Lakeshore 425 User Manual

User’s Manual
Model 425
Gaussmeter
Lake Shore Cryotronics, Inc.
575 McCorkle Blvd.
Westerville, Ohio 43082-8888 USA
Methods and apparatus disclosed and described herein have been developed solely on company funds of Lake Shore Cryotronics, Inc. No government or other contractual support or relationship whatsoever has existed which in any way affects or mitigates proprietary rights of Lake Shore Cryotronics, Inc. in these developments. Methods and apparatus disclosed herein may be subject to U.S. Patents existing or applied for. Lake Shore Cryotronics, Inc. reserves the right to add, improve, modify, or withdraw functions, design modifications, or products at any time without notice. Lake Shore shall not be liable for errors contained herein or for incidental or consequential damages in connection with furnishing, performance, or use of this material.
Rev. 1.0 P/N 119-053 24 March 2010
sales@lakeshore.com
service@lakeshore.com
www.lakeshore.com
Fax: (614) 891-1392
Telephone: (614) 891-2243
| www.lakeshore.com
LIMITED WARRANTY STATEMENT
WARRANTY PERIOD: ONE (1) YEAR
1.Lake Shore warrants that this Lake Shore product (the "Product") will be free from defects in materials and workmanship for the War­ranty Period specified above (the "Warranty Period"). If Lake Shore receives notice of any such defects during the Warranty Period and the Product is shipped freight prepaid, Lake Shore will, at its option, either repair or replace the Product if it is so defective without c harge to the owner for parts, service labor or associated customary return shipping cost. Any such replacement for the Product may be either new or equivalent in performance to new. Replacement or repaired parts will be warranted for only the unexpired portion of the original warranty or 90 days (whichever is greater).
2.Lake Shore warrants the Product only if it has been sold by an autho­rized Lake Shore employee, sales representative, dealer or original equipment manufacturer (OEM).
3.The Product may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.
4.The Warranty Period begins on the date of delivery of the Product or later on the date of installation of the Product if the Product is installed by Lake Shore, provided that if you schedule or delay the Lake Shore installation for more than 30 days after delivery the Warranty Period begins on the 31st day after delivery.
5.This limited warranty does not apply to defects in the Product resulting from (a) improper or inadequate maintenance, repair o r cal­ibration, (b) fuses, software and non-rechargeable batteries, (c) soft­ware, interfacing, parts or other supplies not furnished by Lake Shore, (d) unauthorized modification or misuse, (e) operation outside of the published specifications or (f) improper site preparation or mainte­nance.
6. TO THE EXTENT ALLOWED BY APPLICABLE LAW, THE ABOVE WAR­RANTIES ARE EXCLUSIVE AND NO OTHER WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED. LAKE SHORE SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OR CON­DITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY AND/OR FIT­NESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE PRODUCT. Some countries, states or provinces do not allow limitations on an implied warranty, so the above limitation or exclusion might not apply to you. This warranty gives you specific legal rights and you might also have other rights that vary from country to countr y, state to state or province to province.
7.TO THE EXTENT ALLOWED BY APPLICABLE LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE YOUR SOLE AND EXCLUSIVE REME­DIES.
8.EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT WILL LAKE SHORE OR ANY OF ITS SUBSIDIARIES, AFFILIATES OR SUPPLIERS BE LIABLE FOR DIRECT, SPECIAL, INCIDENTAL, CONSE­QUENTIAL OR OTHER DAMAGES (INCLUDING LOST PROFIT, LOST DATA OR DOWNTIME COSTS) ARISING OUT OF THE USE, INABILITY TO USE OR RESULT OF USE OF THE PRODUCT, WHETHER BASED IN WAR­RANTY, CONTRACT, TORT OR OTHER LEGAL THEORY, AND WHETHER OR NOT LAKE SHORE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Your use of the Product is entirely at your own risk. Some countries, states and provinces do not allow the exclusion of lia­bility for incidental or consequential damages, so the above limitation may not apply to you.
9.EXCEPT TO THE EXTENT ALLOWED BY APPLICABLE LAW, THE TERMS OF THIS LIMITED WARRANTY STATEMENT DO NOT EXCLUDE, RESTRICT OR MODIFY, AND ARE IN ADDITION TO, T HE MA NDATORY STAT UTORY RIGHTS APPLICABLE TO THE SALE OF THE PRODUCT TO YOU.
CERTIFICATION
Lake Shore certifies that this product has been inspected and tested in accordance with its published specifications and that this product met its published specifications at the time of shipment. The accuracy and calibration of this product at the time of shipment are traceable to the United States National Institute of Standards and Technology (NIST); formerly known as the National Bureau of Standards (NBS).
FIRMWARE LIMITATIONS
Lake Shore has worked to ensure that the Model 425 firmware is as free of errors as possible, and that the results you obtain from the instrument are accurate and reliable. However, as with any com­puter-based software, the possibility of errors exists.
In any important research, as when using any laboratory equipment, results should be carefully examined and rechecked before final con­clusions are drawn . Neither Lake Shore nor anyone else involved in the creation or production of this firmware can pay for loss of time, incon­venience, loss of use of the product, or property damage caused by this product or its failure to work, or any other incidental or conse­quential damages. Use of our product implies that you understand the Lake Shore license agreement and statement of limited warranty.
FIRMWARE LICENSE AGREEMENT
The firmware in this instrument is protected by United States copy­right law and international treaty provisions. To maintain the war­ranty, the code contained in the firmware must not be modified. Any changes made to the code is at the user's risk. Lake Shore will assume no responsibility for damage or errors incurred as result of any changes made to the firmware.
Under the terms of this agreement you may only use the Model 425 firmware as physically installed in the instrument. Archival copies are strictly forbidden. You may not decompile, disassemble, or reverse engineer the firmware . If you suspect there are problems with the firmware, return the instrument to Lake Shore for repair under the terms of the Limited Warranty specified above. Any unauthorized duplication or use of the Mode l 425 firmware in whole or in p art, in print, or in any other storage and retrieval system is forbidden.
TRADEMARK ACKNOWLEDGMENT
Many manufacturers and sellers claim designations used to distin­guish their products as trademarks. Where those designations appear in this manual and Lake Shore was aware of a trademark claim, they appear with initial capital letters and the ™ or ® symbol.
LabVIEW™ is a trademark of National Instruments. Microsoft Windows®, Windows XP® and Windows Vista® are regis­tered trademarks of Microsoft Corporation in the United States and other countries. WinZip™ is a trademark of Nico Mak of Computing, Inc. Teflon® is a registered trademark of E.I. DuPont de Nemours and Co. Manganin® is a registered trademark of Isabellenhütte Heuster Gmb H & Co.
Copyright 2010 Lake Shore Cryotronics, Inc. All rights reserved. No portion of this manual may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the express written permission of Lake Shore.
Model 425 Gaussmeter
| www.lakeshore.com
The Model 425 is considered Waste Electrical and Electronic Equipment (WEEE) Category 9 equipment, therefore falling outside the current scope of the RoHS directive. However, in recognition that RoHS compliance is in the best interest of our customers, employees, and the environment, Lake Shore has designed the Model 425 to eliminate the hazardous substances covered in the RoHS directive.
Model 425 Gaussmeter
i

