Lennox ML195UH045XP24B, ML195UH090XP36C, ML195UH045XP36B, ML195UH070XP36B, ML195UH090XP48C Installation Instructions Manual

...
Page 1
07/11
*2P0711*
506723−01
*P506723-01*
E 2011 Lennox Industries Inc.
Dallas, Texas, USA
UPFLOW
HORIZONTAL RIGHT
HORIZONTAL LEFT
INSTALLATION INSTRUCTIONS ML195UH
MERIT
®
SERIES GAS FURNACE
UPFLOW / HORIZONTAL AIR DISCHARGE
506723−01 07/2011 Supersedes 506533−01
THIS MANUAL MUST BE LEFT WITH THE
HOMEOWNER FOR FUTURE REFERENCE
This is a safety alert symbol and should never be ignored. When you see this symbol on labels or in manuals, be alert to the potential for personal injury or death.
CAUTION
As with any mechanical equipment, personal injury can result from contact with sharp sheet metal edges. Be careful when you handle this equipment.
WARNING
Improper installation, adjustment, alteration, service or maintenance can cause property damage, person­al injury or loss of life. Installation and service must be performed by a licensed professional installer (or equivalent), service agency or the gas supplier.
Table of Contents
Unit Dimensions 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ML195UH Parts Arrangement 3. . . . . . . . . . . . . . . . . . . . .
ML195UH Gas Furnace 4. . . . . . . . . . . . . . . . . . . . . . . . . .
Shipping and Packing List 4. . . . . . . . . . . . . . . . . . . . . . . .
Safety Information 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Use of Furnace as a Construction Heater 5. . . . . . . . . . .
General 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Combustion, Dilution, Ventilation Air 6. . . . . . . . . . . . . . .
Setting Equipment 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Filters 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duct System 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pipe and Fittings Specifications 13. . . . . . . . . . . . . . . . . . .
Joint Cementing Procedure 15. . . . . . . . . . . . . . . . . . . . . . .
Venting Practices 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vent Piping Guidelines 17. . . . . . . . . . . . . . . . . . . . . . . . . . .
Gas Piping 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Unit Start Up 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gas Pressure Measurement 42. . . . . . . . . . . . . . . . . . . . . .
Proper Combustion 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Altitude 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other Unit Adjustments 44. . . . . . . . . . . . . . . . . . . . . . . . . .
Blower Motor Performance 45. . . . . . . . . . . . . . . . . . . . . . .
Service 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Planned Service 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Integrated Control Diagnostic Codes 49. . . . . . . . . . . . . . .
Troubleshooting 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Repair Parts List 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start Up Checklist 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Litho U.S.A.
Page 2
ML195UH Unit Dimensions − inches (mm)
69/16 (167)
Left
9 (229)
Right
23
(584)
(19)
3/4
(19)
1
Bottom Return
Air Opening
GAS PIPING INLET
(Either Side)
Side Return Air Opening (Either Side)
1
Bottom Return
Air Opening
EXHAUST AIR
OUTLET
ELECTRICAL
INLET
(Either Side)
SUPPLY AIR
OPENING
FRONT VIEW
SIDE VIEW
TOP VIEW
A
B
9/16 (14)
C
3/4
273/4
(705)
197/16
(494)
231/2
(597)
11/2
(38)
61/2 (165) (Either Side)
33
(838)
33/8
(86)
115/16 (49)
14
(356)
9/16
(14)
125/8 (321) (Either Side)
2
OPTIONAL
SIDE RETURN
AIR FILTER KIT
(Either Side)
16
(406)
143/4
(375)
2
OPTIONAL
SIDE RETURN
AIR FILTER KIT
(Either Side)
5/8
(16)
1
31/4
(83)
233/4
(603)
25
(635)
D
1 (25)
Front Panel
COMBUSTION
AIR INTAKE
2 (51) (Either Side)
2 (51)
CONDENSATE TRAP CONNECTION (Either Side)
27/8
(73)
AIR FLOW
2
Optional External Side Return Air Filter Kit is not for use
with the optional Return Air Base.
1. Single side return air with transition, to accommodate 20 x 25 x 1 in. (508 x 635 x 25 mm) cleanable air
filter. Required to maintain proper air velocity.
2. Single side return air with optional Return Air Base
3. Bottom return air.
4. Return air from both sides.
5. Bottom and
one side return air.
See Blower Performance
tables for additional information.
1
NOTE 60C size units that require air volumes
1800 cfm or over (850 L/s) must have one of the following
mm in.
ABCD
in. mm in. mm in. mm
171/2 446 163/8 416 16 406 75/8 194
21 533 197/8 505 191/2 495 93/8 238
241/2 622 233/8 594 23 584 111/8 283
ML195UH045XP24B ML195UH045XP36B ML195UH070XP36B
ML195UH090XP36C ML195UH090XP48C ML195UH110XP48C ML195UH110XP60C
ML195UH135XP60D
ML195UH Model
Page 3
ML195UH Parts Arrangement
ML195UH PARTS IDENTIFICATION
FIGURE 1
TOP CAP
CABINET
BURNER BOX
ASSEMBLY
SIGHT
GLASS
DuralokPlus
TM
HEAT EXCHANGER
ASSEMBLY
CONTROL BOX
(includes integrated control, transformer and interlock switch)
COMBUSTION AIR
INDUCER
BLOWER
ACCESS
DOOR
BURNER ACCESS
PANEL
COMBUSTION
AIR PRESSURE
SWITCH
PRIMARY LIMIT
GAS VALVE
BLOWER
ASSEMBLY
FLEXIBLE NO−HUB EXHAUST COLLAR
MANIFOLD
COLD END
HEADER BOX
BAG ASSEMBLIES
(shipping location)
Page 4
ML195UH Gas Furnace
The ML195UH Category IV gas furnace is shipped ready for installation in the upflow or horizontal position. The fur­nace is shipped with the bottom panel in place. The bot­tom panel must be removed if the unit is to be installed in horizontal or upflow applications with bottom return air.
