET
4−1/2 (114)
18−1/2 (470)
8 (203)
1 (25)
35−1/2 (902)
HIGH VOLTAGE
ELECTRICAL
INLET
LOW VOLTAGE
ELECTRICAL
INLET
ACCESS VIEW
16−7/8 (429)
8−3/4 (222)
3−1/8 (79)
30−3/4 (781)
26−7/8 (683)
3−3/4 (95)
4−5/8 (117)
BASE
WARNING
This product and/or the indoor unit it is matched with may contain fiberglass wool.
Disturbing the insulation during installation, maintenance, or repair will expose you to fiberglass wool dust. Breathing this
may cause lung cancer. (Fiberglass wool is known to the State of California to cause cancer.)
Fiberglass wool may also cause respiratory, skin, and eye irritation.
To reduce exposure to this substance or for further information, consult material safety data sheets available from address
shown below, or contact your supervisor.
Lennox Industries Inc.
P.O. Box 799900
Dallas, TX 75379−9900
AMBIENT SENSOR Extend tip of plastic sensor
just outside of plastic sleeve.
Place ambient sensor and wire from demand defrost
control inside of plastic sleeve and route through gap
between corner post and coil support as shown.
Secure with wire tie.
DISCHARGE SENSOR Not required for this
application.
SLEEVE
DETAIL B
DEFROST COIL SENSOR Clip coil temperature sensor from
the demand defrost control on the return bend shown on models
as follows:
MODELS −048
AND −060
24 TUBES UP
MODELS −024, −
030, −036 AND
−042
12 TUBES
UP
Figure 2. Sensor Locations
Typical Control Panel Parts Arrangement
GROUND LUG
CONTACTOR−1POLE (K1−1)
DEMAND DEFROST CONTROL (A108)
LOW VOLTAGE − CONTROL WIRE TIE
Figure 3. Typical Control Panel Parts Arrangement
506212−01 11/10
CAPACITOR (C12)
Page 4
CAUTION
Physical contact with metal edges and corners while
applying excessive force or rapid motion can result in
personal injury. Be aware of, and use caution when
working near these areas during installation or while
servicing this equipment.
IMPORTANT
The Clean Air Act of 1990 bans the intentional venting of
refrigerant (CFCs, HCFCs and HFCs) as of July 1, 1992.
Approved methods of recovery, recycling or reclaiming
must be followed. Fines and/or incarceration may be
levied for noncompliance.
WARNING
Improper installation, adjustment, alteration, service or
maintenance can cause personal injury, loss of life, or
damage to property.
Installation and service must be performed by a licensed
professional installer (or equivalent) or a service agency.
Shipping and Packing List
Check unit for shipping damage. Consult last carrier
immediately if damage is found.
1 Assembled outdoor unit.
1 K229 relay is shipped in control box of outdoor unit.
Relay is field installed in the furnace control panel. See
figure 18 page 26 for relay installation information.
1 Bag assembly which includes the following items:
1 Bushing (for low voltage wiring)
2 Isolation grommets for liquid and vapor lines
Operating Gauge Set and Service Valves
These instructions are intended as a general guide and do
not supersede local codes in any way. Consult authorities
who have jurisdiction before installation.
TORQUE REQUIREMENTS
When servicing or repairing heating, ventilating, and air
conditioning components, ensure the fasteners are
appropriately tightened. Table 1 shows torque values for
fasteners.
IMPORTANT
Only use Allen wrenches of sufficient hardness (50Rc −
Rockwell Harness Scale minimum). Fully insert the
wrench into the valve stem recess.
Service valve stems are factory−torqued (from 9 ft−lbs for
small valves, to 25 ft−lbs for large valves) to prevent
refrigerant loss during shipping and handling. Using an
Allen wrench rated at less than 50Rc risks rounding or
breaking off the wrench, or stripping the valve stem
recess.
See the Lennox Service and Application Notes #C−08−1
for further details and information.
IMPORTANT
To prevent stripping of the various caps used, the
appropriately sized wrench should be used and fitted
snugly over the cap before tightening.
Table 1. Torque Requirements
PartsRecommended Torque
Service valve cap8 ft. − lb.11 NM
Sheet metal screws16 in.− lb.2 NM
Machine screws #1028 in.− lb.3 NM
Compressor bolts90 in.− lb.10 NM
Gauge port seal cap8 ft.− lb.11 NM
OPERATING MANIFOLD GAUGE SET
When checking the system charge, only use a manifold
gauge set that features low−loss anti−blow back fittings.