Table of Contents

Chapter 1 Introduction
1.1 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 DC Measurement Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 AC Measurement Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Measurement Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Instrument Probe Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.1 Probe Field Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Probe Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.3 The Probe Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.4 Extension Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.5 Hall Effect Generators (Magnetic Field Sensors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Display and Interface Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.1 Keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.2 Alarm, Relay and Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.3 Monitor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.4 Computer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.5 Model 425 Rear Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Hall Probe Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.1 Axial Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.2 Transverse Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.3 Flexible Transverse Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Model 425 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.1 General Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.2 DC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.3 AC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.4 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.5 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.6 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.7 Probes and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Safety Summary and Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2 Background
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Model 425 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 DC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 AC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Monitor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Flux Density Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 What is Flux Density? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 How Flux Density (B) Differs from Magnetic Field Strength (H) . . . . . . . . . . . . . 12
2.4 Hall Measurement Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Active Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.4.2 Temperature Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.4.3 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Probe Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.4 Probe Durability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.6 Probe Accuracy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.1 Probe Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
| www.lakeshore.com
ii TABLE OF CONTENTS
2.6.2 Probe Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.4 Off-Axis Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.5 Induced AC Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Cryogenic Measurement Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.1 Thermal Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.2 Temperature Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.3 Probe Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Hall Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 3 Installation
Chapter 4 Operation
3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Inspection and Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Rear Panel Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Line Input Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Line Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Power Cord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Power Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Probe Input Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Probe Handling and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6.1 Probe Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6.2 Probe Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6.3 Probe Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Auxiliary I/O Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Attaching a Hall Generator to the Model 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8.1 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Front Panel Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Keypad Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 General Keypad Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Display Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Display Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Display Annunciators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Display Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.1 Field Units Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2 Display Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 DC and RMS Measurement Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.1 DC Measurement Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.1.1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.1.2 DC Operation Zero Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.2 AC Measurement Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2.1 Narrow Band Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2.2 Wide Band Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.3 Autorange and Range Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.4 Max Hold Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.5 Max Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.6 Relative Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Locking and Unlocking the Keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Chapter 5 Advanced Operation
Model 425 Gaussmeter
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 The Alarm and Relay Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Low and High Alarm Setpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Magnitude and Algebraic Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Inside and Outside Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.4 Alarm Sort Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.5 Alarm Audible Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.6 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
iii
5.2.7 Alarm and Relay Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.7.1Testing and Sorting of Discrete Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.7.2Testing a Magnet Installed in an Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
5.2.7.3Monitoring a Static Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Monitor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Probe Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.1 Probe Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.2 Field Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.3 Extension Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.4 Clear Zero Probe Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Hall Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.1 User Programmable Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.2 Ohms Measurement Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chapter 6 Computer Interface Operation
Chapter 7 Probes and Accessories
6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
6.2 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.1 Physical Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.2 Hardware Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.3 Installing the USB Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.3.1 Installing the Driver From Windows® Update in Windows Vista® . .46
6.2.3.2 Installing the Driver From Windows® Update in Windows® XP . . . . . 46
6.2.3.3 Installing the Driver From the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.3.3.1 Download the driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.3.3.2 Extract the driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.3.3.3 Manually install the driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
6.2.3.4 Installing the USB Driver from the Included CD-ROM . . . . . . . . . . . . . . . 48
6.2.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
6.2.4.1 Character Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.4.2 Message Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.5 Message Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 Interface Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
7.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Rack Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.5 Probe Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.6 Hall Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Chapter 8 Service
8.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
8.2 General Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 USB Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3.1 New Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3.2 Existing Installation No Longer Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3.3 Intermittent Lockups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.4 Line Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 Factory Reset Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5.1 Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5.2 Product Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.6 Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.7 Rear Panel Connector Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.8 Calibration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
8.9 Technical Inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
| www.lakeshore.com
iv TABLE OF CONTENTS
8.9.1 Contacting Lake Shore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.9.2 Return of Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.9.3 RMA Valid Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.9.4 Shipping Charges 68
8.9.5 Restocking Fee 68
Appendix A: Units for Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Model 425 Gaussmeter
1.1 Product Description 1