The ML195UH can be installed as either a Direct Vent or a Non−Direct Vent gas central furnace.
The furnace is equipped for installation in natural gas ap­plications. A conversion kit (ordered separately) is re­quired for use in propane/LP gas applications.
NOTE − In Direct Vent installations, combustion air is taken from outdoors and flue gases are discharged outdoors. In Non−Direct Vent installations, combustion air is taken from indoors and flue gases are discharged outdoors. See figure 2 for applications involving roof termination.
FIGURE 2
DIRECT VENT INSTALLATION NON−DIRECT VENT
INSTALLATION
EXHAUST OUTLET
ML195UH
COMBUSTION
AIR INTAKE INSIDE
OF HOUSE
EXHAUST OUTLET
COMBUSTION AIR INTAKE OUTSIDE OF HOUSE
ML195UH
Shipping and Packing List
Package 1 of 1 contains
1 − Assembled ML195UH unit 1 − Bag assembly containing the following:
1 − Snap bushing 1 − Snap plug 1 − Wire tie 1 − Condensate trap 1 − Condensate trap cap 1 − Condensate trap clamp 1 − 2" diameter debris screen
Check equipment for shipping damage. If you find any damage, immediately contact the last carrier.
The following items may also be ordered separately:
1 − Thermostat 1 − Propane/LP changeover kit 1 − Return air base kit 1 − Horizontal suspension kit
Safety Information
WARNING
Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional in­staller (or equivalent), service agency or the gas sup­plier.
CAUTION
As with any mechanical equipment, personal injury can result from contact with sharp sheet metal edges. Be careful when you handle this equipment.
DANGER
Danger of explosion.
There are circumstances in which odorant used with LP/propane gas can lose its scent. In case of a leak, LP/propane gas will settle close to the floor and may be difficult to smell. An LP/propane leak detector should be installed in all LP applications.
Use only the type of gas approved for use with this furnace. Refer to unit nameplate.
ML195UH units are CSA International certified to ANSI Z21.47 and CSA 2.3 standards.
Building Codes
In the USA, installation of gas furnaces must conform with lo­cal building codes. In the absence of local codes, units must be installed according to the current National Fuel Gas Code (ANSI-Z223.1/NFPA 54). The National Fuel Gas Code is available from the following address:
American National Standards Institute, Inc. 11 West 42nd Street New York, NY 10036
In Canada, installation must conform with current National Standard of Canada CSA-B149 Natural Gas and Propane Installation Codes, local plumbing or waste water codes and other applicable local codes.
In order to ensure proper unit operation in non−direct vent applications, combustion and ventilation air supply must be provided according to the current National Fuel Gas Code or CSA-B149 standard.
Page 5
Installation Locations
This furnace is CSA International certified for installation clearances to combustible material as listed on the unit nameplate and in the table in figure 10. Accessibility and ser­vice clearances must take precedence over fire protection clearances.
NOTE − For installation on combustible floors, the furnace shall not be installed directly on carpeting, tile, or other combustible material other than wood flooring.
For installation in a residential garage, the furnace must be installed so that the burner(s) and the ignition source are located no less than 18 inches (457 mm) above the floor. The furnace must be located or protected to avoid physical damage by vehicles. When a furnace is installed in a public garage, hangar, or other building that has a haz­ardous atmosphere, the furnace must be installed accord­ing to recommended good practice requirements and cur­rent National Fuel Gas Code or CSA B149 standards.
NOTE − Furnace must be adjusted to obtain a temperature rise within the range specified on the unit nameplate. Failure to do so may cause erratic limit operation and premature heat exchanger failure.
This ML195UH furnace must be installed so that its electri­cal components are protected from water.
Installed in Combination with a Cooling Coil
When this furnace is used with cooling coils (figure 3), it shall be installed in parallel with, or on the upstream side of, cool­ing coils to avoid condensation in the heating compartment. With a parallel flow arrangement, a damper (or other means to control the flow of air) must adequately prevent chilled air from entering the furnace. If the damper is manually oper­ated, it must be equipped to prevent operation of either the heating or the cooling unit, unless it is in the full HEAT or COOL setting.
When installed, this furnace must be electrically grounded according to local codes. In addition, in the United States, installation must conform with the current National Electric Code, ANSI/NFPA No. 70. The National Electric Code (ANSI/NFPA No. 70) is available from the following ad­dress:
National Fire Protection Association 1 Battery March Park Quincy, MA 02269
In Canada, all electrical wiring and grounding for the unit must be installed according to the current regulations of the Canadian Electrical Code Part I (CSA Standard C22.1) and/or local codes.
FIGURE 3
Gas Unit
Heating Unit Installed Upstream of Cooling Coil
Gas Unit
Dampers
(open during heating operation only)
Dampers
(open during cooling operation only)
Heating Unit Installed Parallel to Air Handler Unit
Air Handler Unit
Cooling Coil
AIR FLOWAIR FLOW
AIR FLOW AIR FLOW
NOTE − This furnace is designed for a minimum continu­ous return air temperature of 60°F (16°C) or an intermit­tent operation down to 55°F (13°C) dry bulb for cases where a night setback thermostat is used. Return air tem­perature must not exceed 85°F (29°C) dry bulb.
The ML195UH furnace may be installed in alcoves, clos­ets, attics, basements, garages, crawl spaces and utility rooms in the upflow or horizontal position.
This furnace design has not been CSA certified for installa­tion in mobile homes, recreational vehicles, or outdoors.
Use of Furnace as Construction Heater
Lennox does not recommend the use of ML195UH units as a construction heater during any phase of construction. Very low return air temperatures, harmful vapors and op­eration of the unit with clogged or misplaced filters will dam­age the unit.
