Lattice ispPAC-POWR1220AT8 User Manual

®
ispPAC-POWR1220AT8
Monitoring, Sequencing and Margining Controller
August 2007 Data Sheet DS1015

Features

Monitor, Control, and Margin Multiple Power Supplies
• Simultaneously monitors up to 12 power supplies
• Provides up to 20 output control signals
• Provides up to eight analog outputs for margining/trimming power supply voltages
• Programmable digital and analog circuitry
Power Supply Margin and Trim Functions
• Trim and margin up to eight power supplies
• Dynamic voltage control through I
• Four hardware selectable voltage profiles
• Independent Digital Closed-Loop Trim function for each output
Embedded PLD for Sequence Control
• 48-macrocell CPLD implements both state machines and combinatorial logic functions
Embedded Programmable Timers
• Four independent timers
• 32µs to 2 second intervals for timing sequences
Analog Input Monitoring
• 12 independent analog monitor inputs
• Differential inputs for remote ground sense
• Two programmable threshold comparators per analog input
• Hardware window comparison
• 10-bit ADC for I
2
C monitoring
High-Voltage FET Drivers
• Power supply ramp up/down control
• Programmable current and voltage output
• Independently configurable for FET control or digital output
2-Wire (I
• Comparator status monitor
• ADC readout
• Direct control of inputs and outputs
• Power sequence control
• Dynamic trimming/margining control
2
C/SMBus™ Compatible) Interface
2
C

Application Block Diagram

Primary
Supply
Primary
Supply
Primary
Supply
Primary
Supply
Primary
Supply
3.3V
2.5V
1.8V
POL#1
POL#N
Power Supply
Margin/Trim
Control Block
ADC
12 Analog Inputs
and Voltage Monitors
ispPAC-POWR1220AT8
8 Analog
Trim
Outputs
4 Timers
n
igraM/
m
ir T
Enables
16 Digital
Outputs
48 Macrocells
6 Digital
Inputs
Other Control/Supervisory
Signals
4 MOSFET
Drivers
CPLD
83 Inputs
2
C
I
Interface
I
Bus
2
Voltage
C
itry
u
Other Board Circ
Monitoring
CPU
Digital Monitoring