Manifold gauge set used with HFC−410A refrigerant
systems must be capable of handling the higher system
operating pressures. The gauges should be rated for use
with pressures of 0 − 800 psig on the high side and a low
side of 30" vacuum to 250 psig with dampened speed to
500 psi. Gauge hoses must be rated for use at up to 800
psig of pressure with a 4000 psig burst rating.
Page 5
XPG15 SERIES
Operating Angle Type Service Valve:
1. Remove stem cap with an appropriately sized wrench.
2. Use a service wrench with a hex−head extension (3/16" for liquid line valve sizes and 5/16" for vapor line valve sizes) to back
the stem out counterclockwise as far as it will go.
SERVICE PORT CAP
SERVICE PORT CORE
(VALVE STEM SHOWN
TO INDOOR
UNIT
(VALVE STEM SHOWN OPEN)
INSERT HEX WRENCH HERE
CLOSED) INSERT HEX
WRENCH HERE
SERVICE PORT
CORE
TO OUTDOOR UNIT
ANGLE−TYPE SERVICE VALVE
(BACK−SEATED OPENED)
When service valve is OPEN, the service port is
open to linE set, indoor and outdoor unit.
Operating Ball Type Service Valve:
1. Remove stem cap with an appropriately sized wrench.
2. Use an appropriately sized wrenched to open. To open valve,
rotate stem counterclockwise 90°. To close rotate stem
clockwise 90°.
TO INDOOR UNIT
TO OPEN ROTATE STEM
COUNTERCLOCKWISE 90°.
TO CLOSE ROTATE STEM
CLOCKWISE 90°.
SERVICE PORT
SERVICE PORT
SERVICE PORT
CORE
CAP
TO OUTDOOR
UNIT
BALL (SHOWN
CLOSED)
VALV E
STEM
STEM CAP
STEM CAP
ANGLE−TYPE SERVICE VALVE
(FRONT−SEATED CLOSED)
WHENSERVICEVALVE ISCLOSED,THESERVICEPORTISOPEN
TO
THELINE SETANDINDOORUNIT.
To Access Service Port:
A service port cap protects the service port core from contamination and
serves as the primary leak seal.
1. Remove service port cap with an appropriately sized wrench.
2. Connect gauge set to service port.
3. When testing is completed, replace service port cap and tighten as
follows:
SWith torque wrench: Finger tighten and
torque cap per table 1.
SWithout torque wrench: Finger tighten and
use an appropriately sized wrench to turn
an additional 1/6 turn clockwise.
Reinstall Stem Cap:
Stem cap protects the valve stem from damage and serves as the
primary seal. Replace the stem cap and tighten as follows:
9
10
8
11
12
7
6
SWith Torque Wrench: Finger tighten and
then torque cap per table 1.
SWithout Torque Wrench: Finger tight-
en and use an appropriately sized
wrench to turn an additional 1/12 turn
clockwise.
9
10
8
11
12
7
6
1/6 TURN
1
2
3
4
5
1/12 TURN
1
2
3
4
5
NOTE A label with specific torque requirements may be affixed to the stem cap. If the label is present, use the specified torque.
Figure 4. Angle and Ball Type Service Valves
506212−01 11/10
Page 6
Recovering Refrigerant from Existing System
RECOVERING
REFRIGERANT FROM SYSTEM
DISCONNECT POWER
Disconnect all power to the existing outdoor unit at the disconnect
1
switch or main fuse box/breaker panel.
MAIN FUSE BOX/BREAKER PANEL
SERVICE
DISCONNECT
SWITCH
RECOVERING REFRIGERANT
Remove existing HCFC−22 refrigerant using one of the following procedures:
3
IMPORTANT Some system configurations may contain higher than normal refrigerant charge due to either large internal coil volumes,
and/or long line sets.
CONNECT MANIFOLD GAUGE SET
Connect a gauge set, clean recovery cylinder and a recovery
2
machine to the service ports of the existing unit. Use the
instructions provided with the recovery machine to make the
connections.
MANIFOLD GAUGES
RECOVERY MACHINE
LOW
CLEAN RECOVERY
CYLINDER
OUTDOOR UNIT
HIGH
METHOD 1:
Us this method if the existing outdoor unit is not equipped with shut−off valves, or if the unit is not operational and you plan to use the existing
HCFC−22 to flush the system.