ML195UH units may be used for heating of buildings or structures under construction, if the following conditions are met:
D The vent system must be permanently installed per
these installation instructions.
D A room thermostat must control the furnace. The use of
fixed jumpers that will provide continuous heating is not allowed.
D The return air duct must be provided and sealed to the
furnace.
D Return air temperature range between 60°F (16°C) and
80°F (27°C) must be maintained.
Page 6
D Air filters must be installed in the system and must be
maintained during construction.
D Air filters must be replaced upon construction comple-
tion.
D The input rate and temperature rise must be set per the
furnace rating plate.
D One hundred percent (100%) outdoor air must be pro-
vided for combustion air requirements during construc­tion. Temporary ducting may supply outdoor air to the furnace. Do not connect duct directly to the furnace. Size the temporary duct following these instructions in section for Combustion, Dilution and Ventilation Air in a confined space with air from outside.
D The furnace heat exchanger, components, duct system,
air filters and evaporator coils must be thoroughly cleaned following final construction clean−up.
D All furnace operating conditions (including ignition, in-
put rate, temperature rise and venting) must be verified according to these installation instructions.
General
These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities having jurisdiction before installation.
In addition to the requirements outlined previously, the fol­lowing general recommendations must be considered when installing a ML195UH furnace:
Place the furnace as close to the center of the air dis­tribution system as possible. The furnace should also be located close to the vent termination point.
When the furnace is installed in non−direct vent applica­tions, do not install the furnace where drafts might blow directly into it. This could cause improper combustion and unsafe operation.
When the furnace is installed in non−direct vent applica­tions, do not block the furnace combustion air opening with clothing, boxes, doors, etc. Air is needed for proper combustion and safe unit operation.
When the furnace is installed in an attic or other insu­lated space, keep insulation away from the furnace.
When the furnace is installed in an unconditioned space, consider provisions required to prevent freezing of condensate drain system.
CAUTION
ML195UH unit should not be installed in areas nor­mally subject to freezing temperatures.
WARNING
Product contains fiberglass wool.
Disturbing the insulation in this product during installation, maintenance, or repair will expose you to fiberglass wool. Breathing this may cause lung cancer. (Fiberglass wool is known to the State of Cal­ifornia to cause cancer.)
Fiberglass wool may also cause respiratory, skin, and eye irritation.
To reduce exposure to this substance or for further information, consult material safety data sheets available from address shown below, or contact your supervisor.
Lennox Industries Inc. P.O. Box 799900 Dallas, TX 75379−9900
WARNING
Insufficient combustion air can cause headaches, nausea, dizziness or asphyxiation. It will also cause excess water in the heat exchanger resulting in rust­ing and premature heat exchanger failure. Excessive exposure to contaminated combustion air will result in safety and performance related problems. Avoid exposure to the following substances in the com­bustion air supply:
Permanent wave solutions Chlorinated waxes and cleaners Chlorine base swimming pool chemicals Water softening chemicals De−icing salts or chemicals Carbon tetrachloride Halogen type refrigerants Cleaning solvents (such as perchloroethylene) Printing inks, paint removers, varnishes, etc. Hydrochloric acid Cements and glues Antistatic fabric softeners for clothes dryers Masonry acid washing materials
Combustion, Dilution & Ventilation Air
If the ML195UH is installed as a Non−Direct Vent Fur­nace, follow the guidelines in this section.
NOTE − In Non−Direct Vent installations, combustion air is taken from indoors and flue gases are discharged out− doors.
In the past, there was no problem in bringing in sufficient outdoor air for combustion. Infiltration provided all the air that was needed. In today’s homes, tight construction practices make it necessary to bring in air from outside for combustion. Take into account that exhaust fans, ap­pliance vents, chimneys, and fireplaces force additional air that could be used for combustion out of the house. Unless outside air is brought into the house for combus-
Page 7
tion, negative pressure (outside pressure is greater than inside pressure) will build to the point that a downdraft can occur in the furnace vent pipe or chimney. As a result, combustion gases enter the living space creating a po­tentially dangerous situation.
In the absence of local codes concerning air for combus− tion and ventilation, use the guidelines and procedures in this section to install ML195UH furnaces to ensure effi­cient and safe operation. You must consider combustion air needs and requirements for exhaust vents and gas piping. A portion of this information has been reprinted with permission from the National Fuel Gas Code (ANSI− Z223.1/NFPA 54). This reprinted material is not the com­plete and official position of the ANSI on the referenced subject, which is represented only by the standard in its entirety.
In Canada, refer to the CSA B149 installation codes.
CAUTION
Do not install the furnace in a corrosive or contami­nated atmosphere. Meet all combustion and ventila­tion air requirements, as well as all local codes.
All gas-fired appliances require air for the combustion pro­cess. If sufficient combustion air is not available, the fur­nace or other appliance will operate inefficiently and un­safely. Enough air must be provided to meet the needs of all fuel−burning appliances and appliances such as exhaust fans which force air out of the house. When fireplaces, ex­haust fans, or clothes dryers are used at the same time as the furnace, much more air is required to ensure proper combustion and to prevent a downdraft. Insufficient air causes incomplete combustion which can result in carbon monoxide.
In addition to providing combustion air, fresh outdoor air di­lutes contaminants in the indoor air. These contaminants may include bleaches, adhesives, detergents, solvents and other contaminants which can corrode furnace compo­nents.
The requirements for providing air for combustion and ven­tilation depend largely on whether the furnace is installed in an unconfined or a confined space.
Unconfined Space
An unconfined space is an area such as a basement or large equipment room with a volume greater than 50 cubic feet (1.42 m
3
) per 1,000 Btu (.29 kW) per hour of the com­bined input rating of all appliances installed in that space. This space also includes adjacent rooms which are not separated by a door. Though an area may appear to be un­confined, it might be necessary to bring in outdoor air for combustion if the structure does not provide enough air by
infiltration. If the furnace is located in a building of tight construction with weather stripping and caulking around the windows and doors, follow the procedures in the Air from Outside section.