Description

Lattice’s Power Manager II ispPAC-POWR1220AT8 is a general-purpose power-supply monitor, sequence and margin controller, incorporating both in-system pro­grammable logic and in-system programmable analog functions implemented in non-volatile E nology. The ispPAC-POWR1220AT8 device provides 12 independent analog input channels to monitor up to 12 power supply test points. Each of these input channels offers a differential input to support remote ground sensing, and has two independently programmable comparators to support both high/low and in-bounds/ out-of-bounds (window-compare) monitor functions. Six general-purpose digital inputs are also provided for mis­cellaneous control functions.
2
CMOS
®
tech-
3.3V Operation, Wide Supply Range 2.8V to
3.96V
• In-system programmable through JTAG
• Industrial temperature range: -40°C to +85°C
• 100-pin TQFP package, lead-free option
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
The ispPAC-POWR1220AT8 provides 20 open-drain digital outputs that can be used for controlling DC-DC converters, low-drop-out regulators (LDOs) and opto­couplers, as well as for supervisory and general-pur­pose logic interface functions. Four of these outputs
1
DS1015_01.4
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
(HVOUT1-HVOUT4) may be configured as high-voltage MOSFET drivers. In high-voltage mode these outputs can provide up to 10V for driving the gates of n-channel MOSFETs so that they can be used as high-side power switches controlling the supplies with a programmable ramp rate for both ramp up and ramp down.
The ispPAC-POWR1220AT8 incorporates a 48-macrocell CPLD that can be used to implement complex state machine sequencing for the control of multiple power supplies as well as combinatorial logic functions. The status of all of the comparators on the analog input channels as well as the general purpose digital inputs are used as inputs by the CPLD array, and all digital outputs may be controlled by the CPLD. Four independently programmable timers can create delays and time-outs ranging from 32µs to 2 seconds. The CPLD is programmed using Logi­Builder™, an easy-to-learn language integrated into the PAC-Designer monitor the status of any of the analog input channel comparators or the digital inputs.
In addition to the sequence control functions, the ispPAC-POWR1220AT8 incorporates eight DACs for generating trimming voltage to control the output voltage of a DC-DC converter. The trimming voltage can be set to four hard­ware selectable preset values (voltage profiles) or can be dynamically loaded in to the DAC through the I Additionally, each power supply output voltage can be maintained typically within 0.5% tolerance across various load conditions using the Digital Closed Loop Control mode. The operating voltage profile can either be selected using external hardware pins or through the PLD outputs.
The on-chip 10-bit A/D converter can both be used to monitor the V implementing digital closed loop mode for maintaining the output voltage of all power supplies controlled by the monitoring and trimming section of the ispPAC-POWR1220AT8 device.
2
The I
C bus/SMBus interface allows an external microcontroller to measure the voltages connected to the V
inputs, read back the status of each of the V
comparator and PLD outputs, control logic signals IN2 to IN5, con-
MON
trol the output pins, and load the DACs for the generation of the trimming voltage of the external DC-DC converter.
®
software. Control sequences are written to
voltage through the I
MON
2
C bus as well as for
2
C bus.
MON
Figure 1. ispPAC-POWR1220AT8 Block Diagram
VPS0
VPS1
VMON1+
VMON1GS
VMON2+
VMON2GS
VMON3+
VMON3GS
VMON4+
VMON4GS
VMON5+
VMON5GS
VMON6+
VMON6GS
VMON7+
VMON7GS
VMON8+
VMON8GS
VMON9+
VMON9GS
VMON10+
VMON10GS
VMON11+
VMON11GS
VMON12+
VMON12GS
IN1 IN2 IN3 IN4 IN5 IN6
A N D
V O L T A
E G
N O M I
T O
R S
6
I
N
D
P
I
G I
T
T U
A
S
L
VCCINP
1 2
A N A L O G
I
N P
S T U
VCCD (3)
VCCA
V C C P R O G
ADC
JTAG LOGIC
V
T
T
T
C
C
D
K
C
O
S M
J
OSCILLATOR
S
A
T
E
D
T D
L
I
T
I
D I
MARGIN/TRIM
CONTROL LOGIC
CPLD
48 MACROCELLS
83 INPUTS
CLOCK
P
M
L
C L
C D
K
L K
R
T E S E b
TIMERS
(4)
VOLTAGE OUTPUT
DACS (8)
DAC
DAC
DAC
DAC
DAC
O U T
P U
P
T
O
R
O
O
L
U T
G N I
I2C
INTERFACE
S
S C L
GNDA (2) D A
DAC
DAC
DAC
TRIM1 TRIM2 TRIM3 TRIM4 TRIM5 TRIM6 TRIM7 TRIM8
D R I
V R E
S
G I D T I
L A O
T U P U T S
4 F
E T
1 6
O P E N
­D
R I A
N
GNDD (6)
HVOUT1 HVOUT2 HVOUT3 HVOUT4
OUT5/SMBA OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 OUT12 OUT13 OUT14 OUT15 OUT16 OUT17 OUT18 OUT19 OUT20
2
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Pin Descriptions
Number Name Pin Type Voltage Range Description
89 VPS0 Digital Input VCCD Trim Select Input 0 Registered by MCLK
90 VPS1 Digital Input VCCD Trim Select Input 1 Registered by MCLK
97 IN1
1IN2
2IN3
4IN4
6IN5
7IN6
2
3
3
3
3
3
Digital Input VCCINP
Digital Input VCCINP
Digital Input VCCINP
Digital Input VCCINP
Digital Input VCCINP
Digital Input VCCINP
47 VMON1 Analog Input -0.3V to 5.75V
46 VMON1GS Analog Input -0.2V to 0.3V
50 VMON2 Analog Input -0.3V to 5.75V
48 VMON2GS Analog Input -0.2V to 0.3V
52 VMON3 Analog Input -0.3V to 5.75V
51 VMON3GS Analog Input -0.2V to 0.3V
54 VMON4 Analog Input -0.3V to 5.75V
53 VMON4GS Analog Input -0.2V to 0.3V
56 VMON5 Analog Input -0.3V to 5.75V
55 VMON5GS Analog Input -0.2V to 0.3V
58 VMON6 Analog Input -0.3V to 5.75V
57 VMON6GS Analog Input -0.2V to 0.3V
62 VMON7 Analog Input -0.3V to 5.75V
61 VMON7GS Analog Input -0.2V to 0.3V
64 VMON8 Analog Input -0.3V to 5.75V
63 VMON8GS Analog Input -0.2V to 0.3V
66 VMON9 Analog Input -0.3V to 5.75V
65 VMON9GS Analog Input -0.2V to 0.3V
68 VMON10 Analog Input -0.3V to 5.75V
67 VMON10GS Analog Input -0.2V to 0.3V
70 VMON11 Analog Input -0.3V to 5.75V
69 VMON11GS Analog Input -0.2V to 0.3V
72 VMON12 Analog Input -0.3V to 5.75V