Remove all HCFC−22 refrigerant from the existing system. Check gauges after shutdown to confirm that the entire system is completely void of
refrigerant.
METHOD 2:
Use this method if the existing outdoor unit is equipped with manual shut−off valves, and you plan to use new HCFC−22 refrigerant to flush the
system.
The following devices could prevent full system charge recovery into the outdoor unit:
SOutdoor unit’s high or low−pressure switches (if applicable) when tripped can cycle the compressor OFF.
SCompressor can stop pumping due to tripped internal pressure relief valve.
SCompressor has internal vacuum protection that is designed to unload the scrolls (compressor stops pumping) when the pressure ratio meets
a certain value or when the suction pressure is as high as 20 psig. (Compressor suction pressures should never be allowed to go into a vacuum.
Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and
internal seals.)
Once the compressor can not pump down to a lower pressure due to one of the above system conditions, shut off the vapor valve. Turn OFF the
main power to unit and use a recovery machine to recover any refrigerant left in the indoor coil and line set.
Perform the following task:
AStart the existing HCFC−22 system in the cooling mode and close the liquid line valve.
BUse the compressor to pump as much of the existing HCFC−22 refrigerant into the outdoor unit until the outdoor system is full. Turn the outdoor unit
main power OFF and use a recovery machine to remove the remaining refrigerant from the system.
NOTE It may be necessary to bypass the low pressure switches (if equipped) to ensure complete refrigerant evacuation.
CWhen the low side system pressures reach 0 psig, close the vapor line valve.
DCheck gauges after shutdown to confirm that the valves are not allowing refrigerant to flow back into the low side of the system.
Page 7
XPG15 SERIES
CLEARANCE ON ALL SIDES INCHES (MILLIMETERS)
MINIMUM CLEARANCE
ABOVE UNIT
6 (152)
12 (305)
36 (914)
ACCESS PANEL
CONTROL PANEL
ACCESS
LOCATION
30 (762)
LINE SET
CONNECTIONS
NOTES:
SClearance to one of the other three
sides must be 36 inches (914mm).
SClearance to one of the remaining
two sides may be 12 inches
(305mm) and the final side may be
6 inches (152mm).
MINIMUM CLEARANCE BETWEEN
TWO UNITS
24 (610)
Figure 5. Installation Clearances
Unit Placement
CAUTION
In order to avoid injury, take proper precaution when lifting heavy objects.
48 (1219)
ACCESS PANEL
LINE SET
CONNECTIONS
REAR VIEW OF UNIT
PLACING UNIT ON SLAB
When installing unit at grade level, the top of the slab
should be high enough above grade so that water from
higher ground will not collect around the unit. The slab
should have a slope tolerance as described in figure 6,
Detail B.
NOTE If necessary for stability, anchor unit to slab as
described in figure 6, Detail D.
See Unit Dimensions on page 3 for sizing mounting slab,
platforms or supports. Refer to figure 5 for mandatory
installation clearance requirements.
POSITIONING CONSIDERATIONS
Consider the following when positioning the unit:
SSome localities are adopting sound ordinances based
on the unit’s sound level registered from the adjacent
property, not from the installation property. Install the
unit as far as possible from the property line.
SWhen possible, do not install the unit directly outside
a window. Glass has a very high level of sound
transmission. For proper placement of unit in relation
to a window see the provided illustration in figure 6,
Detail A.
506212−01 11/10
ELEVATING THE UNIT
Units are outfitted with elongated support feet as illustrated
in figure 6, Detail C.
If additional elevation is necessary, raise the unit by
extending the height of the unit support feet. This may be
achieved by using a 2 inch (50.8mm) Schedule 40 female
threaded adapter.
The specified coupling will fit snuggly into the recessed
portion of the feet. Use additional 2 inch (50.8mm)
Schedule 40 male threaded adaptors which can be
threaded into the female threaded adaptors to make
additional adjustments to the level of the unit.
NOTE Keep the height of extenders short enough to
ensure a sturdy installation. If it is necessary to extend
further, consider a different type of field−fabricated
framework that is sturdy enough for greater heights.
Page 8
DETAIL A
Install unit away from windows.
Outside Unit Placement
DETAIL B
Install unit level or, if on a slope, maintain slope tolerance of two (2)
degrees (or two inches per five feet [50 mm per 1.5 m]) away from
building structure.
Slab Mounting at Ground Level
BUILDING
STRUCTURE
MOUNTING
SLAB
TWO 90° ELBOWS INSTALLED IN LINE SET WILL
REDUCE LINE SET VIBRATION.