Confined Space
A confined space is an area with a volume less than 50 cubic feet (1.42 m
3
) per 1,000 Btu (.29 kW) per hour of the com− bined input rating of all appliances installed in that space. This definition includes furnace closets or small equipment rooms.
When the furnace is installed so that supply ducts carry air circulated by the furnace to areas outside the space con­taining the furnace, the return air must be handled by ducts which are sealed to the furnace casing and which terminate outside the space containing the furnace. This is especially important when the furnace is mounted on a platform in a confined space such as a closet or small equipment room. Even a small leak around the base of the unit at the platform or at the return air duct connection can cause a potentially dangerous negative pressure condition. Air for combustion and ventilation can be brought into the confined space ei­ther from inside the building or from outside.
Air from Inside
If the confined space that houses the furnace adjoins a space categorized as unconfined, air can be brought in by providing two permanent openings between the two spaces. Each opening must have a minimum free area of 1 square inch (645 mm
2
) per 1,000 Btu (.29 kW) per hour of total input rating of all gas−fired equipment in the confined space. Each opening must be at least 100 square inches (64516 mm
2
). One opening shall be within 12 inches (305 mm) of the top of the enclosure and one opening within 12 inches (305 mm) of the bottom. See figure 4.
FIGURE 4
EQUIPMENT IN CONFINED SPACE − ALL AIR FROM INSIDE
OPENINGS
(To Adjacent
Unconfined
Space)
NOTE − Each opening shall have a free area of at least one square inch per 1,000 Btu (645mm
2
per .29kW) per hour of the total input rating of
all equipment in the enclosure, but not less than 100 square inches (64516mm.
2).
ROOF TERMINATED
EXHAUST PIPE
SIDE WALL
TERMINATED
EXHAUST PIPE
(ALTERNATE
LOCATION)
ML195UH
Page 8
Air from Outside
If air from outside is brought in for combustion and ventila­tion, the confined space shall be provided with two perma­nent openings. One opening shall be within 12" (305mm) of the top of the enclosure and one within 12" (305mm) of the bottom. These openings must communicate directly or by ducts with the outdoors or spaces (crawl or attic) that freely communicate with the outdoors or indirectly through vertical ducts. Each opening shall have a mini­mum free area of 1 square inch per 4,000 Btu (645mm
2
per 1.17kW) per hour of total input rating of all equipment in the enclosure. When communicating with the outdoors through horizontal ducts, each opening shall have a mini­mum free area of 1 square inch per 2,000 Btu (645mm
2
per .59kW) per total input rating of all equipment in the en­closure (See figure 5).
FIGURE 5
EQUIPMENT IN CONFINED SPACE − ALL AIR FROM OUTSIDE
(Inlet Air from Crawl Space and Outlet Air to Ventilated Attic)
NOTE−The inlet and outlet air openings shall each have a free area of at least one square inch per 4,000 Btu (645mm
2
per 1.17kW) per
hour of the total input rating of all equipment in the enclosure.
OUTLET
AIR
INLET
AIR
VENTILATION
LOUVERS
(For unheated
crawl space)
FURNACE
ROOF TERMINATED
EXHAUST PIPE
VENTILATION LOUVERS
(Each end of attic)
SIDE WALL
TERMINATED
EXHAUST PIPE
(ALTERNATE
LOCATION)
If air from outside is brought in for combustion and ventila­tion, the confined space must have two permanent open­ings. One opening shall be within 12 inches (305 mm) of the top of the enclosure and one opening within 12 inches (305 mm) of the bottom. These openings must communi­cate directly or by ducts with the outdoors or spaces (crawl or attic) that freely communicate with the outdoors or indi­rectly through vertical ducts. Each opening shall have a minimum free area of 1 square inch (645 mm
2
) per 4,000 Btu (1.17 kW) per hour of total input rating of all equipment in the enclosure. See figures 5 and 6. When communicat­ing with the outdoors through horizontal ducts, each open­ing shall have a minimum free area of 1 square inch (645 mm
2
) per 2,000 Btu (.56 kW) per total input rating of all
equipment in the enclosure. See figure 7.
When ducts are used, they shall be of the same cross−sec­tional area as the free area of the openings to which they connect. The minimum dimension of rectangular air ducts shall be no less than 3 inches (75 mm). In calculating free area, the blocking effect of louvers, grilles, or screens must be considered. If the design and free area of protec­tive covering is not known for calculating the size opening required, it may be assumed that wood louvers will have 20 to 25 percent free area and metal louvers and grilles will have 60 to 75 percent free area. Louvers and grilles must be fixed in the open position or interlocked with the equipment so that they are opened automatically during equipment operation.
FIGURE 6
EQUIPMENT IN CONFINED SPACE − ALL AIR FROM OUTSIDE
(All Air Through Ventilated Attic)
NOTE−The inlet and outlet air openings shall each have a free area of at least one square inch per 4,000 Btu (645mm
2
per 1.17kW) per hour
of the total input rating of all equipment in the enclosure.
OUTLET
AIR
VENTILATION LOUVERS
(Each end of attic)
INLET AIR
(Ends 12" above
bottom)
ROOF TERMINATED
EXHAUST PIPE
SIDE WALL
TERMINATED
EXHAUST PIPE
(ALTERNATE
LOCATION)
FURNACE
FIGURE 7
EQUIPMENT IN CONFINED SPACE −
ALL AIR FROM OUTSIDE
OUTLET AIR
INLET AIR
NOTE−Each air duct opening shall have a free area of at least one square inch per 2,000 Btu (645mm
2
per .59kW) per hour of the total
input rating of all equipment in the enclosure. If the equipment room is located against an outside wall and the air openings communi­cate directly with the outdoors, each opening shall have a free area of at least 1 square inch per 4,000 Btu (645mm
2
per 1.17kW) per
hour of the total input rating of all other equipment in the enclosure.
