Lattice ispLSI 1024EA User Manual

• HIGH DENSITY PROGRAMMABLE LOGIC
Output Routing Pool
B0 B1 B2 B3 B4 B5 B6 B7
A0 A1 A2 A3 A4 A5 A6 A7
C7 C6 C5 C4 C3 C2 C1 C0
Output Routing Pool
Output Routing Pool
CLK
Global Routing Pool (GRP)
0139/1024EA
Logic Array
DQ
DQ
DQ
DQ
GLB
— 4000 PLD Gates — 48 I/O Pins, Two Dedicated Inputs — 144 Registers — High Speed Global Interconnect — Wide Input Gating for Fast Counters, State
Machines, Address Decoders, etc.
— Small Logic Block Size for Random Logic
• NEW FEATURES — 100% IEEE 1149.1 Boundary Scan Testable — ispJTAG™ In-System Programmable via IEEE 1149.1
(JTAG) Test Access Port
— User Selectable 3.3V or 5V I/O Supports Mixed-
Voltage Systems (V
— Open-Drain Output Option
• HIGH PERFORMANCE E — fmax = 200 MHz Maximum Operating Frequency
tpd = 4.5 ns Propagation Delay
— TTL Compatible Inputs and Outputs — Electrically Erasable and Reprogrammable — Non-Volatile — 100% Tested at Time of Manufacture — Unused Product Term Shutdown Saves Power
• IN-SYSTEM PROGRAMMABLE — Increased Manufacturing Yields, Reduced Time-to-
Market and Improved Product Quality
— Reprogram Soldered Devices for Faster Prototyping
• OFFERS THE EASE OF USE AND FAST SYSTEM
SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FIELD PROGRAMMABLE GATE ARRAYS
— Complete Programmable Device Can Combine Glue
Logic and Structured Designs — Enhanced Pin Locking Capability — Four Dedicated Clock Input Pins — Synchronous and Asynchronous Clocks — Programmable Output Slew Rate Control to
Minimize Switching Noise — Flexible Pin Placement — Optimized Global Routing Pool Provides Global
Interconnectivity
• ispDesignEXPERT™ – LOGIC COMPILER AND COM­PLETE ISP DEVICE DESIGN SYSTEMS FROM HDL SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING
— Superior Quality of Results — Tightly Integrated with Leading CAE Vendor Tools — Productivity Enhancing Timing Analyzer, Explore
Tools, Timing Simulator and ispANALYZER™
— PC and UNIX Platforms
Copyright © 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. June 2000 Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
1024ea_01 1
CCIO Pin)
2
CMOS® TECHNOLOGY
ispLSI® 1024EA
In-System Programmable High Density PLD
Functional Block DiagramFeatures
Description
The ispLSI 1024EA is a High Density Programmable Logic Device containing 144 Registers, 48 Universal I/O pins, two Dedicated Input pins, four Dedicated Clock Input pins and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 1024EA features 5V in-system diagnostic capabilities via IEEE 1149.1 Test Access Port. The ispLSI 1024EA device offers non-volatile reprogrammability of the logic, as well as the intercon­nects to provide truly reconfigurable systems. A functional superset of the ispLSI 1024 architecture, the ispLSI 1024EA device adds user selectable 3.3V or 5V I/O and open-drain output options.
The basic unit of logic on the ispLSI 1024EA device is the Generic Logic Block (GLB). The GLBs are labeled A0, A1D7 (Figure 1). There are a total of 24 GLBs in the ispLSI 1024EA device. Each GLB has 18 inputs, a programmable AND/OR/Exclusive OR array, and four outputs which can be configured to be either combinato­rial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any other GLB on the device.