DETAIL C
Elevated Slab Mounting
using Feet Extenders
LEG DETAIL
2" (50.8MM) SCH 40
FEMALE THREADED
ADAPTER
BASE
GROUND LEVEL
STABILIZING UNIT ON UNEVEN SURFACES
DETAIL D
#10 1/2" LONG SELF−DRILLING
SHEET METAL SCREWS
STABILIZING BRACKET (18 GAUGE
METAL 2" WIDTH; HEIGHT AS
#10 1−1/4" LONG HEX HD SCREW
Concrete slab use two plastic anchors (hole
drill 1/4")
Wood or plastic slab no plastic anchor (hole
drill 1/8")
DETAIL E
Stabilizing bracket (18 gauge metal 2" (50.8mm) width; height as required); bend to form
right angle as exampled below.
Slab Side Mounting
REQUIRED)
AND FLAT WASHER
Deck Top Mounting
MINIMUM ONE
PER SIDE
COIL
BASE PAN
CORNER POST
2" (50.8MM) SCH 40
MALE THREADED
ADAPTER
Use additional 2" SCH 40 male threaded adapters
which can be threaded into the female threaded
adapters to make additional adjustments to the level of
the unit.
IMPORTANT To help stabilize an outdoor unit, some installations may require strapping the unit to the pad using brackets and anchors
commonly available in the marketplace.
Figure 6. Placement, Slab Mounting and Stabilizing Unit
SAME FASTENERS AS
SLAB SIDE MOUNTING.
One bracket per side (minimum). For extra stability, two brackets per side, two inches
(51mm) from each corner.
FOR EXTRA
STABILITY
Page 9
XPG15 SERIES
STABILIZING UNIT ON UNEVEN SURFACES
IMPORTANT
Unit Stabilizer Bracket Use (field−provided):
Always use stabilizers when unit is raised above the
factory height. (Elevated units could become unstable in
gusty wind conditions).
Stabilizers may be used on factory height units when
mounted on unstable an uneven surface.
With unit positioned at installation site, perform the
following
1. Remove two side louvered panels to expose the unit
2. Install the brackets as illustrated in figure 6, Detail D
3. Replace the panels after installation is complete.
ROOF MOUNTING
Install the unit a minimum of six (6) inches (152 mm) above
the roof surface to avoid ice build−up around the unit.
Locate the unit above a load bearing wall or area of the roof
that can adequately support the unit. Consult local codes
for rooftop applications.
If unit coil cannot be mounted away from prevailing winter
winds, a wind barrier should be constructed. Size barrier at
least the same height and width as outdoor unit. Mount
barrier 24 inches (610 mm) from the sides of the unit in the
direction of prevailing winds.
:
base.
using conventional practices.
PREVAILING WINTER
WINDS
WIND BARRIER
INLET AIR
24"
(610)
NOTICE
Roof Damage!
This system contains both refrigerant and oil. Some
rubber roofing material may absorbed oil and cause the
rubber to swell when it comes into contact with oil. The
rubber will then bubble and could cause leaks. Protect
the roof surface to avoid exposure to refrigerant and oil
during service and installation. Failure to follow this
notice could result in damage to roof surface.
Removing and Installing Panels
IMPORTANT
Do not allow panels to hang on unit by top tab. Tab is for
alignment and not designed to support weight of panel.
IMPORTANT
To help stabilize an outdoor unit, some installations may
require strapping the unit to the pad using brackets and
anchors commonly available in the marketplace.
WARNING
To prevent personal injury, or damage to panels, unit or
structure, be sure to observe the following:
While installing or servicing this unit, carefully stow all
removed panels out of the way, so that the panels will not
cause injury to personnel, nor cause damage to objects
or structures nearby, nor will the panels be subjected to
damage (e.g., being bent or scratched).
While handling or stowing the panels, consider any
weather conditions, especially windy conditions, that
may cause panels to be blown around and battered.
INLET AIR
INLET AIR
Figure 7. Rooftop Application and Wind Barrier
506212−01 11/10
Page 10
REMOVING AND INSTALLING
PANELS
Panel shown slightly rotated to allow top tab to exit (or enter) top slot for removing (or
installing) panel.