ROOF TERMINATED
EXHAUST PIPE
SIDE WALL
TERMINATED
EXHAUST PIPE
(ALTERNATE
LOCATION)
FURNACE
Page 9
Shipping Bolt Removal
Units with 1/2 hp blower motor are equipped with three flex­ible legs and one rigid leg. The rigid leg is equipped with a shipping bolt and a flat white plastic washer (rather than the rubber mounting grommet used with a flexible mounting leg). See figure 8. The bolt and washer must be removed before the furnace is placed into operation. After the bolt and washer have been removed, the rigid leg will not touch the blower housing.
FIGURE 8
RIGID LEG
(Remove shipping bolt
and washer)
ML195UH090P48C ML195UH110P48C
with 1/2 HP Blower Motor
Installation − Setting Equipment
WARNING
Do not connect the return air duct to the back of the furnace. Doing so will adversely affect the operation of the safety control devices, which could result in personal injury or death.
WARNING
Blower access panel must be securely in place when blower and burners are operating. Gas fumes, which could contain carbon monoxide, can be drawn into living space resulting in personal injury or death.
Upflow Applications
The ML195UH gas furnace can be installed as shipped in the upflow position. Refer to figure 10 for clearances. Select a location that allows for the required clearances that are listed on the unit nameplate. Also consider gas supply connections, electrical supply, vent connection, condensate trap and drain connections, and installation and service clearances [24 inches (610 mm) at unit front]. The unit must be level from side to side. Unit may
be positioned from level to 1/2" toward the front to aid in draining. See figure 9.
Allow for clearances to combustible materials as indicated on the unit nameplate.
FIGURE 9
SETTING EQUIPMENT
UPFLOW APPLICATION
HORIZONTAL APPLICATION
FRONT VIEW
SIDE VIEW
FRONT VIEW
END VIEW
UNIT
FRONT
AIR FLOW
UNIT
FRONT
1/2"
max.
1/2"
max.
SIDE VIEW
UNIT
FRONT
Unit must be level side−to−side. Unit may be positioned from level to 1/2" toward the front to aid in draining.
Page 10
WARNING
Improper installation of the furnace can result in per­sonal injury or death. Combustion and flue products must never be allowed to enter the return air system or air in the living space. Use sheet metal screws and joint tape to seal return air system to furnace. In platform installations with furnace return, the fur­nace should be sealed airtight to the return air ple­num. A door must never be used as a portion of the return air duct system. The base must provide a stable support and an airtight seal to the furnace. Al­low absolutely no sagging, cracks, gaps, etc. For no reason should return and supply air duct sys­tems ever be connected to or from other heating de­vices such as a fireplace or stove, etc. Fire, explo­sion, carbon monoxide poisoning, personal injury and/or property damage could result.
Installation Clearances
Top
Bottom (Floor)
Left Side
Right Side
Top/Plenum 1 in. (25 mm)
*Front 0
Back 0
Sides 0
Vent 0
Floor 0
*Front clearance in alcove installation must be 24 in. (610 mm). Maintain a minimum of 24 in. (610 mm) for front service access.
Allow proper clearances to accommodate condensate trap.For installations on a combustible floor, do not install the furnace
directly on carpeting, tile or other combustible materials other than wood flooring.
FIGURE 10
Return Air Guidelines
Return air can be brought in through the bottom or either side of the furnace installed in an upflow application. If the furnace is installed on a platform with bottom return, make an airtight seal between the bottom of the furnace and the platform to ensure that the furnace operates properly and safely. The furnace is equipped with a removable bottom panel to facilitate installation.
Markings are provided on both sides of the furnace cabinet for installations that require side return air. Cut the furnace cabinet at the maximum dimensions shown on page 2.
Refer to Engineering Handbook for additional information.
ML195UH applications which include side return air and a condensate trap installed on the same side of the cabinet (trap can be installed remotely within 5 ft.) re­quire either a return air base or field−fabricated transi­tion to accommodate an optional IAQ accessory taller than 14.5". See figure 11.
Side Return Air
(with transition and filter)
FIGURE 11
Return
Air
Plenum
Transition
20” X 25” X 1”
(508mmX635mmX 25mm)
Air Filter
11/2”
Page 11
FIGURE 12
Optional Return Air Base
(Upflow Applications Only)
NOTE− Optional side return air filter kits are not for use with return air base.
1
Both the unit return air opening and the base return air opening must be covered by a single plenum or IAQ cabinet. Minimum unit side return air opening dimensions for units requiring 1800 cfm of air and over (W x H): 23 x 11 in. (584 x 279 mm). The opening can be cut as needed to accommodate plenum or IAQ cabinet while maintaining dimensions shown. Side return air openings must be cut in the field. There are cutting guides stenciled on the cabinet for the side return air opening. The size of the opening must not extend beyond the markings on the furnace cabinet.
2
To minimize pressure drop, the largest opening height possible (up to 14 inches) is preferred.
FRONT VIEW
1
Unit side return air
Opening
SIDE VIEW
31/4
(83)
1
23 (584)
Overall
(Maximum)
(584)
23
3/4
(19)
1
227/16
(570)
Overall
(Maximum)
SIDE RETURN
AIR OPENINGS
(Either Side)
55/8
(143)
1
Minimum
11 (279)
2
Maximum
14 (356)
(683)
267/8
71/4
(184)
FURNACE
FRONT
AIR FLOW
IF BASE
IS USED
WITHOUT
IAQ CABINET,
A SINGLE
RETURN AIR
PLENUM
MUST
COVER BOTH
UNIT AND
RETURN
AIR BASE
OPENINGS
INDOOR AIR
QUALITY CABINET
(PCO, Filter
Cabinet, etc.)