Functional Block Diagram
Figure 1. ispLSI 1024EA Functional Block Diagram
RESET
VCCIO
Generic
Logic Blocks
(GLBs)
I/O 0 I/O 1 I/O 2 I/O 3
I/O 4 I/O 5 I/O 6 I/O 7
I/O 8
I/O 9 I/O 10 I/O 11
I/O 12 I/O 13 I/O 14 I/O 15
TDO
TMS
TCK
TDI
Megablock
A0
A1
A2
A3
A4
lnput Bus
A5
Output Routing Pool (ORP)
A6
A7
B0 B1 B2 B3 B4 B5 B6 B7
Output Routing Pool (ORP)
Input Bus
I/O 16
I/O 17
I/O 18
I/O 19
I/O 20
I/O 21
I/O 22
Specifications ispLSI 1024EA
GOE 1/IN 5 GOE 0/IN 4
lnput Bus
I/O 47 I/O 46 I/O 45 I/O 44
I/O 43 I/O 42 I/O 41 I/O 40
I/O 39 I/O 38 I/O 37 I/O 36
I/O 35 I/O 34 I/O 33 I/O 32
Global
Routing
Pool
(GRP)
I/O 23
I/O 24
I/O 25
I/O 26
I/O 27
I/O 28
I/O 29
I/O 30
I/O 31
C7
C6
C5
C4
C3
C2
Output Routing Pool (ORP)
C1
C0
CLK 0 CLK 1
Clock
Network
Y0Y1Y2
CLK 2 IOCLK 0 IOCLK 1
0139B/1024EA
Y3
Distribution
The device also has 48 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, registered in­put, latched input, output or bi-directional I/O pin with 3-state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA. Each output can be programmed independently for fast or slow output slew rate to mini­mize overall output switching noise. By connecting the VCCIO pin to a common 5V or 3.3V power supply, I/O output levels can be matched to 5V or 3.3V-compatible voltages.
Eight GLBs, 16 I/O cells, dedicated inputs (if available) and one ORP are connected together to make a Megablock (Figure 1). The outputs of the eight GLBs are connected to a set of 16 universal I/O cells by the ORP. Each ispLSI 1024EA device contains three Megablocks.
The GRP has, as its inputs, the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew.
Clocks in the ispLSI 1024EA device are selected using the Clock Distribution Network. Four dedicated clock pins (Y0, Y1, Y2 and Y3) are brought into the distribution network, and five clock outputs (CLK 0, CLK 1, CLK 2, IOCLK 0 and IOCLK 1) are provided to route clocks to the GLBs and I/O cells. The Clock Distribution Network can also be driven from a special clock GLB (C0 on the ispLSI 1024EA device). The logic of this GLB allows the user to create an internal clock from a combination of internal signals within the device.
Programmable Open-Drain Outputs
In addition to the standard output configuration, the outputs of the ispLSI 1024EA are individually program­mable, either as a standard totem-pole output or an open-drain output. The totem-pole output drives the specified Voh and Vol levels, whereas the open-drain output drives only the specified Vol. The Voh level on the open-drain output depends on the external loading and pull-up. This output configuration is controlled by a pro­grammable fuse. The default configuration when the device is in bulk erased state is totem-pole configuration. The open-drain/totem-pole option is selectable through the ispDesignEXPERT software tools.
2
Specifications ispLSI 1024EA
Boundary Scan
Figure 2. Boundary Scan Waveforms and Timing Specifications
TMS
TDI
TCK
TDO
Data to be
captured
Data to be
driven out
T
btch
T
T
btvo
T
T
btcl
T
btcpsu
btuov
btsu
Data Captured
T
bth
T
btcp
T
btco
Valid Data Valid Data
T
btcph
T
btuco
Valid Data Valid Data
T
btoz
T
btuoz
Symbol Parameter Min Max Units
t
btcp
t
btch
t
btcl
t
btsu
t
bth
t
rf
t
btco
t
btoz
t
btvo
t
btcpsu
t
btcph
t
btuco
t
btuoz
t
btuov