LOUVERED PANEL REMOVAL
Remove the louvered panels as follows:
LOUVERED PANEL INSTALLATION
Position the panel almost parallel with the unit as illustrated in detail D with the screw side
as close to the unit as possible. Then, in a continuous motion:
Detail C
WARNING
1. Remove two screws, allowing the panel to swing open slightly.
2. Hold the panel firmly throughout this procedure Rotate bottom corner of panel away
from hinged corner post until lower three tabs clear the slots as illustrated in detail
B.
3. Move panel down until lip of upper tab clears the top slot in corner post as illustrated
in detail A.
1. Slightly rotate and guide the lip of top tab inward as illustrated in detail A and C; then
upward into the top slot of the hinge corner post.
2. Rotate panel to vertical to fully engage all tabs.
3. Holding the panel’s hinged side firmly in place, close the right−hand side of the panel,
aligning the screw holes.
4. When panel is correctly positioned and aligned, insert the screws and tighten.
Detail A
LIP
SCREW
HOLES
REMOVE 4 SCREWS TO
REMOVE PANEL FOR
ACCESSING COMPRESSOR
AND CONTROLS.
Position panel with holes aligned;
install screws and tighten.
Detail D
ANGLE MAY BE TOO EXTREME
PREFERRED ANGLE FOR INSTALLATION
Maintain minimum panel angle (as close
to parallel with the unit as possible)
while installing panel.
HOLD DOOR FIRMLY ALONG
THE HINGED SIDE TO MAINTAIN
FULLY−ENGAGED TABS
Figure 8. Removing and Installing Panels
Detail B
ROTATE IN THIS DIRECTION; THEN
DOWN TO REMOVE PANEL
Page 11
XPG15 SERIES
New or Replacement Line Set
REFRIGERANT LINE SET
This section provides information on installation or
replacement of existing line set. If new or replacement line
set is not being installed then proceed to BrazingConnections on page .
IMPORTANT
Lennox highly recommends changing line set when
converting the existing system from HCFC−22 to
HFC−410A. If that is not possible and the line set is the
proper size as reference in table 2, use the procedure
outlined under Flushing Line Set and Indoor Coil on page
17.
NOTE When installing refrigerant lines longer than 50
feet, see the Lennox Refrigerant Piping Design and
Fabrication Guidelines, or contact Lennox Technical
Support Product Applications for assistance.
To obtain the correct information from Lennox, be sure to
communicate the following information:
SModel (XPG15) and size of unit (e.g. −036).
SLine set diameters for the unit being installed as listed
in table 2 and total length of installation.
SNumber of elbows vertical rise or drop in the piping.
If refrigerant lines are routed through a wall, then seal and
isolate the opening so vibration is not transmitted to the
building. Pay close attention to line set isolation during
installation of any HVAC system. When properly isolated
from building structures (walls, ceilings. floors), the
refrigerant lines will not create unnecessary vibration and
subsequent sounds. See figure 9 for recommended
installation practices. Also, consider the following when
placing and installing a high−efficiency outdoor unit.
IMPORTANT
Refrigerant lines must not contact structure.
Liquid lines that meter the refrigerant, such as RFC1 liquid
lines, must not be used in this application. Existing line set
of proper size as listed in table 2 may be reused. If system
was previously charged with HCFC−22 refrigerant, then
existing line set must be flushed (see Flushing the System
on page 17).
Field refrigerant piping consists of liquid and vapor lines
from the outdoor unit to the indoor unit coil (braze
connections). Use Lennox L15 (sweat, non−flare) series
line set, or field−fabricated refrigerant line sizes as listed in
table 2.
Table 2. Refrigerant Line Set Inches (Millimeters)
The compressor is charged with sufficient Polyol Ester oil
(POE) for line set lengths up to 50 feet. Recommend
adding oil to system based on the amount of refrigerant
charge in the system. Systems with 20 pounds or less of
refrigerant required no oil to be added.
For systems over 20 pounds − add one ounce for every five
(5) pounds of HFC−410A refrigerant.
Recommended POE oils are Mobil EAL ARCTIC 22 CC or
ICI EMKARATEt RL32CF.
IMPORTANT
If this unit is being matched with an approved line set
or indoor unit coil which was previously charged with
mineral oil, or if it is being matched with a coil which
was manufactured before January of 1999, the coil
and line set must be flushed prior to installation. Take
care to empty all existing traps. Polyol ester (POE) oils
are used in Lennox units charged with HFC−410A
refrigerant. Residual mineral oil can act as an
insulator, preventing proper heat transfer. It can also
clog the expansion device, and reduce the system
performance and capacity.
Failure to properly flush the system per the
instructions below will void the warranty.