AIR BASE
OPTIONAL RETURN
CONDENSATE
TRAP
171/2 (446) B Width (50W98) 21 (533) C Width (50W99)
241/2 (622) D Width (51W00)
Removing the Bottom Panel
FIGURE 13
Screw
Bottom Panel
Bottom Cap
Removing the Bottom Panel
Remove the two screws that secure the bottom cap to the furnace. Pivot the bottom cap down to release the bottom panel. Once the bottom panel has been removed, reinstall the bottom cap. See figure 13.
Horizontal Applications
FIGURE 14
WARNING
Do not install the furnace on its front or back. See figure 14.
Front
Back
Page 12
The ML195UH furnace can be installed in horizontal ap­plications with either right− or left−hand air discharge.
Refer to figure 15 for clearances in horizontal applications.
Horizontal Application
Installation Clearances
Left End Right End
Right−Hand Discharge
Left−Hand Discharge
Top
Bottom (Floor)**
Bottom (Floor)**
Left End Right End
Air
Flow
Air
Flow
Air
Flow
Air
Flow
Top 0
Front* 0
Back 0
Ends 0
Vent 0
Floor 0
*Front clearance in alcove installation must be 24 in. (610 mm). Maintain a minimum of 24 in. (610 mm) for front service access. **An 8" service clearance must be maintained below the unit to provide for servicing of the condensate trap. For installations on a combustible floor, do not install the furnace directly on carpeting, tile or other combustible materials other than wood flooring.
FIGURE 15
Suspended Installation of Horizontal Unit
This furnace may be installed in either an attic or a crawl­space. Either suspend the furnace from roof rafters or floor joists, as shown in figure 16, or install the furnace on a platform, as shown in figure 17. A horizontal suspension kit (51W10) may be ordered from Lennox or use equiva­lent.
NOTE − Heavy−gauge sheet metal straps may be used to suspend the unit from roof rafters or ceiling joists. When straps are used to suspend the unit in this way, support must be provided for both the ends. The straps must not interfere with the plenum or exhaust piping installation.
Cooling coils and supply and return air plenums must be supported separately.
FIGURE 16
HORIZONTAL SUSPENSION KIT
Bracket (typical)
Metal Strap
(typical)
Air
Flow
Internal Brace
(provided with kit)
NOTE − When the furnace is installed on a platform or with the horizontal suspension kit in a crawlspace, it must be elevated enough to avoid water damage, accommodate drain trap and to allow the evaporator coil to drain.
Platform Installation of Horizontal Unit
1 − Select location for unit keeping in mind service and
other necessary clearances. See figure 15.
2 − Construct a raised wooden frame and cover frame
with a plywood sheet. If unit is installed above finished space, fabricate an auxiliary drain pan to be installed under unit. Set unit in drain pan as shown in figure 17. Leave 8 inches for service clearance below unit for condensate trap.
3 − Provide a service platform in front of unit. When instal-
ling the unit in a crawl space, a proper support platform may be created using cement blocks.
4 − Route auxiliary drain line so that water draining from
this outlet will be easily noticed by the homeowner.
Page 13
5 − If necessary, run the condensate line into a conden-
sate pump to meet drain line slope requirements. The pump must be rated for use with condensing furnaces. Protect the condensate discharge line from the pump to the outside to avoid freezing.
6 − Continue with exhaust, condensate and intake piping
installation according to instructions.
FIGURE 17
*Gas connector may be used for Canadian installation if accept­able by local authority having jurisdiction.
*GAS CONNECTION
RAISED
PLATFORM
SERVICE PLATFORM
INTAKE PIPE
EXHAUST PIPE
Return Air −− Horizontal Applications
Return air may be brought in only through the end of a fur­nace installed in the horizontal position. The furnace is equipped with a removable bottom panel to facilitate installation. See figure 13.
Filters
This unit is not equipped with a filter or rack. A field−pro­vided high velocity rated filter is required for the unit to oper­ate properly. Table 1 lists recommended filter sizes. A filter must be in place whenever the unit is operating.
TABLE 1
Furnace
Cabinet Width
Filter Size
Side Return Bottom Return
17−1/2" 16 X 25 X 1 (1) 16 X 25 X 1 (1)
21" 16 X 25 X 1 (1) 20 X 25 X 1 (1)
24−1/2" 16 X 25 X 1 (2) 24 X 25 X 1 (1)
Duct System
Use industry-approved standards to size and install the supply and return air duct system. Refer to ACCA Manual D. This will result in a quiet and low-static system that has uniform air distribution.
NOTE − This furnace is not certified for operation in heating mode (indoor blower operating at selected heating speed) with an external static pressure which exceeds 0.8 inches w.c. Operation at these conditions may result in improper limit operation.
Supply Air Plenum
If the furnace is installed without a cooling coil, a removable access panel should be installed in the supply air duct. The access panel should be large enough to permit inspection of the heat exchanger. The furnace access panel must al­ways be in place when the furnace is operating and it must not allow leaks.
Return Air Plenum
NOTE − Return air must not be drawn from a room where this furnace, or any other gas−fueled appliance (i.e., water heater), or carbon monoxide−producing de­vice (i.e., wood fireplace) is installed.
When return air is drawn from a room, a negative pres­sure is created in the room. If a gas appliance is operating in a room with negative pressure, the flue products can be pulled back down the vent pipe and into the room. This reverse flow of the flue gas may result in incomplete com­bustion and the formation of carbon monoxide gas. This raw gas or toxic fumes might then be distributed through­out the house by the furnace duct system.
Return air can be brought in through the bottom or either side of the furnace. If a furnace with bottom return air is installed on a platform, make an airtight seal between the bottom of the furnace and the platform to ensure that the unit operates properly and safely. Use fiberglass sealing strips, caulking, or equivalent sealing method between the plenum and the furnace cabinet to ensure a tight seal. If a filter is installed, size the return air duct to fit the filter frame.