71 VMON12GS Analog Input -0.2V to 0.3V
3, 22, 36,
43, 88, 98
45, 87 GNDA
13, 38, 94 VCCD
60 VCCA
GNDD
8
8
7
7
Ground Ground Digital Ground
Ground Ground Analog Ground
Power 2.8V to 3.96V Core VCC, Main Power Supply
Power 2.8V to 3.96V Analog Power Supply
5 VCCINP Power 2.25V to 3.6VVCC for IN[1:6] Inputs
33 VCCJ Power 2.25V to 3.6VVCC for JTAG Logic Interface Pins
39 VCCPROG Power 3.0V to 3.6V
6
0V to 10V Open-Drain Output 1
12.5µA to 100µA Source 100µA to 3000µA Sink
86 HVOUT1
Open Drain Output
Current Source/Sink
1
1
1
1
1
1
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
PLD Logic Input 1 Registered by MCLK
PLD Logic Input 2 Registered by MCLK
PLD Logic Input 3 Registered by MCLK
PLD Logic Input 4 Registered by MCLK
PLD Logic Input 5 Registered by MCLK
PLD Logic Input 6 Registered by MCLK
Voltage Monitor 1 Input
Voltage Monitor 1 Ground Sense
Voltage Monitor 2 Input
Voltage Monitor 2 Ground Sense
Voltage Monitor 3 Input
Voltage Monitor 3 Ground Sense
Voltage Monitor 4 Input
Voltage Monitor 4 Ground Sense
Voltage Monitor 5 Input
Voltage Monitor 5 Ground Sense
Voltage Monitor 6 Input
Voltage Monitor 6 Ground Sense
Voltage Monitor 7 Input
Voltage Monitor 7 Ground Sense
Voltage Monitor 8 Input
Voltage Monitor 8 Ground Sense
Voltage Monitor 9 Input
Voltage Monitor 9 Ground Sense
Voltage Monitor 10 Input
Voltage Monitor 10 Ground Sense
Voltage Monitor 11 Input
Voltage Monitor 11 Ground Sense
Voltage Monitor 12 Input
Voltage Monitor 12 Ground Sense
VCC for E Not Powered by V
2
Programming when the Device is
CCD
or V
CCA
High-voltage FET Gate Driver 1
3
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Pin Descriptions (Cont.)
Number Name Pin Type Voltage Range Description
Open Drain Output
85 HVOUT2
Current Source/Sink
Open Drain Output
42 HVOUT3
Current Source/Sink
Open Drain Output
40 HVOUT4
Current Source/Sink
8 OUT5_SMBA Open Drain Output
9 OUT6 Open Drain Output
10 OUT7 Open Drain Output
11 OUT8 Open Drain Output
12 OUT9 Open Drain Output
14 OUT10 Open Drain Output
15 OUT11 Open Drain Output
16 OUT12 Open Drain Output
17 OUT13 Open Drain Output
18 OUT14 Open Drain Output
19 OUT15 Open Drain Output
20 OUT16 Open Drain Output
21 OUT17 Open Drain Output
23 OUT18 Open Drain Output
24 OUT19 Open Drain Output
25 OUT20 Open Drain Output
84 TRIM1 Analog Output
83 TRIM2 Analog Output
82 TRIM3 Analog Output
80 TRIM4 Analog Output
79 TRIM5 Analog Output
75 TRIM6 Analog Output
74 TRIM7 Analog Output
6
0V to 10V Open-Drain Output 2
12.5µA to 100µA Source 100µA to 3000µA Sink
6
0V to 10V Open-Drain Output 3
12.5µA to 100µA Source 100µA to 3000µA Sink
6
0V to 10V Open-Drain Output 4
12.5µA to 100µA Source 100µA to 3000µA Sink
6
0V to 5.5V
6
0V to 5.5V Open-Drain Output 6
6
0V to 5.5V Open-Drain Output 7
6
0V to 5.5V Open-Drain Output 8
6
0V to 5.5V Open-Drain Output 9
6
0V to 5.5V Open-Drain Output 10
6
0V to 5.5V Open-Drain Output 11
6
0V to 5.5V Open-Drain Output 12
6
0V to 5.5V Open-Drain Output 13
6
0V to 5.5V Open-Drain Output 14
6
0V to 5.5V Open-Drain Output 15
6
0V to 5.5V Open-Drain Output 16
6
0V to 5.5V Open-Drain Output 17
6
0V to 5.5V Open-Drain Output 18
6
0V to 5.5V Open-Drain Output 19
6
0V to 5.5V Open-Drain Output 20
High-voltage FET Gate Driver 2
High-voltage FET Gate Driver 3
High-voltage FET Gate Driver 4
Open-Drain Output 5, (SMBUS Alert Active Low)
-320mV to +320mV from Programmable
Trim DAC Output 1
DAC Offset
-320mV to +320mV from Programmable
Trim DAC Output 2
DAC Offset
-320mV to +320mV from Programmable
Trim DAC Output 3
DAC Offset
-320mV to +320mV from Programmable
Trim DAC Output 4
DAC Offset
-320mV to +320mV from Programmable
Trim DAC Output 5
DAC Offset
-320mV to +320mV from Programmable
Trim DAC Output 6
DAC Offset
-320mV to +320mV from Programmable
Trim DAC Output 7
DAC Offset
4
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Pin Descriptions (Cont.)
Number Name Pin Type Voltage Range Description
73 TRIM8 Analog Output
91 RESETb
9
Digital I/O 0V to 3.96V Device Reset (Active Low)
95 PLDCLK Digital Output 0V to 3.96V
96 MCLK Digital I/O 0V to 3.96V 8MHz Clock I/O (Tristate), CMOS Drive
34 TDO Digital Output 0V to 5.5V JTAG Test Data Out
37 TCK Digital Input 0V to 5.5V JTAG Test Clock Input
28 TMS Digital Input 0V to 5.5V JTAG Test Mode Select
31 TDI Digital Input 0V to 5.5V JTAG Test Data In, TDISEL pin = 1
30 ATDI Digital Input 0V to 5.5V JTAG Test Data In (Alternate), TDISEL Pin = 0
32 TDISEL Digital Input 0V to 5.5V Select TDI/ATDI Input
92 SCL Digital Input 0V to 5.5V I
93 SDA Digital I/O 0V to 5.5V I
44, 59 RESERVED Reserved - Do Not Connect
26, 27, 29, 35, 41, 49, 76, 77, 78,
NC No Internal Connection
81, 99, 100
1. [IN1...IN6] are inputs to the PLD. The thresholds for these pins are referenced by the voltage on VCCINP.
2. IN1 pin can also be controlled through JTAG interface.
3. [IN2..IN6] can also be controlled through I
4. The VMON inputs can be biased independently from VCCA. Unused VMONs should be tied to GNDD.
5. The VMONGS inputs are the ground sense line for each given VMON pin. The VMON input pins along with the VMONGS ground sense pins implement a differential pair for each voltage monitor to allow remote sense at the load. VMONGS lines must be connected and are not to exceed -0.2V - +0.3V in reference to the GNDA pin.
6. Open-drain outputs require an external pull-up resistor to a supply.
7. VCCD and VCCA pins must be connected together on the circuit board.
8. GNDA and GNDD pins must be connected together on the circuit board.
9. The RESETb pin should only
be used for cascading two or more ispPAC-POWR1220AT8 devices.
2
C/SMBus interface.
-320mV to +320mV from Programmable DAC Offset
Trim DAC Output 8
250kHz PLD Clock Output (Tristate), CMOS Output
2
C Serial Clock Input
2
C Serial Data, Bi-directional Pin
5
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet

Absolute Maximum Ratings

Absolute maximum ratings are shown in the table below. Stresses beyond those listed may cause permanent dam­age to the device. Functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions of this specification is not implied.
Symbol Parameter Conditions Min. Max. Units
V
CCD
V
CCA
V
CCINP
V
CCJ
V
CCPROG
V
IN
V
MON+
V
MONGS
V
TRI
I
SINKMAXTOTAL
T
S
T
A
Core supply -0.5 4.5 V
Analog supply -0.5 4.5 V
Digital input supply (IN[1:6]) -0.5 6 V
JTAG logic supply -0.5 6 V
2
E
programming supply -0.5 4 V
Digital input voltage (all digital I/O pins) -0.5 6 V
V
input voltage -0.5 6 V
MON
V
input voltage ground sense -0.5 6 V
MON
Voltage applied to tri-stated pins
HVOUT[1:4] -0.5 11 V
OUT[5:20] -0.5 6 V
Maximum sink current on any output 23 mA
Storage temperature -65 150
Ambient temperature -65 125
o
C
o
C

Recommended Operating Conditions

Symbol Parameter Conditions Min. Max. Units
V
CCD,
V
CCINP
V
CCJ
V
CCPROG
V
IN
V
MON
V
MONGS
V
CCA
Core supply voltage at pin 2.8 3.96 V
Digital input supply for IN[1:6] at pin 2.25 5.5 V
JTAG logic supply voltage at pin 2.25 3.6 V
E2 programming supply at pin During E2 programming 3.0 3.6 V
Input voltage at digital input pins -0.3 5.5 V
Input voltage at V
Input voltage at V
pins -0.3 5.9 V
MON
pins -0.2 0.3 V
MONGS
OUT[5:20] pins -0.3 5.5 V
V
OUT
T
APROG
T
A
Open-drain output voltage
Ambient temperature during programming
HVOUT[1:4] pins in open­drain mode
-0.3 10.4 V
-40 85
Ambient temperature Power applied -40 85
Analog Specifications
Symbol Parameter Conditions Min. Typ. Max. Units
1
I
CC
I
CCINP
I
CCJ
I
CCPROG
1. Includes currents on V
Supply current 40 mA
Supply current 5mA
Supply current 1mA
Supply current During programming cycle 40 mA
CCD
and V
CCA
supplies.
o
C
o
C
6
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet

Voltage Monitors

Symbol Parameter Conditions Min. Typ. Max. Units
R
IN
C
IN
V
Range Programmable trip-point range 0.075 5.734 V
MON
Sense Near-ground sense threshold 70 75 80 mV
V
Z
Accuracy Absolute accuracy of any trip-point
V
MON
HYST
Input resistance 55 65 75 kΩ
Input capacitance 8 pF
1
Hysteresis of any trip-point (relative to setting)
0.2 0.7 %
1%
CMR Common mode rejection 60 dB
1. Guaranteed by characterization across V
range, operating temperature, process.
CCA

High Voltage FET Drivers

Symbol Parameter Conditions Min. Typ. Max. Units
10V setting 9.6 10 10.4
V
PP
I
OUTSRC
I
OUTSINK
Gate driver output voltage
Gate driver source current (HIGH state)
Gate driver sink current (LOW state)
6V setting 5.8 6 6.2
12.5
Four settings in software
25
50
100
FAST OFF mode 2000 3000
100
Controlled ramp settings
250
500
V8V setting 7.7 8 8.3
µA
µA
7
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet

Margin/Trim DAC Output Characteristics

Symbol Parameter Conditions Min Typ Max Units
Resolution 8(7+sign) bits
FSR Full scale range +/-320 mV
LSB LSB step size 2.5 mV
I
OUT
BPZ
TS
C_LOAD Maximum load capacitance 50 pF
T
UPDATEM
TOSE
1. To 1% of set value with 50pf load connected to trim pins.
2. Total time required to update a single TRIMx output value by setting the associated DAC through the I2C port.
3. This is the total resultant error in the trimmed power supply output voltage referred to any DAC code due to the DAC’s INL, DNL, gain, out­put impedance, offset error and bipolar offset error across the industrial temperature range and the ispPAC-POWR1200AT8 operating V and V
CCD
Output source/sink current -200 200 µA
Offset 1 0.6
Bipolar zero output voltage (code=80h)
Offset 2 0.8
Offset 3 1.0
Offset 4 1.25
DAC code changed
TrimCell output voltage settling
1
time
Update time through I2C port
Total open loop supply voltage
3
error
ranges.
from 80H to FFH or 80H to 00H
Single DAC code change
2
MCLK = 8MHz 260 µs
256 µs
Full scale DAC corre­sponds to ±5% supply
-1% +1% V/V
voltage variation
2.5 ms
V
CCA