Valve SizesRecommended Line Set
Model
506212−01 11/10
Liquid
Line
−024
3/8" (10) 3/4" (19) 3/8" (10)3/4" (19)
−030
−036
−042
3/8" (10) 7/8" (22)3/8" (10) 7/8" (22)
−048
−0603/8 (10)
Vapor
Line
1−1/8"
(29)
Liquid
Line
3/8" (10)
Vapor
Line
1−1/8
(29)
L15
Line Sets
L15−41
15 − 50 feet
(5 − 15 meters)
L15−65
15 − 50 feet
(5 − 15 meters)
Field
Fabricated
WARNING
Polyol ester (POE) oils used with HFC−410A
refrigerant absorb moisture very quickly. It is very
important that the refrigerant system be kept closed as
much as possible. DO NOT remove line set caps or
service valve stub caps until you are ready to make
connections.
IMPORTANT
Mineral oils are not compatible with HFC−410A. If oil
must be added, it must be a Polyol Ester oil.
Page 12
LINE SET
INSTALLATION
Line Set Isolation The following illustrations are
examples of proper refrigerant line set isolation:
REFRIGERANT LINE SET TRANSITION
FROM VERTICAL TO HORIZONTAL
ANCHORED HEAVY NYLON
WIRE TIE OR AUTOMOTIVE
MUFFLER-TYPE HANGER
AUTOMOTIVE
MUFFLER-TYPE HANGER
IMPORTANT Refrigerant lines must not contact structure.
REFRIGERANT LINE SET INSTALLING
VERTICAL RUNS (NEW CONSTRUCTION SHOWN)
NOTE Insulate liquid line when it is routed through areas where the
surrounding ambient temperature could become higher than the
temperature of the liquid line or when pressure drop is equal to or greater
than 20 psig.
IMPORTANT Refrigerant lines must not contact wall
OUTSIDE WALL
VAPOR LINE
LIQUID LINE
WALL
STUD
STRAP LIQUID LINE TO
VAPOR LINE
LIQUID LINE
NON−CORROSIVE
METAL SLEEVE
VAPOR LINE − WRAPPED
IN ARMAFLEX
REFRIGERANT LINE SET INSTALLING
HORIZONTAL RUNS
To hang line set from joist or rafter, use either metal strapping material
or anchored heavy nylon wire ties.
WIRE TIE (AROUND
VAPOR LINE ONLY)
8 FEET (2.43 METERS)
STRAPPING
MATERIAL (AROUND
VAPOR LINE ONLY)
TAPE OR
WIRE TIE
FLOOR JOIST OR
ROOF RAFTER
8 FEET (2.43 METERS)
NON−CORROSIVE
METAL SLEEVE
STRAP THE VAPOR LINE TO THE JOIST
OR RAFTER AT 8 FEET (2.43 METERS)
INTERVALS THEN STRAP THE LIQUID
LINE TO THE VAPOR LINE.
TAPE OR
WIRE TIE
WIRE TIE
INSIDE WALL
CAULK
LIQUID
LINE
STRAP
NON−CORROSIVE
METAL SLEEVE
WIRE TIE
WOOD BLOCK
WIRE TIE
STRAP
WOOD BLOCK
BETWEEN STUDS
SLEEVE
VAPOR LINE WRAPPED
WITH ARMAFLEX
OUTSIDE
WALL
PVC
PIPE
FIBERGLASS
INSULATION
NOTE Similar installation practices should be used if line set is
to be installed on exterior of outside wall.
FLOOR JOIST OR
ROOF RAFTER
Figure 9. Line Set Installation
Page 13
XPG15 SERIES
Brazing Connections
Use the procedures outline in figures 10 and 11 for brazing
line set connections to service valves.
WARNING
Danger of fire. Bleeding the refrigerant
charge from only the high side may result
in pressurization of the low side shell and
suction tubing. Application of a brazing
torch to a pressurized system may result
in ignition of the refrigerant and oil
mixture − Check the high and low
pressures before applying heat.
IMPORTANT
Connect gauge set low pressure side to vapor line
service valve and repeat procedure starting at
paragraph 4 for brazing the liquid line to service port
valve.
IMPORTANT
Allow braze joint to cool before removing the wet rag
from the service valve. Temperatures above 250ºF can
damage valve seals.
WARNING
When using a high pressure gas such as
dry nitrogen to pressurize a refrigeration
or air conditioning system, use a
regulator that can control the pressure
down to 1 or 2 psig (6.9 to 13.8 kPa).