Pipe & Fittings Specifications
All pipe, fittings, primer and solvent cement must conform with American National Standard Institute and the Ameri­can Society for Testing and Materials (ANSI/ASTM) stan­dards. The solvent shall be free flowing and contain no lumps, undissolved particles or any foreign matter that ad­versely affects the joint strength or chemical resistance of the cement. The cement shall show no gelation, stratifica­tion, or separation that cannot be removed by stirring. Re­fer to the table 2 below for approved piping and fitting ma­terials.
Page 14
CAUTION
Solvent cements for plastic pipe are flammable liq­uids and should be kept away from all sources of ignition. Do not use excessive amounts of solvent cement when making joints. Good ventilation should be maintained to reduce fire hazard and to minimize breathing of solvent vapors. Avoid contact of cement with skin and eyes.
TABLE 2
PIPING AND FITTINGS SPECIFICATIONS
Schedule 40 PVC (Pipe) D1785 Schedule 40 PVC (Cellular Core Pipe) F891
Schedule 40 PVC (Fittings) D2466
Schedule 40 CPVC (Pipe) F441
Schedule 40 CPVC (Fittings) F438
SDR−21 PVC or SDR−26 PVC (Pipe) D2241
SDR−21 CPVC or SDR−26 CPVC (Pipe) F442
Schedule 40 ABS Cellular Core DWV (Pipe) F628
Schedule 40 ABS (Pipe) D1527
Schedule 40 ABS (Fittings) D2468
ABS−DWV (Drain Waste & Vent) (Pipe & Fittings)
D2661
PVC−DWV (Drain Waste & Vent) Pipe & Fittings)
D2665
PRIMER & SOLVENT CEMENT
ASTM
SPECIFICATION
PVC & CPVC Primer F656 PVC Solvent Cement D2564
CPVC Solvent Cement F493
ABS Solvent Cement D2235
PVC/CPVC/ABS All Purpose Cement For Fittings & Pipe of the same material
D2564, D2235, F493
ABS to PVC or CPVC Transition Solvent Cement
D3138
CANADA PIPE & FITTING & SOLVENT
CEMENT
MARKING
PVC & CPVC Pipe and Fittings
ULCS636
PVC & CPVC Solvent Cement
ABS to PVC or CPVC Transition Cement
IMPORTANT
ML195UH exhaust and intake connections are made of PVC. Use PVC primer and solvent cement when using PVC vent pipe. When using ABS vent pipe, use transitional solvent cement to make connections to the PVC fittings in the unit.
Use PVC primer and solvent cement or ABS solvent cement meeting ASTM specifications, refer to Table 2. As an alter­nate, use all purpose cement, to bond ABS, PVC, or CPVC pipe when using fittings and pipe made of the same materi­als. Use transition solvent cement when bonding ABS to ei­ther PVC or CPVC.
Low temperature solvent cement is recommended during cooler weather. Metal or plastic strapping may be used for vent pipe hangers. Uniformly apply a liberal coat of PVC primer for PVC or use a clean dry cloth for ABS to clean in­side socket surface of fitting and male end of pipe to depth of fitting socket.
Canadian Applications Only − Pipe, fittings, primer and solvent cement used to vent (exhaust) this ap­pliance must be certified to ULC S636 and supplied by a single manufacturer as part of an approved vent (ex­haust) system. When bonding the vent system to the fur­nace, use ULC S636 approved One−Step Transition Ce­ment to bond the pipe to the flue collar, or to bond the 90° elbow or reducing 90° elbow to the flue collar. In addi­tion, the first three feet of vent pipe from the furnace flue collar must be accessible for inspection.
Page 15
TABLE 3
OUTDOOR TERMINATION KITS USAGE
EL195
UNIT
VENT
PIPE
DIA.
(in.)
STANDARD CONCENTRIC
Outdoor Exhaust
Accelerator
(Dia. X
Length)
Outdoor Exhaust
Accelerator
(Dia. X
Length)
2" Wall Plate
Kit
3" Wall Plate
Kit
2" Wall
Ring Kit
Flush­Mount
Kit
1−1/2"
Concentric
Kit
2"
Concentric
Kit
3"
Concentric
Kit
1−1/2" X 12" 2" X 12"
22G44
or 30G28
44J40
or 81J20
15F74 51W11**
71M80
or
44W92
69M29
or
44W92
60L46
or 44W93
045
2 YES YES YES* YES YES YES
2−1/2 YES YES YES* YES YES YES
3 YES YES YES* YES YES YES
070
2 YES YES YES* YES YES YES
2−1/2 YES YES YES* YES YES YES
3 YES YES YES* YES YES YES
090
2 YES YES YES YES YES YES
2−1/2 YES YES YES YES YES YES
3 YES YES YES YES YES YES
110
2 YES YES YES YES YES YES
2−1/2 YES YES YES YES YES YES
3 YES YES YES YES YES YES
135 3 YES YES YES YES
*Requires field−provided and installed 1−1/2" exhaust accelerator. ** Kit 51W11 is provided with a 1−1/2" accelerator which must be used for all ML195UH−045, −070 and −090 installations.  Termination kits 44W92, 44W93, 30G28 and 81J20 approved for use in Canadian installations to meet CSAB149.  The 44W92 concentric kit is provided with a 1−1/2" accelerator which must be installed on the exhaust outlet when this kit is used with the ML195UH045P24B and
ML195UH070P36B
furnaces.
Joint Cementing Procedure
All cementing of joints should be done according to the specifications outlined in ASTM D 2855.
DANGER
DANGER OF EXPLOSION!
Fumes from PVC glue may ignite during system check. Allow fumes to dissipate for at least 5 minutes before placing unit into operation.
1 − Measure and cut vent pipe to desired length. 2 − Debur and chamfer end of pipe, removing any ridges
or rough edges. If end is not chamfered, edge of pipe may remove cement from fitting socket and result in a leaking joint.
NOTE − Check the inside of vent pipe thoroughly for any obstruction that may alter furnace operation.