Chapter 1: Introduction

FIGURE 1-1 Model 425 front view

1.1 Product Description

Features:
D Field ranges from 350 mG to 350 kG D DC measurement resolution to 43/e digits (1 part of ±35,000) D Basic DC accuracy of ±0.20% D DC to 10 kHz AC frequency D USB interface D Large liquid crystal display D Sort function (displays pass/fail message) D Alarm with relay D Standard probe included D Standard and custom probes available
Designed to meet the demanding needs of the permanent magnet industry, the Lake Shore Model 425 gaussmeter provides high end functionality and performance in an affordable desktop instrument. Magnet testing and sorting have never been easier. When used in combination with the built in relay and audible alarm features, the Model 425 takes the guesswork out of pass/fail criteria. Additional features including DC to 10 kHz AC frequency response, max hold and relative measurement make the Model 425 the ideal tool for your manufacturing, quality control and R&D flux density measurement applications. For added functionality and value, the Model 425 also includes a standard Lake Shore Hall probe. Put the Model 425 gauss­meter to use with confidence knowing it’s supported by the industry leading experts in magnet measurement instrument, sensor and Hall probe technology.

1.1.1 Throughput

Throughput involves much more than just the update rate of an instrument. An intui­tive menu navigation and keypad, along with overall ease of use are equally impor­tant. The Model 425 is designed with these qualities in mind. The operation is straightforward, with user display prompts to aid set-up. We understand that time is money! In addition to being user friendly, the automated magnet testing and sorting features of the Model 425 streamline sorting and testing operations. In addition, hot swapping of Hall probes allows you to switch probe types without powering the instrument off and back on. These features support increased productivity, allowing you to spend less time setting up your instrument and more time working on the task at hand.
| www.lakeshore.com
2 cHAPTER 1: Introduction

1.1.2 DC Measurement Mode

1.1.3 AC Measurement Mode

1.2 Measurement Features

Static or slowly changing fields are measured in DC mode. In this mode, the Model 425 uses probe field compensation to correct for probe nonlinearities, result­ing in a DC accuracy to ±0.20%. Measurement resolution is enhanced with internal filtering, allowing resolution to 4¾ digits with reading rates to 30 readings per sec­ond over the USB interface.
In addition to the DC measurement mode, the Model 425 offers an AC measurement mode for measuring periodic AC fields. The instrument provides an overall frequency range of 10 Hz to 10 kHz and is equipped with both narrow and wide band frequency modes. While in narrow band mode, frequencies above 400 Hz are filtered out for improved measurement performance.
The Model 425 offers a variety of features to enhance the usability and convenience of the gaussmeter.
Autorange: in addition to manual range selection, the instrument automatically chooses an appropriate range for the measured field. Autorange works in DC and AC measurement modes.
Probe zero: allows you to zero all ranges while in DC mode with the simple push of a key.
Display units: field magnitude can be displayed in units of G, T, Oe, and A/m with resistance in ).
Max hold: the instrument stores and displays the captured maximum DC or AC field reading.

1.3 Instrument Probe Features

1.3.1 Probe Field Compensation

1.3.2 Probe Information

Relative reading: the relative mode calculates the difference between a live reading and the relative setpoint to highlight deviation from a known field point. This feature can be used in DC or AC measurement modes.
Instrument calibration: Lake Shore recommends an annual recalibration schedule for all precision gaussmeters. Recalibrations are always available from Lake Shore, but the Model 425 allows you to field calibrate the instrument if necessary. Recalibra­tion requires a computer interface and precision low resistance standards of known value.
The Model 425 offers the best measurement performance when used along with Lake Shore Hall probes. Firmware-based features work in tandem with the probe’s calibration and programming to ensure accurate, repeatable measurements and ease of setup. Many of the features require probe characteristics that are stored in the probe connector’s non-volatile memory.
The Hall effect devices used in gaussmeter probes produce a near linear response in the presence of a magnetic field. The small nonlinearities present in each individual device can be measured and subtracted from the field reading. Model 425 probes are calibrated in a way to provide the most accurate DC readings.
The gaussmeter reads the probe information on power up or any time the probe is changed to allow hot swapping of probes. Critical probe information can be viewed on the front panel and read over the computer interface to ensure proper system con­figuration.