CAUTION
Brazing alloys and flux contain materials which are
hazardous to your health.
Avoid breathing vapors or fumes from brazing
operations. Perform operations only in well−ventilated
areas.
Wear gloves and protective goggles or face shield to
protect against burns.
Wash hands with soap and water after handling brazing
alloys and flux.
IMPORTANT
Use silver alloy brazing rods with 5% minimum silver
alloy for copper−to−copper brazing. Use 45% minimum
alloy for copper−to−brass and copper−to−steel brazing.
WARNING
Fire, Explosion and Personal Safety
Hazard.
Failure to follow this warning could
result in damage, personal injury or
death.
Never use oxygen to pressurize or
purge refrigeration lines. Oxygen,
when exposed to a spark or open
flame, can cause fire and/or an explosion, that could result in property
damage, personal injury or death.
506212−01 11/10
Page 14
PIPING PANEL REMOVAL AND PREPARING LINE
SET
1
Remove piping panel for easier access to service valves. Cut ends
of the refrigerant lines square (free from nicks or dents) and debur
the ends. The pipe must remain round. Do not crimp end of the line.
CUT AND DEBUR
LINE SET SIZE MATCHES
SERVICE VALVE CONNECTION
SERVICE VALVE
COPPER TUBE
REDUCER
STUB
CONNECTION
LINE SET SIZE IS SMALLER
THAN CONNECTION
CAP AND CORE REMOVAL
Remove service cap and core from both the suction / vapor and
2
liquid line service ports.
SERVICE PORT CAP
SERVICE PORT
CORE
LIQUID LINE SERVICE VALVE
REFRIGERANT LINE
DO NOT CRIMP SERVICE VALVE
CONNECTOR WHEN PIPE IS
SMALLER THAN CONNECTION
ATTACH THE MANIFOLD GAUGE SET FOR BRAZING
LIQUID AND SUCTION / VAPOR LINE SERVICE VALVES
3
AConnect gauge set low pressure side to liquid line
service valve (service port).
BConnect gauge set center port to bottle of nitrogen with
regulator.
CWith valve core removed from the suction / vapor line
service port, nitrogen flow will have an exit point.
ATTACH
GAUGES
SUCTION / VAPOR SERVICE PORT MUST BE
OPEN AND SERVICE PORT CORE REMOVED
TO ALLOW EXIT POINT FOR NITROGEN FLOW
SUCTION / VAPOR
LINE
INDOOR
UNIT
C
SUCTION /
VAPOR LINE
SERVICE
VALV E
SUCTION / VAPOR LINE
SERVICE VALVE
HIGHLOW
B
OUTDOOR
UNIT
SERVICE PORT
CORE
SERVICE
PORT CAP
LIQUID LINE
LIQUID LINE SERVICE
VALV E
A
Figure 10. Brazing Procedures
Page 15
NITROGEN
XPG15 SERIES
WRAP SERVICE VALVES
To help protect service valve seals during brazing, wrap water saturated cloths around service valve bodies and copper tube stubs. Use
4
additional water saturated cloths underneath the valve body to protect the base paint.
FLOW NITROGEN
Flow regulated nitrogen (at 1 to 2 psig) through the refrigeration
5
gauge set into the valve stem port connection on the liquid service
valve and out of the suction / vapor valve stem port. See steps 3A, 3B
and 3C on previous page and below for manifold gauge setup.
BRAZE LINE SET
Water saturated cloths must remain water saturated throughout
6
the brazing and cool−down process.
ABraze liquid line to liquid line service valve.
BBraze suction / vapor line to suction / vapor service
valve.
1. FIRE, PERSONAL INJURY, OR PROPERTYDAMAGE will result if you do not wrap a water
saturated cloth around both liquid and suction line
service valve bodies and copper tube stub while
brazing in the line set! The braze, when complete,
must be quenched with water to absorb any residual
heat.
2. Do not open service valves until refrigerant lines and
indoor coil have been leak−tested and evacuated.
Refer to procedures provided in this supplement.
WHEN BRAZING LINE SET TO
SERVICE VALVES, POINT FLAME AWAY
FROM SERVICE VALVE.
WARNING
6B
SUCTION / VAPOR LINE
WATER SATURATED CLOTHS
IMPORTANT Allow braze joint to cool. Apply
additional water saturated cloths to help cool
brazed joints. Do not remove water saturated
cloths until piping has cooled. Temperatures
above 250ºF will damage valve seals.