ADC Characteristics

Symbol Parameter Conditions Min. Typ. Max. Units
ADC Resolution 10 Bits
T
CONVERT
V
IN
ADC Step Size LSB
Eattenuator Error Due to Attenuator Programmable Attenuator = 3 +/- 0.1 %
1. Maximum voltage is limited by V

ADC Error Budget Across Entire Operating Temperature Range

Symbol Parameter Conditions Min. Typ. Max. Units
TADC Error
1. Total error, guaranteed by characterization, includes INL, DNL, Gain, Offset, and PSR specs of the ADC.
Conversion Time Time from I2C Request 200 µs
Input range Full Scale
Programmable Attenuator = 1 0 2.048 V
Programmable Attenuator = 3 0 5.9
1
Programmable Attenuator = 1 2 mV
Programmable Attenuator = 3 6 mV
pin (theoretical maximum is 6.144V).
MONX
Total Measurement Error at Any Voltage
1
Measurement Range 600 mV - 2.048V, VMONxGS > -100mV, Attenuator =1
Measurement Range 600 mV - 2.048V, VMONxGS > -200mV, Attenuator =1
Measurement Range 0 - 2.048V, VMONxGS > -200mV, Attenuator =1
-8 +/-4 8 mV
+/-6 mV
+/-10 mV
V
8
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet

Power-On Reset

Symbol Parameter Conditions Min. Typ. Max. Units
T
GOOD
V
TL
V
TH
V
T
T
POR
C
L
1. Corresponds to VCCA and VCCD supply voltages.
Power-on reset to valid VMON comparator output
Threshold below which RESETb is LOW
Threshold above which RESETb is HIGH
Threshold above which RESETb is valid
Minimum duration dropout required to trigger RESETb
Capacitive load on RESETb for master/slave operation
1
1
1
2.5 ms
2.3 V
2.7 V
0.8 V
15µs
200 pF

AC/Transient Characteristics

Over Recommended Operating Conditions
Symbol Parameter Conditions Min. Typ. Max. Units
Voltage Monitors
t
PD16
t
PD64
Propagation delay input to output glitch filter OFF
Propagation delay input to output glitch filter ON
Oscillators
f
CLK
f
CLKEXT
f
PLDCLK
Internal master clock frequency (MCLK)
Externally applied master clock (MCLK)
PLDCLK output frequency f
Timers
Timeout Range
Resolution
Range of programmable timers (128 steps)
Spacing between available adjacent timer intervals
Accuracy Timer accuracy f
7.6 8 8.4 MHz
7.2 8.8 MHz
= 8MHz 250 kHz
CLK
f
= 8MHz 0.032 1966 ms
CLK
= 8MHz -6.67 -12.5 %
CLK
16 µs
64 µs
13 %
9
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Digital Specifications
Over Recommended Operating Conditions
Symbol Parameter Conditions Min. Typ. Max. Units
I
IL,IIH
I
OH-HVOUT
I
PU
V
IL
V
IH
V
OL
V
OH
I
SINKTOTAL
1. VPS[0:1], SCL, SDA referenced to V
Input leakage, no pull-up/pull-down +/-10 µA
HVOUT[1:4] in open
Output leakage current
drain mode and pulled
35 60 µA
up to 10V
Input pull-up current (TMS, TDI, TDISEL, ATDI, MCLK)
70 µA
VPS[0:1], TDI, TMS, ATDI, TDISEL, 3.3V
0.8
supply
Voltage input, logic low
1
VPS[0:1], TDI, TMS, ATDI, TDISEL, 2.5V
0.7
V
supply
SCL, SDA 30% V
IN[1:6] 30% V
CCD
CCINP
VPS[0:1], TDI, TMS, ATDI, TDISEL, 3.3V
2.0
supply
Voltage input, logic high
1
VPS[0:1], TDI, TMS, ATDI, TDISEL, 2.5V
1.7
V
supply
HVOUT[1:4] (open drain mode), I
TDO,MCLK,PLDCLK I
TDO, MCLK, PLDCLK I
SCL, SDA 70% V
IN[1:6] 70% V
= 10mA 0.8
SINK
= 20mA 0.8
SINK
= 4mA 0.4
SINK
= 4mA V
SRC
CCD
CCINP
V
CCD
V
CCINP
- 0.4 V
CCD
VOUT[5:20] I
All digital outputs 130 mA
; IN[1:6] referenced to V
CCD
; TDO, TDI, TMS, ATDI, TDISEL referenced to V
CCINP
CCJ
.
10
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet

I2C Port Characteristics

100KHz 400KHz
Symbol Definition
F
I2C
T
SU;STA
T
HD;STA
T
SU;DAT
T
SU;STO
T
HD;DAT
T
LOW
T
HIGH
T
F
T
R
T
TIMEOUT
T
POR
T
BUF
1. If F
is less than 50kHz, then the ADC DONE status bit is not guaranteed to be set after a valid conversion request is completed. In this
I2C
case, waiting for the T readout. When F
I2C clock/data rate 100
After start 4.7 0.6 us
After start 4 0.6 us
Data setup 250 100 ns
Stop setup 4 0.6 us
Data hold; SCL= Vih_min = 2.1V 0.3 3.45 0.3 0.9 us
Clock low period 4.7 1.3 us
Clock high period 4 0.6 us
Fall time; 2.25V to 0.65V 300 300 ns
Rise time; 0.65V to 2.25V 1000 300 ns
Detect clock low timeout 25 35 25 35 ms
Device must be operational after power-on reset 500 500 ms
Bus free time between stop and start condition 4.7 1.3 us
CONVERT
is greater than 50kHz, ADC conversion complete is ensured by waiting for the DONE status bit.
I2C
minimum time after a convert request is made is the only way to guarantee a valid conversion is ready for
1
400
UnitsMin. Max. Min. Max.
1
KHz
11
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet

Timing for JTAG Operations

Symbol Parameter Conditions Min. Typ. Max. Units
t
ISPEN
t
ISPDIS
t
HVDIS
t
HVDIS
t
CEN
t
CDIS
t
SU1
t
H
t
CKH
t
CKL
f
MAX
t
CO
t
PWV
t
PWP
Figure 2. Erase (User Erase or Erase All) Timing Diagram
Program enable delay time 10 µs
Program disable delay time 30 µs
High voltage discharge time, program 30 µs
High voltage discharge time, erase 200 µs
Falling edge of TCK to TDO active 15 ns
Falling edge of TCK to TDO disable 15 ns
Setup time 5 ns
Hold time 10 ns
TCK clock pulse width, high 20 ns
TCK clock pulse width, low 20 ns
Maximum TCK clock frequency 25 MHz
Falling edge of TCK to valid output 15 ns
Verify pulse width 30 µs
Programming pulse width 20 ms
VIH
TMS
VIL
t
SU1
VIH
TCK
VIL
Update-IR Run-Test/Idle (Erase) Select-DR Scan
State
t
t
SU1
H
t
CKH tGKL
t
H
Figure 3. Programming Timing Diagram
VIH
TMS
VIL
TCK
State
t
SU1
VIH
VIL
Update-IR Run-Test/Idle (Program) Select-DR Scan
t
t
SU1
H
t
t
CKL
CKH
CKH
t
SU1
t
SU2
t
t
SU1
H
t
CKL
t
H
t
CKH
t
H
t
CKH
t
SU1
t
H
t
H
t
CKH
t
SU1
t
PWP
t
t
SU1
Instruction, then clock to the Run-Test/Idle state
Clock to Shift-IR state and shift in the Discharge
t
H
CKH
t
t
SU1
H
t
t
CKH
GKL
Run-Test/Idle (Discharge)
t
SU1
t
H
t
CKH
Specified by the Data Sheet
t
Update-IR
Clock to Shift-IR state and shift in the next
Instruction, which will stop the discharge process
12
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Figure 4. Verify Timing Diagram
VIH
TMS
VIL
t
H
t
CKH
TCK
VIH
VIL
t
t
SU1
t
H
SU1
t
t
CKH
CKL
t
H
t
SU1
t
PWV
t
H
t
CKH
t
SU1
t
t
H
SU1
t
t
CKH
CKL
State
Update-IR Run-Test/Idle (Program) Select-DR Scan
Update-IR
Clock to Shift-IR state and shift in the next Instruction
Figure 5. Discharge Timing Diagram
t
(Actual)
t
SU1
Clock to Shift-IR state and shift in the Verify
Instruction, then clock to the Run-Test/Idle state
HVDIS
t
t
H
SU1
t
t
CKH
CKL
Run-Test/Idle (Verify)
t
H
t
CKH
Specified by the Data Sheet
t
SU1
t
PWV
Actual
t
PWV
t
H
t
CKH
TMS
TCK
State
VIH
VIL
t
H
VIH
VIL
t
t
SU1
t
H
SU1
t
CKH tCKL
Update-IR Run-Test/Idle (Erase or Program)
t
SU1
t
PWP
t
H
t
CKH
Select-DR Scan