1.3.3 The Probe Connection

Model 425 Gaussmeter
The Model 425 is only half the magnetic measurement equation. For the complete solution, Lake Shore offers a full complement of standard and custom Hall effect probes in a variety of sizes and sensitivities. One of ten standard Hall probes is included with the Model 425. Refer to page 5 for details on the Hall probes you can choose to receive with the Model 425.
1.3.4 Extension Ca ble 3

1.3.4 Extension Cable

1.3.5 Hall Effect Generators (Magnetic Field Sensors)

1.4 Display and Interface Features

FIGURE 1-2 Left: Normal reading—the default mode with the display of the live DC field reading;
Right: Max DC hold on—the maximum value is shown in the lower display while the upper display contains the live DC field reading;
The complex nature of Hall effect measurements makes it necessary to match exten­sion cables to the probe when longer cables are needed. Keeping probes and their extensions from getting mixed up can become a problem when more than one probe is used. The Model 425 alleviates most of the hassle by allowing you to match probes to extension cables in the field. Stored information can be viewed on the front panel and read over the computer interface to ensure proper mating.
The Model 425 will operate with a discrete Hall effect generator when a suitable probe is not available. You can program the nominal sensitivity and serial number into an optional HMCBL blank connector to provide all gaussmeter functions except field compensation. If no sensitivity information is available, the Model 425 reverts to resistance measurement.
The Model 425 has a 2-line by 20-character liquid crystal display. During normal operation, the display is used to report field readings and give results of other fea­tures such as max or relative. When setting the instrument parameters, the display gives you meaningful prompts and feedback to simplify operation.
Following are four examples of the various display configurations:
FIGURE 1-3 Left: Alarm on—the alarm gives an audible and visual indication of when the field value is selectively outside or inside a user
specified range; The relay can be associated with the alarm;
Right: Sort on—the live reading is shown in the upper display while the lower display contains the pass/fail (repetitive sorting or testing)
message. The relay facilitates pass/fail operation

1.4.1 Keypad

1.4.2 Alarm, Relay and Sort

1.4.3 Monitor Output

The instrument keypad has 14 keys with individual keys assigned to frequently used features. Menus are reserved for less frequently used setup operations. The keypad can be locked out to prevent unintended changes of instrument setup.
High and low alarm functions and one relay are included with the instrument, and can be used to automate repetitive magnet testing and sorting operations. Alarm actuators include display annunciator, audible beeper, and a relay. The alarm can be configured to display a pass or fail message and the relay can be configured to acti­vate a mechanism to separate parts that meet pre-set fail criteria. The relay can also be controlled manually for other system needs.
The monitor output provides an analog representation of the reading that is cor­rected for probe offset and nominal sensitivity. This feature makes it possible to view the analog signal, which has not been digitally processed. The monitor output can be connected to an oscilloscope or data acquisition system.
| www.lakeshore.com
4 cHAPTER 1: Introduction

1.4.4 Computer Interface

1.4.5 Model 425 Rear Panel

1.5 Hall Probe Selection

The Model 425 is equipped with a universal serial bus (USB) interface. It emulates an RS-232C serial port at a fixed baud rate of 57,600, but with the physical connections of a USB. In addition to gathering data, nearly every function of the instrument can be controlled through the USB interface. The reading rate over the interface is nominally 30 readings per second. A LabVIEW™ driver is available from the download section of the Lake Shore website at www.lakeshore.com.
FIGURE 1-4 Model 425 rear panel showing the line input assembly,
USB interface, auxiliary I/O and the probe input
Listed below are the probes that you can choose from to include with your Model 425. Our experts can guide you through the probe selection process. Other standard probes are available at an additional cost. Lake Shore prides itself on making every attempt to satisfy customer requests for special probes. If you need a custom probe, contact Lake Shore for availability.

1.5.1 Axial Probes

L (in) D (in) A (in)
HMNA-1904-VR 4 ±0.125
HMMA-2502-VR 2 ±0.063
HMNA-1904-VF 4 ±0.125
HMMA-2502-VF 2 ±0.063
0.187 dia ±0.005
0.25 dia ±0.006
0.187 dia ±0.005
0.25 dia ±0.006
0.005
±0.003
0.015
±0.005
0.005
±0.003
0.015
±0.005
Active area
(in)
0.030 dia (approx)
FIGURE 1-5 Axial probe
Stem
material
Fiberglass
epoxy
Aluminum
Fiberglass
epoxy
Aluminum
Frequency
range
DC to
10 kHz
DC to
10 kHz
DC to
800 Hz
DC to
400 Hz
TABLE 1-1 Axial probe
Usable full
scale ranges
HSE
35 G 350 G,
3.5 kG, 35 kG
HST-4
350 G, 3.5 kG,
35 kG
Corrected
accuracy
(% rdg)
±0.20% to 30 kG
and ±0.25% 30
to 35 kG
±0.10% to 30 kG
and ±0.15% 30
to 35 kG
Operating
temp
range
0 °C to
+75 °C
Tem p coefficient (max) zero
±0.09 G/°C -0.04%/°C
±0.13 G/°C -0.005%/°C
Tem p
coefficient
(max)
calibration
Model 425 Gaussmeter

1.5.2 Transverse Probes

1.5.2 Transverse Pr obes 5
FIGURE 1-6 Transv ers e prob e
L (in) T (in) W (in) A (in)
HMMT-6J04-VR 4 ±0.125
HMNT-4E04-VR 4 ±0.125
HMMT-6J04-VF 4 ±0.125
HMNT-4E04-VF 4 ±0.125