SUCTION / VAPOR SERVICE PORT
MUST BE OPEN AND SERVICE PORT
CORE REMOVED TO ALLOW EXIT
POINT FOR NITROGEN FLOW
6A
LIQUID LINE
WATER SATURATED
PREPARATION FOR NEXT STEP
After all connections have been brazed, disconnect manifold gauge set from service ports. Apply additional water saturated cloths to both services
7
valves to cool piping. Once piping is cool, remove all water saturated cloths. Refer to the unit installation instructions for the next step in preparing
the unit.
CLOTHS
Figure 11. Brazing Procedures (Continued)
506212−01 11/10
Page 16
Flushing Line Set and Indoor Coil
The following procedure should not be performed on a system which containcontaminants (i.e., compressor burn out).
TYPICAL EXISTING FIXED ORIFICE
1A
DISTRIBUTOR
ASSEMBLY
AOn fully cased coils, remove the coil access and plumbing panels.
BRemove any shipping clamps holding the liquid line and distributor as-
sembly.
CUsing two wrenches, disconnect liquid line from liquid line orifice hous-
ing. Take care not to twist or damage distributor tubes during this process.
DRemove and discard fixed orifice, valve stem assembly if present and
Teflon® washer as illustrated above.
EUse a field−provided fitting to temporary reconnect the liquid line to the
indoor unit’s liquid line orifice housing.
COIL SHOWN)
DISTRIBUTOR TUBES
LIQUID LINE ORIFICE HOUSING
REMOVE AND DISCARD
WHITE TEFLON
(IF PRESENT)
TEFLON® RING
FIXED ORIFICE
®
SEAL
LIQUID LINE ASSEMBLY
(INCLUDES STRAINER)
REMOVAL PROCEDURE (UNCASED
OR
BRASS NUT
1B
TWO PIECE PATCH PLATE
(UNCASED COIL ONLY)
CONNECT GAUGES AND EQUIPMENT FOR
FLUSHING PROCEDURE
2
INVERTED HCFC−22
CYLINDER CONTAINS
CLEAN HCFC−22 TO BE
USED FOR FLUSHING.
A
1
VAPOR LINE
SERVICE VALVE
EXISTING
INDOOR
UNIT
LIQUID LINE SERVICE
VALV E
VAPOR
LIQUID
D
RECOVERY
CYLINDER
AInverted HCFC−22 cylinder with clean refrigerant to the vapor service
valve.
BHCFC−22 gauge set (low side) to the liquid line valve.
CHCFC−22 gauge set center port to inlet on the recovery machine with an
empty recovery tank to the gauge set.
DConnect recovery tank to recovery machines per machine instructions.
AOn fully cased coils, remove the coil access and plumbing panels.
BRemove any shipping clamps holding the liquid line and distributor
assembly.
CDisconnect the equalizer line from the check expansion valve
equalizer line fitting on the vapor line.
DRemove the vapor line sensing bulb.
EDisconnect the liquid line from the check expansion valve at the liquid
line assembly.
FDisconnect the check expansion valve from the liquid line orifice
housing. Take care not to twist or damage distributor tubes during this
process.
GRemove and discard check expansion valve and the two Teflon® rings.
HUse a field−provided fitting to temporary reconnect the liquid line to the
indoor unit’s liquid line orifice housing.
FLUSHING LINE SET
The line set and indoor unit coil must be flushed with at least the
3
same amount of clean refrigerant that previously charged the
system. Check the charge in the flushing cylinder before
proceeding.
ASet the recovery machine for liquid recovery and start the
recovery machine. Open the gauge set valves to allow the
recovery machine to pull a vacuum on the existing system line
B
set and indoor unit coil.
BInvert the cylinder of clean HCFC−22 and open its valve to allow
liquid refrigerant to flow into the system through the vapor line
valve. Allow the refrigerant to pass from the cylinder and through
the line set and the indoor unit coil before it enters the recovery
machine.
CAfter all of the liquid refrigerant has been recovered, switch the
recovery machine to vapor recovery so that all of the HCFC−22
vapor is recovered. Allow the recovery machine to pull down to 0
the system.
DClose the valve on the inverted HCFC−22 drum and the gauge
set valves. Pump the remaining refrigerant out of the recovery
machine and turn the machine off.
Figure 12. Flushing Line Set and Indoor Coil
Page 17
XPG15 SERIES
Loading...
+ 38 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.