TCK [BSCAN test] clock pulse width 100 ns TCK [BSCAN test] pulse width high 50 ns TCK [BSCAN test] pulse width low 50 ns TCK [BSCAN test] setup time 20 ns TCK [BSCAN test] hold time 25 ns TCK [BSCAN test] rise and fall time 50 mV/ns TAP controller falling edge of clock to valid output 25 ns TAP controller falling edge of clock to data output disable 25 ns TAP controller falling edge of clock to data output enable 25 ns BSCAN test Capture register setup time 40 ns BSCAN test Capture register hold time 25 ns BSCAN test Update reg, falling edge of clock to valid output 50 ns BSCAN test Update reg, falling edge of clock to output disable 50 ns BSCAN test Update reg, falling edge of clock to output enable 50 ns
3
Specifications ispLSI 1024EA
Absolute Maximum Ratings
1
Supply Voltage Vcc.................................. -0.5 to +7.0V
Input Voltage Applied........................-2.5 to VCC +1.0V
Off-State Output Voltage Applied .....-2.5 to VCC +1.0V
Storage Temperature................................ -65 to 150°C
Case Temp. with Power Applied .............. -55 to 125°C
Max. Junction Temp. (T
1. Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
) with Power Applied ... 150°C
J
DC Recommended Operating Conditions
SYMBOL
VCC VCCIO VIL
VIH
PARAMETER
Supply Voltage Supply Voltage: Output Drivers
Input Low Voltage Input High Voltage
Commercial 5V
3.3V
TA = 0°C to + 70°C
MIN. MAX. UNITS
4.75
4.75
3.0 0
2.0
5.25
5.25
3.6
0.8 +1
V
cc
Table 2-0005/1024EA
V V V V V
Capacitance (TA=25oC, f=1.0 MHz)
SYMBOL
C
1
C
2
(Commercial/Industrial) Y0 Clock Capacitance
PARAMETER
Erase/Reprogram Specifications
PARAMETER
Erase/Reprogram Cycles
UNITSTYPICAL TEST CONDITIONS
8Dedicated Input, I/O, Y1, Y2, Y3, Clock Capacitance
10
MINIMUM MAXIMUM UNITS
10000 Cycles
pf
pf
V = 5.0V, V = 2.0V
CC
V = 5.0V, V = 2.0V
CC PIN
PIN
Table 2-0006/1024EA
Table 2-0008/1024EA
4
Switching Test Conditions
+ 5V
R
1
R
2
C
L
*
Device Output
Test
Point
*C
L
includes Test Fixture and Probe Capacitance.
0213a
Specifications ispLSI 1024EA
Input Pulse Levels Input Rise and Fall Time 10% to 90% Input Timing Reference Levels Output Timing Reference Levels Output Load
3-state levels are measured 0.5V from steady-state active level.
GND to 3.0V
1.5ns
1.5V
1.5V
See Figure 3
Table 2-0003/1024EA
Figure 3. Test Load
Output Load Conditions (see Figure 3)
TEST CONDITION R1 R2 CL
A 470 390 35pF
Active High
B
Active Low Active High to Z
at V -0.5V
C
Active Low to Z at V +0.5V
OH
OL
390 35pF
470 390 35pF
390 5pF
470 390 5pF
Table 2-0004/1024EA

DC Electrical Characteristics

Over Recommended Operating Conditions
SYMBOL
V
OL
V
OH
I
IL
I
IH
I
IL-PU
1
I
OS
2, 4, 5
I
CC
Output Low Voltage
Output High Voltage Input or I/O Low Leakage Current
Input or I/O High Leakage Current
I/O Active Pull-Up Current Output Short Circuit Current V
Operating Power Supply Current
PARAMETER
I
= 8 mA
OL
I
= -2 mA, V
OH
I
= -4 mA, V
OH
0V ≤ V
IN
- 0.2)V VIN V
(V
CCIO
V
V
CCIO
0V ≤ V
IN
= 5.0V or 3.3V, V
CCIO
V
= 0.0V, VIH = 3.0V
IL
f
TOGGLE
1. One output at a time for a maximum duration of one second. V
CONDITION MIN. TYP.
= 3.0V
CCIO
= 4.75V
CCIO
VIL (Max.)
CCIO
5.25V
IN
V
IL
= 0.5V ——-240 mA
OUT
= 1 MHz
= 0.5V was selected to avoid test
OUT
2.4 ——V
2.4 ——V
— —
— —
152 mA
problems by tester ground degradation. Characterized but not 100% tested.
2. Measured using eight 16-bit counters.
3. Typical values are at V
4. Unused inputs held at 0.0V.
5. Maximum I Power Consumption section of this data sheet and the Thermal Management section of the Lattice Semiconductor Data Book CD-ROM to estimate maximum I
varies widely with specific device configuration and operating frequency. Refer to the
CC
= 5V and TA = 25°C.
CC
CC
.