1.5.3 Flexible Transverse Probes

0.061 max
0.045 max
0.061 max
0.045 max
0.180
±0.005
0.150
±0.005
0.180
±0.005
0.150
±0.005
0.150
±0.050
Active
area (in)
0.040 dia (approx)
Stem
material
Aluminum
Fiberglass
epoxy
Aluminum
Fiberglass
epoxy
Frequency
range
DC to
800 Hz
DC to
10 kHz
DC to
400 Hz
DC to
800 Hz
TABLE 1-2 Transverse probe
FIGURE 1-7 Flexible transverse probe
Usable f ull
scale ranges
HSE
35 G, 350 G,
3.5 kG, 35 kG
HST-4
350 G, 3.5 kG,
35 kG
Corrected
accuracy
(% rdg)
±0.20% to
30 kG;
±0.25%
30 to 35 kG
±0.10% to
30 kG;
±0.15%
30 to 35 kG
Operating
temp
range
0 °C to
+75 °C
Te m p coefficient (max) zero
±0.09 G/°C -0.04%/°C
±0.13 G/°C -0.005%/°C
Tem p
coefficient
(max)
calibration
Operating
temp
range
0 °C to
+75 °C
HMFT-3E03-VR
HMFT-3E03-VF
W (in) T (in) A (in)
0.135
0.025
0.125
max
max
±0.005
Active
area (in)
0.040 dia (approx)
Stem
material
Flexible
plastic tubing
Frequency
range
DC to
10 kHz
DC to
800 Hz
Usable f ull
scale ranges
HSE
35 G, 350 G,
3.5 kG, 35 kG HST-4
350 G, 3.5 kG,
35 kG
Corrected
accuracy (% rdg )
±0.20% to 30 kG;
±0.25% 30 to 35 kG
±0.10% to 30 kG;
±0.15% 30 to 35 kG
TABLE 1-3 Flexible transverse probe
Te m p coefficient (max) zero
±0.09 G/°C -0.04%/°C
±0.13 G/°C -0.0 05%/°C
Tem p
coefficient
(max)
calibration
| www.lakeshore.com
6 cHAPTER 1: Introduction

1.6 Model 425 Specifications

1.6.1 General Measurement

1.6.2 DC Measurement

(Does not include probe error, unless otherwise specified)
Input type: Single Hall effect sensor Maximum update rate: 30 rdg/s Probe features: Linearity compensation, probe zero, and hot swap Measurement features: Autorange, max hold, relative mode, and filter Probe connector: 15-pin D-sub socket
Probe type Range
HST Probe
350 kG 000.01 kG 000.1 kG 35 kG 00.001 kG 00.01 kG
3.5 kG 0.0001 kG 0.001 kG 350 G 000.02 G 000.1 G
HSE Probe
35 kG 00.001 kG 00.01 kG
3.5 kG 0.0001 kG 0.001 kG 350 G 000.01 G 000.1 G 35 G 00.001 G 00.01 G
UHS Probe
35 G 00.001 G 00.01 G
3.5 G 0.0001 G 0.001 G 350 mG 000.02 mG 000.1 mG
TABLE 1- 4 DC measurement resolution
Filter on
4 r-digit resolution
Filter off
3 r-digit resolution
Measurement resolution (RMS noise floor): Indicated by value in above table for shorted input
Display resolution: Indicated by number of digits in above table DC accuracy: ±0.20% of reading ±0.05% of range DC temperature coefficient: -0.01% of reading -0.003% of range/°C DC filter: 16-point moving average

1.6.3 AC Measurement

Model 425 Gaussmeter
Probe type Ranges
HST Probe
350 kG 000.1 kG 35 kG 00.01 kG
3.5 kG 0.001 kG 350 G 000.1 G
HSE Probe
35 kG 00.01 kG
3.5 kG 0.001 kG
350 G 000.1 G 35 G 00.01 G
UHS Probe
35 G 00.01 G
3.5 G 0.001 G 350 mG 000.1 mG
3r-digit re solution
TABLE 1-5 AC measurement resolution
Measurement resolution (RMS noise floor): Indicated by value in above table, mea­sured at mid-scale range
Display resolution: Indicated by number of digits in above table
1.6.4 Front Panel 7
Narrow band mode Wide band mode
±2% of reading, ±0.05% of range
AC accuracy
AC frequency response 10 Hz to 400 Hz 50 Hz to 10 kHz
Minimum input signal >1% of range
AC specifications based on sine wave inputs or signals with crest factors <4.
(20 Hz to 100 Hz);
±2.5% of reading, ±0.05% of range
(10 Hz to 400 Hz)
TABLE 1-6 AC specifications
±2% of reading, ±0.05% of
range (50 H z to 10 kHz)
>1% of range, except >2% of
range on lo west range
AC temperature coefficient: ±0.01% of reading ±0.006% of range/°C