Theory of Operation

Analog Monitor Inputs

The ispPAC-POWR1220AT8 provides 12 independently programmable voltage monitor input circuits as shown in Figure 6. Two individually programmable trip-point comparators are connected to an analog monitoring input. Each comparator reference has 368 programmable trip points over the range of 0.664V to 5.734V. Additionally, a 75mV ‘zero-detect’ threshold is selectable which allows the voltage monitors to determine if a monitored signal has dropped to ground level. This feature is especially useful for determining if a power supply’s output has decayed to a substantially inactive condition after it has been switched off.
13
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Figure 6. ispPAC-POWR1220AT8 Voltage Monitors
ispPAC-POWR1220AT8
To ADC
Comp A/Window
Select
Window Control
MUX
Glitch Filter
Glitch Filter
Filtering
VMONxA
Logic Signal
VMONxB
Logic
Signal
VMONx Status
I2C Interface
Unit
PLD
Array
VMONx
VMONxGS
Differential
Input Buffer x
Trip Point A
Trip Point B
Comp A
+
Comp B
+
Analog Input
Figure 6 shows the functional block diagram of one of the 12 voltage monitor inputs - ‘x’ (where x = 1...12). Each voltage monitor can be divided into three sections: Analog Input, Window Control, and Filtering. The first section provides a differential input buffer to monitor the power supply voltage through VMONx+ (to sense the positive ter- minal of the supply) and VMONxGS (to sense the power supply ground). Differential voltage sensing minimizes inaccuracies in voltage measurement with ADC and monitor thresholds due to the potential difference between the ispPAC-POWR1220AT8 device ground and the ground potential at the sensed node on the circuit board.
The voltage output of the differential input buffer is monitored by two individually programmable trip-point compara­tors, shown as CompA and CompB. Table 1 shows all 368 trip points spanning the range 0.664V to 5.734V to which a comparator’s threshold can be set.
Each comparator outputs a HIGH signal to the PLD array if the voltage at its positive terminal is greater than its pro­grammed trip point setting, otherwise it outputs a LOW signal.
A hysteresis of approximately 1% of the setpoint is provided by the comparators to reduce false triggering as a result of input noise. The hysteresis provided by the voltage monitor is a function of the input divider setting. Table 3 lists the typical hysteresis versus voltage monitor trip-point.

AGOOD Logic Signal

All the VMON comparators auto-calibrate immediately after a power-on reset event. During this time, the digital glitch filters are also initialized. This process completion is signalled by an internally generated logic signal: AGOOD. All logic using the VMON comparator logic signals must wait for the AGOOD signal to become active.