3 − Clean and dry surfaces to be joined.
4 − Test fit joint and mark depth of fitting on outside of pipe.
5 − Uniformly apply a liberal coat of PVC primer for PVC or
use a clean dry cloth for ABS to clean inside socket surface of fitting and male end of pipe to depth of fitting socket.
NOTE − Time is critical at this stage. Do not allow prim­er to dry before applying cement.
6 − Promptly apply solvent cement to end of pipe and in-
side socket surface of fitting. Cement should be ap­plied lightly but uniformly to inside of socket. Take care to keep excess cement out of socket. Apply sec­ond coat to end of pipe.
7 − Immediately after applying last coat of cement to pipe,
and while both inside socket surface and end of pipe are wet with cement, forcefully insert end of pipe into socket until it bottoms out. Turn PVC pipe 1/4 turn dur­ing assembly (but not after pipe is fully inserted) to dis­tribute cement evenly. DO NOT turn ABS or cellular core pipe.
Page 16
NOTE − Assembly should be completed within 20 sec­onds after last application of cement. Hammer blows should not be used when inserting pipe.
8 − After assembly, wipe excess cement from pipe at end
of fitting socket. A properly made joint will show a bead around its entire perimeter. Any gaps may indi­cate an improper assembly due to insufficient sol­vent.
9 − Handle joints carefully until completely set.
Venting Practices
FIGURE 18
* See table 2 for allowable pipe.
Piping Suspension Guidelines
NOTE − Isolate piping at the point where it exits the outside wall or roof in order to prevent transmission of vibration to the structure.
SCHEDULE 40
PVC − 5’
all other pipe* − 3’
Wall
inside outside
24" maximum 3/4" minimum
Wall Thickness Guidelines
insulation
(if required)
1 − In areas where piping penetrates joists or interior
walls, hole must be large enough to allow clearance on all sides of pipe through center of hole using a hanger.
2 − When furnace is installed in a residence where unit is
shut down for an extended period of time, such as a vacation home, make provisions for draining conden­sate collection trap and lines.
CHIMNEY
OR GAS
VENT
(Check sizing
for water
heater only)
FURNACE
(Replaced
by ML195)
WATER
HEATER
OPENINGS
(To Adjacent
Room)
If an ML195UH furnace replaces a furnace which was commonly vented with another gas appliance, the size of the existing vent pipe for that gas ap­pliance must be checked. Without the heat of the original furnace flue products, the existing vent pipe is probably oversized for the single water heater or other appliance. The vent should be checked for proper draw with the remaining appliance.
FIGURE 19
REPLACING FURNACE THAT
WAS PART OF A COMMON
VENT SYSTEM
Exhaust Piping (Figures 22 and 23)
Route piping to outside of structure. Continue with installa­tion following instructions given in piping termination sec­tion.
CAUTION
Do not discharge exhaust into an existing stack or stack that also serves another gas appliance. If verti­cal discharge through an existing unused stack is re­quired, insert PVC pipe inside the stack until the end is even with the top or outlet end of the metal stack.
CAUTION
The exhaust vent pipe operates under positive pres­sure and must be completely sealed to prevent leak­age of combustion products into the living space.
Page 17
Vent Piping Guidelines
The ML195UH can be installed as either a Non−Direct Vent or a Direct Vent gas central furnace.
NOTE − In Non-Direct Vent installations, combustion air is taken from indoors and flue gases are discharged outdoors. In Direct Vent installations, combustion air is taken from out­doors and flue gases are discharged outdoors.
Intake and exhaust pipe sizing −− Size pipe according to
tables 4 and
5. Table 4 lists the minimum vent pipe lengths
permitted. Table 5 lists the maximum pipe lengths per- mitted.
Regardless of the diameter of pipe used, the standard roof and wall terminations described in section Exhaust Piping Terminations should be used. Exhaust vent termination pipe is sized to optimize the velocity of the exhaust gas as it exits the termination. Refer to table 6.
In some applications which permit the use of several differ­ent sizes of vent pipe, a combination vent pipe may be used. Contact Lennox’ Application Department for assis­tance in sizing vent pipe in these applications.
NOTE − The exhaust collar on all models is sized to ac­commodate 2" Schedule 40 vent pipe. When vent pipe which is larger than 2" must be used in an upflow applica­tion, a transition must be applied at the exhaust collar in order to properly step to the larger diameter vent pipe. Contact the Application Department for more information concerning sizing of vent systems which include multiple pipe sizes.
FIGURE 20
Exhaust Pipe
NOTE − Exhaust pipe MUST be glued to furnace exhaust fittings.
NOTE − All horizontal runs of exhaust pipe must slope back to-
ward unit. A minimum of 1/4" (6mm) drop for each 12" (305mm) of horizontal run is mandatory for drainage.
NOTE − Exhaust piping should be checked carefully to make sure there are no sags or low spots.
12” ma x
of straight pip
e
Exhaust Pipe
12” Min.
Horizontal
Gas Furnace
TABLE 4
MINIMUM VENT PIPE LENGTHS
ML195UH
MODEL
MIN. VENT LENGTH*
045, 070, 090, 110, 135
15 ft. or
5 ft. plus 2 elbows or
10 ft. plus 1 elbow
*Any approved termination may be added to the minimum length listed.
Use the following steps to correctly size vent pipe diameter.
1
2
3
4
5
6
045, 070, 090, 110 or 135 btuh
Which termination?
Standard or Concentric? See table 3
Intake or exhaust
Which needs most elbows?
How many?
2", 2 1/2" or 3"
Desired pipe size?
Use table 5 to find max. intake or exhaust pipe length.
FIGURE 21
What is the altitude?
7
Furnace capacity?
IMPORTANT
Do not use screens or perforated metal in exhaust or intake terminations. Doing so will cause freeze−ups and may block the terminations.
Loading...
+ 39 hidden pages