1.6.4 Front Panel

1.6.5 Interfaces

Display: 2-line × 20-character LCD display module with 5.5 mm high characters and LED backlight
Display units: Gauss (G), tesla (T), oersted (Oe), and ampere per meter (A/m) Display update rate: 3 rdg/s Display resolution: To ± 4r
digits
Units multipliers: µ, m, k, M Display annunciations: DC—DC measurement mode; RMS—AC RMS measurement
mode; MAX—Max hold value;ª
Alarm on
Keypad: 14-key membrane Front panel features: Display contrast control and keypad lock-out
USB
Function: Emulates a standard RS-232 serial port Baud rate: 57,600 Connector: B-type USB connector Reading rate: To 30 rdg/s Software support: LabVIEW™ driver (consult Lake Shore for availability)
Alarm
Settings: High setpoint, low setpoint, inside or outside, algebraic or magnitude, audi­ble on/off, and sort Actuators: Display annunciator, sort message, beeper, and relay
Relay
Number: 1 Contacts: Normally open (NO), normally closed (NC), and common (C) Contact rating: 30 VDC at 2 A Operation: Follows alarm or operated manually Connector: Shared 25-pin D-sub socket
Monitor output
Configuration: Real time analog voltage output proportional to measured field Range: ±3.5 V Scale: ±3.5 V = ±full scale on selected range Frequency response: DC to 10 kHz Accuracy: Offset and single point gain corrected to ±0.5% of reading ±0.1% of range,
linearity is probe dependent
Minimum load resistance: 1 k) (short circuit protected) Connector: Shared 25-pin D-sub socket
| www.lakeshore.com
8 cHAPTER 1: Introduction

1.6.6 General

1.6.7 Probes and Extensions

1.7 Ordering Information

The Model 425 is the replacement for the Model 421 with a new software command set. Ambient temperature: 15 °C to 35 °C at rated accuracy; 5 °C to 40 °C with reduced accuracy
Ambient field: Up to 100 G DC, measured at the instrument chassis Power requirement: 100 VAC to 240 VAC, 50 Hz or 60 Hz 40 VA Size: 216 mm W × 89 mm H × 318 mm D (8.5 in × 3.5 in ×12.5 in), half rack Weight: 2.1 kg (4.6 lb) Approval: CE mark, RoHS compliant
Probe compatibility: Full line of standard and custom probes (compatible with
Model 425/455/475 probes) Hall sensor compatibility: Front panel programmable sensitivity and serial number for user supplied Hall sensor using HMCBL cable Extension cable compatibility: Calibrated or uncalibrated probe extension cables with an EEPROM are available from 10 ft to 100 ft
Part number Descrip tion
425 Model 425 gaussmeter
425-HMXX-XXXX-XX
Specify power cord option VAC-120 Instrument shipped with U.S. power cord for 120 VAC VAC-220 Instrument shipped with European power cord for 220 VAC VAC-120-ALL Instrument shipped with U.S. power cord (120 VAC) and European power cord (220 VAC) Accessories included G-106-253 I/O mating plug G-106-264 I/O mating connector shell 4060 Zero g auss ch amber MAN-425 Model 425 user manual Accessories available 4065 Large zero gauss chamber for gamma probe HMCBL-6 User programmable cable with EEPROM (6 ft) HMCBL-20 User programmable cable with EEPROM (20 ft) HMPEC-10-U Probe extension cable with EEPROM (10 ft), uncalibrated HMPEC-25-U Probe extension cable with EEPROM (25 ft), uncalibrated HMPEC-50-U Probe extension cable with EEPROM (50 ft), uncalibrated HMPEC-100-U Probe extension cable with EEPROM (100 ft), uncalibrated RM-q Rack mount kit for one q-rack gaussmeter in 483 mm (19 in) rack RM-2 Rack mount kit for two q-rack gaussmeter in 483 mm (1 9 in) rack 4030-12 Hall probe stand; 305 mm (12 in) post 4030-24 Hall probe stand; 610 mm (24 in) post Calibration service CAL-N7-DATA New instrument calibration for Model 425/455/475 with certificate and data CAL-425-CERT Instrument recalibration with certificate CAL-425-DATA Instrument recalibration with certificate and data
One probe included (additional probes ordered separately) Custom probes available—consult Lake Shore
Model 425 gaussmeter with standard probe choice—specify selected probe number for HMXX-XXXX-XX (see list in section 1.5)
TABLE 1-7 Ordering information
Model 425 Gaussmeter
1.8 Safety Summary and Symbols 9