3
— —
— —
MAX. UNITS
0.4
-10 10
10
-200
Table 2-0007/1024EA
V
µA µA
µA µA
5
External Timing Parameters
Over Recommended Operating Conditions
Specifications ispLSI 1024EA
4
PARAMETER
t
pd1
t
pd2
f
max (Int.)
f
max (Ext.)
f
max (Tog.)
t
su1
t
co1
t
h1
t
su2
t
co2
t
h2
t
r1
t
rw1
t
ptoeen
t
ptoedis
t
goeen
t
goedis
t
wh 18 External Synchronous Clock Pulse Duration, High ns
t
wl
t
su3
t
h3
1. Unless noted otherwise, all parameters use a GRP load of four GLBs, 20 PTXOR path, ORP and Y0 clock.
2. Refer to Timing Model in this data sheet for further details.
3. Standard 16-bit counter using GRP feedback.
4. Reference Switching Test Conditions section.
TEST
COND.
A 1 Data Propagation Delay, 4PT Bypass, ORP Bypass ns A 2 Data Propagation Delay, Worst Case Path ns A 3 Clock Frequency with Internal Feedback MHz
4 Clock Frequency with External Feedback MHz 5 Clock Frequency, Max. Toggle MHz 6 GLB Reg. Setup Time before Clock,4 PT Bypass ns
A 7 GLB Reg. Clock to Output Delay, ORP Bypass ns
8 GLB Reg. Hold Time after Clock, 4 PT Bypass ns 9 GLB Reg. Setup Time before Clock ns 10 GLB Reg. Clock to Output Delay ns 11 GLB Reg. Hold Time after Clock ns
A 12 Ext. Reset Pin to Output Delay ns 13 Ext. Reset Pulse Duration ns B 14 Input to Output Enable ns C 15 Input to Output Disable ns B 16 Global OE Output Enable ns C 17 Global OE Output Disable ns
19 External Synchronous Clock Pulse Duration, Low ns 20 I/O Reg. Setup Time before Ext. Sync Clock (Y2, Y3) ns
21 I/O Reg. Hold Time after Ext. Sync. Clock (Y2, Y3) ns
2
DESCRIPTION#
1
1
( )
twh + twl
3
1
( )
tsu2 + tco1
-200
MIN. MAX.
4.5
6.0
200
3.0
0.0
3.5
0.0
3.5
— — — 4.5 4.5
2.0
2.0
3.0
0.0
— — —
3.5
— —
4.0
5.5
7.0
7.0
— —
— —
143 250
-125
MIN. MAX.
7.5
10.0
125
4.5
0.0
5.5
0.0
5.0
— — — 7.0 7.0
3.0
3.0
3.0
0.0
— — —
4.5
— —
5.5
10.0
12.0
12.0
— —
— —
100 167
-100
MIN. MAX.
10.0
12.5
100
77
125
— —
6.0
6.0
0.0
7.0
7.0
0.0
13.5
6.5
15.0
15.0
— — 9.0 9.0
4.0
4.0
3.5
0.0
Table 2-0030A/1024EA
UNITS
v.2.5
6
Specifications ispLSI 1024EA
Internal Timing Parameters
PARAM.
2
1
Inputs
tiobp tiolat tiosu tioh tioco tior tdin
22 I/O Register Bypass ns 23 I/O Latch Delay ns 24 I/O Register Setup Time before Clock ns 25 I/O Register Hold Time after Clock ns 26 I/O Register Clock to Out Delay ns 27 I/O Register Reset to Out Delay ns 28 Dedicated Input Delay ns
GRP
tgrp1 tgrp4 tgrp8 tgrp16 tgrp24
29 GRP Delay, 1 GLB Load ns 30 GRP Delay, 4 GLB Loads ns 31 GRP Delay, 8 GLB Loads ns
32 GRP Delay, 16 GLB Loads ns 33 ns
GRP Delay, 24 GLB Loads
GLB
t4ptbpc t4ptbpr t1ptxor t20ptxor txoradj
tgbp tgsu
tgh tgco tgro
tptre tptoe tptck tgfb
34 4 ProductTerm Bypass Path Delay (Combinatorial) ns 35 4 Product Term Bypass Path Delay (Registered) ns 36 1 ProductTerm/XOR Path Delay ns 37 20 Product Term/XOR Path Delay ns 38 XOR Adjacent Path Delay ns 39 GLB Register Bypass Delay 40 GLB Register Setup Time before Clock ns
41 GLB Register Hold Time after Clock ns 42 GLB Register Clock to Output Delay ns 43 GLB Register Reset to Output Delay ns
44 GLB Product Term Reset to Register Delay ns 45 GLB Product Term Output Enable to I/O Cell Delay ns 46 GLB Product Term Clock Delay ns 47 GLB Feedback Delay ns
3
ORP
torp torpbp
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
3. The XOR adjacent path can only be used by hard macros.
48 ORP Delay ns 49 ORP Bypass Delay ns
-200
MIN. MAX.