Programmable Over-Voltage and Under-Voltage Thresholds

Figure 7 (a) shows the power supply ramp-up and ramp-down voltage waveforms. Because of hysteresis, the com­parator outputs change state at different thresholds depending on the direction of excursion of the monitored power supply.
14
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Figure 7. (a) Power Supply Voltage Ramp-up and Ramp-down Waveform and the Resulting Comparator Output, (b) Corresponding to Upper and Lower Trip Points
UTP
LTP
(a)
Monitored Power Supply Votlage
(b)
Comparator Logic Output
During power supply ramp-up the comparator output changes from logic 0 to 1 when the power supply voltage crosses the upper trip point (UTP). During ramp down the comparator output changes from logic state 1 to 0 when the power supply voltage crosses the lower trip point (LTP). To monitor for over voltage fault conditions, the UTP should be used. To monitor under-voltage fault conditions, the LTP should be used.
Tables 1 and 2 show both the under-voltage and over-voltage trip points, which are automatically selected in soft­ware depending on whether the user is monitoring for an over-voltage condition or an under-voltage condition.
15
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Table 1. Trip Point Table Used For Over-Voltage Detection
Fine
Range
Setting
1 0.790 0.941 1.120 1.333 1.580 1.885 2.244 2.665 3.156 3.758 4.818 5.734
2 0.786 0.936 1.114 1.326 1.571 1.874 2.232 2.650 3.139 3.738 4.792 5.703
3 0.782 0.930 1.108 1.319 1.563 1.864 2.220 2.636 3.123 3.718 4.766 5.674
4 0.778 0.926 1.102 1.312 1.554 1.854 2.209 2.622 3.106 3.698 4.741 5.643
5 0.773 0.921 1.096 1.305 1.546 1.844 2.197 2.607 3.089 3.678 4.715 5.612
6 0.769 0.916 1.090 1.298 1.537 1.834 2.185 2.593 3.072 3.657 4.689 5.581
7 0.765 0.911 1.084 1.290 1.529 1.825 2.173 2.579 3.056 3.637 4.663 5.550
8 0.761 0.906 1.078 1.283 1.520 1.815 2.161 2.565 3.039 3.618 4.638 5.520
9 0.756 0.901 1.072 1.276 1.512 1.805 2.149 2.550 3.022 3.598 4.612 5.489
10 0.752 0.896 1.066 1.269 1.503 1.795 2.137 2.536 3.005 3.578 4.586 5.459
11 0.748 0.891 1.060 1.262 1.495 1.785 2.125 2.522 2.988 3.558 4.561 5.428
12 0.744 0.886 1.054 1.255 1.486 1.774 2.113 2.507 2.971 3.537 4.535 5.397
13 0.739 0.881 1.048 1.248 1.478 1.764 2.101 2.493 2.954 3.517 4.509 5.366
14 0.735 0.876 1.042 1.240 1.470 1.754 2.089 2.479 2.937 3.497 4.483 5.336
15 0.731 0.871 1.036 1.233 1.461 1.744 2.077 2.465 2.920 3.477 4.457 5.305
16 0.727 0.866 1.030 1.226 1.453 1.734 2.064 2.450 2.903 3.457 4.431 5.274
17 0.723 0.861 1.024 1.219 1.444 1.724 2.052 2.436 2.886 3.437 4.406 5.244
18 0.718 0.856 1.018 1.212 1.436 1.714 2.040 2.422 2.869 3.416 4.380 5.213
19 0.714 0.851 1.012 1.205 1.427 1.704 2.028 2.407 2.852 3.396 4.355 5.183
20 0.710 0.846 1.006 1.198 1.419 1.694 2.016 2.393 2.836 3.376 4.329 5.152
21 0.706 0.841 1.000 1.190 1.410 1.684 2.004 2.379 2.819 3.356 4.303 5.121
22 0.701 0.836 0.994 1.183 1.402 1.673 1.992 2.365 2.802 3.336 4.277 5.090
23 0.697 0.831 0.988 1.176 1.393 1.663 1.980 2.350 2.785 3.316 4.251 5.059
24 0.693 0.826 0.982 1.169 1.385 1.653 1.968 2.337 2.768 3.296 4.225 5.030
25 0.689 0.821 0.976 1.162 1.376 1.643 1.956 2.323 2.752 3.276 4.199 4.999
26 0.684 0.816 0.970 1.155 1.369 1.633 1.944 2.309 2.735 3.256 4.174 4.968
27 0.680 0.810 0.964 1.148 1.361 1.623 1.932 2.294 2.718 3.236 4.149 4.937
28 0.676 0.805 0.958 1.140 1.352 1.613 1.920 2.280 2.701 3.216 4.123 4.906
29 0.672 0.800 0.952 1.133 1.344 1.603 1.908 2.266 2.684 3.196 4.097 4.876
30 0.668 0.795 0.946 1.126 1.593 1.896 2.251 3.176 4.071 4.845
Low-V
Sense
123456789101112
Coarse Range Setting
75mV
16
Lattice Semiconductor ispPAC-POWR1220AT8 Data Sheet
Table 2. Trip Point Table Used For Under-Voltage Detection
Fine
Range
Setting
1 0.786 0.936 1.114 1.326 1.571 1.874 2.232 2.650 3.139 3.738 4.792 5.703
2 0.782 0.930 1.108 1.319 1.563 1.864 2.220 2.636 3.123 3.718 4.766 5.674
3 0.778 0.926 1.102 1.312 1.554 1.854 2.209 2.622 3.106 3.698 4.741 5.643
4 0.773 0.921 1.096 1.305 1.546 1.844 2.197 2.607 3.089 3.678 4.715 5.612
5 0.769 0.916 1.090 1.298 1.537 1.834 2.185 2.593 3.072 3.657 4.689 5.581
6 0.765 0.911 1.084 1.290 1.529 1.825 2.173 2.579 3.056 3.637 4.663 5.550
7 0.761 0.906 1.078 1.283 1.520 1.815 2.161 2.565 3.039 3.618 4.638 5.520
8 0.756 0.901 1.072 1.276 1.512 1.805 2.149 2.550 3.022 3.598 4.612 5.489
9 0.752 0.896 1.066 1.269 1.503 1.795 2.137 2.536 3.005 3.578 4.586 5.459
10 0.748 0.891 1.060 1.262 1.495 1.785 2.125 2.522 2.988 3.558 4.561 5.428
11 0.744 0.886 1.054 1.255 1.486 1.774 2.113 2.507 2.971 3.537 4.535 5.397
12 0.739 0.881 1.048 1.248 1.478 1.764 2.101 2.493 2.954 3.517 4.509 5.366
13 0.735 0.876 1.042 1.240 1.470 1.754 2.089 2.479 2.937 3.497 4.483 5.336
14 0.731 0.871 1.036 1.233 1.461 1.744 2.077 2.465 2.920 3.477 4.457 5.305
15 0.727 0.866 1.030 1.226 1.453 1.734 2.064 2.450 2.903 3.457 4.431 5.274
16 0.723 0.861 1.024 1.219 1.444 1.724 2.052 2.436 2.886 3.437 4.406 5.244
17 0.718 0.856 1.018 1.212 1.436 1.714 2.040 2.422 2.869 3.416 4.380 5.213
18 0.714 0.851 1.012 1.205 1.427 1.704 2.028 2.407 2.852 3.396 4.355 5.183
19 0.710 0.846 1.006 1.198 1.419 1.694 2.016 2.393 2.836 3.376 4.329 5.152
20 0.706 0.841 1.000 1.190 1.410 1.684 2.004 2.379 2.819 3.356 4.303 5.121
21 0.701 0.836 0.994 1.183 1.402 1.673 1.992 2.365 2.802 3.336 4.277 5.090
22 0.697 0.831 0.988 1.176 1.393 1.663 1.980 2.350 2.785 3.316 4.251 5.059
23 0.693 0.826 0.982 1.169 1.385 1.653 1.968 2.337 2.768 3.296 4.225 5.030
24 0.689 0.821 0.976 1.162 1.376 1.643 1.956 2.323 2.752 3.276 4.199 4.999
25 0.684 0.816 0.970 1.155 1.369 1.633 1.944 2.309 2.735 3.256 4.174 4.968
26 0.680 0.810 0.964 1.148 1.361 1.623 1.932 2.294 2.718 3.236 4.149 4.937
27 0.676 0.805 0.958 1.140 1.352 1.613 1.920 2.280 2.701 3.216 4.123 4.906
28 0.672 0.800 0.952 1.133 1.344 1.603 1.908 2.266 2.684 3.196 4.097 4.876
29 0.668 0.795 0.946 1.126 1.335 1.593 1.896 2.251 2.667 3.176 4.071 4.845
30 0.664 0.790 0.940 1.119 1.583 1.884 2.236 3.156 4.045 4.815
Low-V
Sense
123456789101112
Coarse Range Setting
75mV
17
Loading...
+ 37 hidden pages