1.8 Safety Summary and Symbols

Observe these general safety precautions during all phases of instrument operation, service, and repair. Failure to comply with these precautions or with specific warn­ings elsewhere in this manual violates safety standards of design, manufacture, and intended instrument use. Lake Shore Cryotronics, Inc. assumes no liability for user failure to comply with these requirements.
The Model 425 protects the operator and surrounding area from electric shock or burn, mechanical hazards, excessive temperature, and spread of fire from the instru­ment. Environmental conditions outside of the conditions below may pose a hazard to the operator and surrounding area.
D Indoor use D Altitude to 2000 m D Temperature for safe operation: 5 °C to 40 °C D Maximum relative humidity: 80% for temperature up to 31 °C decreasing
linearly to 50% at 40 °C
D Environments with conducted RF of 1 V
in field readings up to 10% and monitor output up to 5%
D Power supply voltage fluctuations not to exceed ±10% of the nominal voltage D Overvoltage category II D Pollution degree 2
Ground the Instrument
To minimize shock hazard, the instrument is equipped with a 3-conductor AC power cable. Plug the power cable into an approved 3-contact electrical outlet or use a 3-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet Underwriters Laboratories (UL) and International Electrotechnical Commission (IEC) safety standards.
or EM fields of 1 V/m can cause a shift
rms
Ventilation
The instrument has ventilation holes in its side covers. Do not block these holes when the instrument is operating.
Do Not Operate in an Explosive Atmosphere
Do not operate the instrument in the presence of flammable gases or fumes. Opera­tion of any electrical instrument in such an environment constitutes a definite safety hazard.
Keep Away from Live Circuits
Operating personnel must not remove instrument covers. Refer component replace­ment and internal adjustments to qualified maintenance personnel. Do not replace components with power cable connected. To avoid injuries, always disconnect power and discharge circuits before touching them.
Do Not Substitute Parts or Modify Instrument
Do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to an authorized Lake Shore Cryotronics, Inc. rep­resentative for service and repair to ensure that safety features are maintained.
Cleaning
Do not submerge instrument. Clean only with a damp cloth and mild detergent. Exte­rior only.
| www.lakeshore.com
10 cHAPTER 1: Introduction
!
Direct current (power line)
Equipment protected throughout by double insulation or reinforces insulation (equivalent to Class II of IEC 536—see Annex H)
CAUTION: High voltages; danger of electric shock; background color: yellow; symbol and outline: black
CAUTION or WARNING: See instrument documentation; background color: yellow; symbol and outline: black
Off (supply)
On (supply)
Frame or chassis terminal
Protective conductor terminal
Earth (ground) terminal
3
Three-phase alternating current (power line)
Alternating or direct current (power line)
Alternating current (power line)
FIGURE 1-8 Safety symbols
Model 425 Gaussmeter
2.2.1 DC Measurem ent 11
Gain
Low pass
filter
Product
detector
RMS-to-DC
converter
Computer
interface
µPA/D
Monitor out Display
Switch
Switch
Wide band
DC or narrow band
DC
AC modes
Ic
B

Chapter 2: Background

2.1 General

2.2 Model 425 Overview

2.2.1 DC Measurement

This chapter provides background information related to the Model 425 gaussmeter. It is intended to give insight into the benefits and limitations of the instrument and help apply the features of the Model 425 to a variety of situations. It covers flux den­sity, Hall measurement, and probe operation. For information on how to install the Model 425, please refer to Chapter 3. Instrument operation information is contained in Chapter 4 and Chapter 5.
The Model 425 gaussmeter is a highly configurable device with many built-in fea­tures. It offers a DC mode to measure static or slowly changing fields, two different modes to measure AC fields, narrow band and wide band, and a monitor output. Refer to section 2.2.1 and section 2.2.2 for more information on these modes. To better illustrate the capabilities of the gaussmeter, refer to the Model 425 system block dia­gram, FIGURE 2-1.
FIGURE 2-1 Model 425 system block diagram
When in DC mode, the instrument uses a 100 mA, 5.4 kHz square wave excitation cur­rent. The voltage that is generated by the Hall sensor goes through an AC coupled pro­grammable gain stage. From there it passes through the product detector for demodulation, a low pass filter, and the A/D converter. The digitized data is then sent to the microprocessor. The monitor output will provide a DC voltage proportional to the measured DC field. Refer to section 4.5.1 for the procedure to set the DC measure­ment mode. Refer to section 5.3 for information on monitor output.

2.2.2 AC Measurement

Narrow band mode: in this mode, the instrument uses a 100 mA, 5.4 kHz square wave excitation current. This type of excitation provides the benefit of noise cancellation characteristics of the product detector, but it limits the maximum field frequency of the Model 425 to approximately 400 Hz.
The voltage that is generated by the Hall sensor goes through an AC coupled pro­grammable gain stage. From there it passes through the product detector for demod­ulation, a low-pass filter, and an RMS-to-DC converter, before it is sent into the A/D converter. The digitized data is then sent to the microprocessor. The monitor output will provide an AC voltage proportional to the measured AC field. Refer to section 4.5.2.1 for the procedure to set the narrow band AC measurement mode.
Wide band mode: in this mode, the instrument uses a 100 mA, DC excitation current to drive the Hall sensor. This excitation type provides the greatest frequency range for AC RMS measurements, up to 10 kHz. Since the signal doesn’t pass through the prod­uct detector and low pass filter, it has a higher noise floor than narrow band mode.
| www.lakeshore.com
12 cHAPTER 2: Background
φ
φ
The voltage that is generated by the Hall sensor goes through an AC coupled pro­grammable gain stage and is sent directly to an RMS-to-DC converter. The signal is then sent into the A/D converter. The digitized data is then sent to the microprocessor. The monitor output will provide an unfiltered AC voltage proportional to the mea­sured AC field. Refer to section 4.5.2.2 for the procedure to set the AC wide band mode.