0.3
4.0
3.0
0.0
4.0
4.0
1.1
1.3
1.5
1.7
2.1
2.5
1.7
1.8
1.9
1.9
1.9
0.6
0.2
1.0
1.4
3.8
2.5
2.1
1.5
2.5
0.0
0.8
0.1
-125
MIN. MIN.MAX. MAX.
0.3
4.0
— — —
— — — — —
— — — — —
— —
— —
— —
— —
4.6
4.6
1.9
1.7
1.9
2.1
2.5
2.9
3.4
3.1
3.6
3.6
3.6
1.2
— —
1.4
4.9
3.8
5.7
3.9
1.3
0.2
3.0
0.0
0.3
3.5
2.8
-100
0.4
4.0
3.4
0.0
1.4
4.0
3.5
— —
5.0
5.0
2.2
2.1
2.3
2.5
2.9
3.3
4.9
3.8
4.3
4.3
4.3
2.1
— —
1.7
5.0
4.5
7.2
4.7
0.3 0.3
1.4
0.4
Table 2-0036A/1024EA
UNITSDESCRIPTION#
ns
v.2.5
7
Specifications ispLSI 1024EA
Internal Timing Parameters
1
Outputs
tob tsl toen todis tgoe
50 Output Buffer Delay ns 51 Output Buffer Delay, Slew Limited Adder ns 52 I/O Cell OE to Output Enabled ns 53 I/O Cell OE to Output Disabled ns 54 Global OE ns
Clocks
tgy0 tgy1/2 tgcp tioy2/3 tiocp
55 Clock Delay, Y0 to Global GLB Clock Line (Ref. clk) ns 56 Clock Delay, Y1 or Y2 to Global GLB Clock Line ns 57 Clock Delay, Clock GLB to Global GLB Clock Line ns 58 Clock Delay, Y2 or Y3 to I/O Cell Global Clock Line ns 59 Clock Delay, Clock GLB to I/O Cell Global Clock Line ns
Global Reset
tgr
1. Internal Timing Parameters are not tested and are for reference only.
60 Global Reset to GLB and I/O Registers ns
-200
MIN. MAX.
0.9
— —
5.0
3.1
— —
3.1
1.4
0.9
0.9
0.9
0.9
0.8
1.8
0.0
0.0
0.8
0.0
-125
MIN. MIN.MAX. MAX.
1.7
5.0
4.0
4.0
3.0
1.1
1.1
0.9
0.9
0.8
1.8
0.0
0.0
0.8
2.82.8
2.1
-100
2.0
5.0
5.1
5.1
3.9
1.9
1.9
1.5
1.5
1.8
0.8
0.0
0.0
2.8
0.8
5.1
Table 2-0037A/1024EA
UNITSDESCRIPTION#PARAM.
v.2.5
8
ispLSI 1024EA Timing Model
Specifications ispLSI 1024EA
I/O CellORPGLBGRPI/O Cell
Feedback#47
Ded. In
I/O Pin
(Input)
Reset
Y1,2,3
Y0
GOE 0,1
#60
#28
I/O Reg Bypass
#22
Input
Register
D RST
#23 - 27
GRP4
#30
Q
GRP Loading
Delay
#29, 31 - 33
Clock
Distribution
#56 - 59
#55
#54
#34 Comb 4 PT Bypass
Reg 4 PT Bypass
#35
20 PT
XOR Delays
#36 - 38
#60
Control
RE
PTs
OE CK
#44 - 46
Derivations of tsu, th and tco from the Product Term Clock
t
su
t
h Clock (max) + Reg h - Logic
=
Logic + Reg su - Clock (min)
t
iobp + tgrp4 + t20ptxor) + (tgsu) - (tiobp + tgrp4 + tptck(min))
=
( (#22 + #30 + #37) + (#40) - (#22 + #30 + #46)
=
(0.3 + 1.5 + 1.9) + (0.2) - (0.3 + 1.5 + 1.5)0.6
=
=
t
iobp + tgrp4 + tptck(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)
(
=
(#22 + #30 + #46) + (#41) - (#22 + #30 + #37)
=
(0.3 + 1.5 + 2.5) + (1.0) - (0.3 + 1.5 + 1.9)
1.6
=
GLB Reg Bypass ORP Bypass
#39
GLB Reg
Delay
DQ RST
#40 - 43
1
#49
ORP
Delay
#48
#50, 51
0491/1032EA
I/O Pin
(Output)
#52, 53
t
co
Derivations of tsu, th and tco from the Clock GLB
t
su
t
h
t
co
Clock (max) + Reg co + Output
=
t
iobp + tgrp4 + tptck(max)) + (tgco) + (torp + tob)
(
=
(#22 + #30 + #46) + (#42) + (#48 + #50)
=
(0.3 + 1.5 + 2.5) + (1.4) + (0.8 + 0.9)
=
7.4
=
Logic + Reg (setup) - Clock (min)
t
iobp + tgrp4 + t20ptxor) + (tgsu) - (tgy0(min) + tgco + tgcp(min))
=
( (#22 + #30 + #37) + (#40) - (#55 + #42 + #57)
=
(0.3 + 1.5 + 1.9) + (0.2) - (0.9 + 1.4 + 0.8)
=
0.8 Clock (max) + Reg (hold) - Logic
=
t
gy0(max) + tgco + tgcp(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)
(
=
(#55 + #42 + #57) + (#41) - (#22 + #30 + #37)
=
(0.9 + 1.4 + 1.8) + (1.0) - (0.3 + 1.5 + 1.9)
=
1.4 Clock (max) + Reg (clock-to-out) + Output
=
t
gy0(max) + tgco + tgcp(max)) + (tgco) + (torp + tob)
(
=
(#55 + #42 + #57) + (#42) + (#48 + #50)
=
(0.9 + 1.4 + 1.8) + (1.4) + (0.8 + 0.9)
=
7.2
1
1. Calculations are based upon timing specifications for the ispLSI 1024EA-200.
Table 2-0042a/1024EA
v.2.5
9
Maximum GRP Delay vs GLB Loads
4
3
2
GRP Delay (ns)
Specifications ispLSI 1024EA
ispLSI 1024EA-100 ispLSI 1024EA-125 ispLSI 1024EA-200
1
4
1 8 16 24
GLB Load
Power Consumption
Power consumption in the ispLSI 1024EA device de­pends on two primary factors: the speed at which the device is operating, and the number of product terms
Figure 4. Typical Device Power Consumption vs fmax
260 240
220 200 180
CC (mA)
I
160 140 120 100
50 100 150 200
0
Notes: Configuration of eight 16-bit counters
fmax (MHz)
Typical current at 5V, 25°C
GRP/GLB/1024EA
used. Figure 4 shows the relationship between power and operating speed.
ispLSI 1024EA
250
Icc can be estimated for the ispLSI 1024EA using the following equation: Icc = 17mA + (# of PTs * .726) + (# of nets * Max Freq * .0043) Where:
# of PTs = Number of Product Terms used in design # of nets = Number of Signals used in device Max freq = Highest Clock Frequency to the device (in MHz)
The Icc estimate is based on typical conditions (Vcc = 5.0V, room temperature) and an assumption of four GLB loads on average exists. These values are for estimates only. Since the value of Icc is sensitive to operating conditions and the program in the device, the actual Icc should be verified.
10
0127/1024EA
Pin Description
Specifications ispLSI 1024EA
NAME
I/O 0 - I/O 3 I/O 4 - I/O 7 I/O 8 - I/O 11 I/O 12 - I/O 15 I/O 16 - I/O 19 I/O 20 - I/O 23 I/O 24 - I/O 27 I/O 28 - I/O 31 I/O 32 - I/O 35 I/O 36 - I/O 39 I/O 40 - I/O 43 I/O 44 - I/O 47
GOE 0/IN 4
GOE 1/IN 5
TDI
TMS TDO
TCK
RESET
Y0
Y1
1
1
TQFP PIN
NUMBERS
19,
20,
23,
28,
31,
32,
42,
43,
46,
47,
54,
55,
69,
70,
73,
78,
81,
82,
92,
93,
96,
97,
4,
5,
91
8
18
68 35
58 17
9
67
21, 29, 33, 44, 48, 56, 71, 79, 83, 94, 98, 6,
DESCRIPTION
Input/Output Pins - These are the general purpose I/O pins used by the logic array.
22, 30, 34, 45, 53, 57, 72, 80, 84, 95, 3, 7
This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be used as a dedicated input pin.
This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be used as a dedicated input pin.
Input - Functions as an input pin to load programming data into the device and also used as one of the two control pins for the ispJTAG state machine.
Input - Controls the operation of the ISP state machine. Output - Functions as an output pin to read serial shift register data.
Input - Functions as a clock pin for the Serial Shift Register. Active Low (0) Reset pin which resets all of the GLB and I/O registers in the device.
Dedicated Clock input. This clock input is connected to one of the clock inputs of all of the GLBs on the device.
Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any GLB on the device.
Y2
Y3
GND
VCC
VCCIO
2
NC
1. Pins have dual function capability which is software selectable.
2. NC pins are not to be connected to any active signals, Vcc or GND.
60
59
14, 61,
10, 65,
16 1,
24, 38, 51, 74, 87,
15, 62,
11, 66,
2, 25, 39, 52, 75, 88,
36, 89,
40, 85,
12, 26, 49, 63, 76, 99,
Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any GLB and/or any I/O cell on the device.
Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any I/O cell on the device.
Ground (GND)
37, 90
Vcc
41, 86
Supply voltage for output drivers, 5V or 3.3V. No Connect
13, 27, 50, 64, 77, 100
Table 2-0002A/1024EA
11
Pin Configurations
ispLSI 1024EA 100-Pin TQFP Pinout Diagram
NC2NC2I/O 42
I/O 41
I/O 40
I/O 39
I/O 38
I/O 37
1
I/O 36
GOE 0/IN 4
GND
Specifications ispLSI 1024EA
2
GND
NC2NC2VCC
VCC
I/O 35
I/O 34
I/O 33
I/O 32
I/O 31
I/O 30
I/O 29
NC2NC
2 2
I/O 43 I/O 44 I/O 45 I/O 46 I/O 47
1
GOE 1/IN 5
VCC VCC
2 2
GND GND
VCCIO
RESET
I/O 0 I/O 1 I/O 2 I/O 3 I/O 4
2 2
NC NC
Y0
NC NC
TDI
NC NC
9998979695949392919089888786858483828180797877
100
1 2 3 4 5 6 7 8 9 10 11 12
ispLSI 1024EA
13 14
Top View
15 16 17 18 19 20 21 22 23 24 25
26272829303132333435363738394041424344454647484950
76
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
2
NC
2
NC I/O 28 I/O 27 I/O 26 I/O 25 I/O 24 TMS Y1 VCC VCC
2
NC
2
NC GND GND Y2 Y3 TCK I/O 23 I/O 22 I/O 21 I/O 20 I/O 19
2
NC
2
NC
NC2NC
2
I/O 5
I/O 6
I/O 7
I/O 8
I/O 9
I/O 10
TDO
I/O 11
GND
2NC2
GND
NC
VCC
VCC
I/O 12
I/O 13
I/O 14
I/O 15
I/O 16
1. Pins have dual function capability which is software selectable.
2. NC pins are not to be connected to any active signal, VCC or GND.
12
I/O 17
I/O 18
2NC2
NC
100-TQFP/1024EA
Part Number Description
Specifications ispLSI 1024EA
1024EA - XXX X XXXX X
Device Family
Device Number
Speed
200 = 200 MHz fmax 125 = 125 MHz 100 = 100 MHz
f
max
f
max
ispLSI
ispLSI 1024EA Ordering Information
FAMILY fmax (MHz) ORDERING NUMBER PACKAGEtpd (ns)
200 100-Pin TQFP4.5 ispLSI 1024EA-200LT100
ispLSI
125 100-Pin TQFP7.5 ispLSI 1024EA-125LT100 100 10 100-Pin TQFPispLSI 1024EA-100LT100
Grade
Blank = Commercial
Package
T100 = 100-Pin TQFP
Power
L = Low
0212/1024EA
COMMERCIAL
Table 2-0041A/1024EA
13
Loading...