2.2.3 Monitor Output

2.3 Flux Density Overview

2.3.1 What is Flux Density?

The Model 425 has a monitor output that provides an analog representation of the reading and is corrected for probe offset and nominal sensitivity. This monitor output makes it possible to view the analog signal, which has not been digitized. The monitor output can be connected to an oscilloscope or data acquisition system for analysis.
A magnetic field can be envisioned as lines of force measured in maxwells (Mx). In the cgs system, magnetic flux ( ) is the Mx, where 1 Mx = 1 line of flux. In the SI system, magnetic flux is the weber (Wb), where: 1 Wb = 10
Flux density is the number of flux lines passing perpendicular through a plane of unit area (A). The symbol for flux density is B, where B = /A. The cgs system measures flux
2
density in gauss (G), where 1 G = 1 Mx/cm tesla (T), where 1 T = 1 Wb/m
Flux density is important when magnet systems concentrate flux lines into a specific area like the pole pieces of an electromagnet. Forces generated on current carrying wires like those in a motor armature are proportional to flux density. Saturation of magnetic core material is also a function of flux density.
Additional conversion factors can be found in the Appendix.
2
.
. The SI system measures flux density in
8
Mx.

2.3.2 How Flux Density (B) Differs from Magnetic Field Strength (H)

Flux density is often confused with magnetic field strength. Magnetic field strength is a measure of the force producing flux lines. The symbol for magnetic field strength is H. In the cgs system, it is measured in oersteds (Oe). In the SI system, it is measured in amperes per meter (A/m):
1 Oe = 79.58 A/m
Flux density and magnetic field strength are related by the permeability (µ) of the magnetic medium. B = µH. Permeability is a measure of how well a material makes a path for flux lines.
The confusion of flux density and magnetic field strength is also related to permeabil­ity. In the cgs system, the permeability of air (of vacuum) is 1. Therefore, 1 G = 1 Oe or B = H in air. Many people incorrectly assume, therefore, that in the cgs system, B = H at all times. Adding to the confusion, in the SI system, permeability of air is not 1, so B is not equal to H even in air.
Model 425 Gaussmeter
2 . 4 . 1 A c t i v e A r e a 13
BF
F = –e (v × B)
(force on electron)
v

2.4 Hall Measurement Theory

The Hall effect is the development of a voltage across a sheet of conductor when cur­rent is flowing and the conductor is placed in a magnetic field (FIGURE 2-2).
The Hall effect was discovered by E. H. Hall in 1879 and it remained a laboratory curi­osity for nearly 70 years. Finally, development of semiconductors brought Hall gener­ators into the realm of the practical. A Hall generator is a solid state sensor with a conductor that provides an output voltage proportional to magnetic flux density. As implied by its name, this sensor relies on the Hall effect.
Electrons (the majority carrier most often used in practice) drift in the conductor when under the influence of an external driving electric field. When exposed to a magnetic field, these moving charged particles experience a force perpendicular to both the velocity and magnetic field vectors. This force causes the charging of the edges of the conductor, one side positive, the other side negative. This edge charging sets up an electric field which exerts a force on the moving electrons equal and oppo­site to that caused by the magnetic-field-related Lorentz force. The voltage potential across the width of the conductor is called the Hall voltage. This Hall voltage can be used in practice by attaching two electrical contacts to each of the sides of the con­ductor.
The Hall voltage can be given by the expression:
V
= γ
B sin θ
H
B
where: V
= Hall voltage (mV)
H
= Magnetic sensitivity (mV/kG) (at a fixed current)
γ
B
B = Magnetic field flux density (kG) θ = Angle between magnetic flux vector and the plane of Hall generator.
As can be seen from the formula above, the Hall voltage varies with the angle of the sensed magnetic field, reaching a maximum when the field is perpendicular to the plane of the Hall generator.

2.4.1 Active Area The Hall generator assembly contains the semiconductor material to which the four

contacts are made. This entity is normally called a Hall plate. In its simplest form, the Hall plate is a conductor, rectangular in shape, and of fixed length, width, and thick­ness. Due to the shorting effect of the current supply contacts, most of the sensitivity to magnetic fields is contained in an area approximated by a circle, centered on the Hall plate, the diameter of which is equal to the plate width. This circle is considered an approximation of the active area. FIGURE 2-2 illustrates an image of the approxi­mate active area.
| www.lakeshore.com
14 cHAPTER 2: Background
VH (+) VH (–)
Approximate active area
B
IC (+)
I
C
(–)
FIGURE 2-2 Approximate active area

2.4.2 Temperature Coefficients

There are two technically different temperature coefficients that always affect a gaussmeter probe: the temperature coefficient of zero and the temperature coef­fecient of sensitivity (section 2.4.2.1 and section 2.4.2.2). Under normal usage (read­ing a magnetic field), it is virtually impossible to separate the effect of each.
The Model 425 gaussmeter does not possess circuitry to allow compensation for these temperature errors. Thus, a user operating a probe in a variable temperature environment must be aware that both errors exist and what the maximum effect could be. The temperature coefficients are repeatable for an individual probe. A user can pre-measure the changes and manually correct the data for zero and sensitivity effects, or the combination of both at specific magnetic field values. The Model 425 gaussmeter also has its own temperature coefficients, which are typically less than probe coefficients. These are listed in section 1.6.
2.4.2.1 The Temperature Coefficient of Zero
The temperature coefficient of zero is a change in the zero field offset with tempera­ture. This change is always present whether or not a field is measured. However, the temperature error caused by zero change is often the dominant source of error at magnetic field levels <100 G. If you have the ability to zero the gaussmeter at operat­ing temperature, this coefficient is nullified and has no effect on accuracy. If the gaussmeter cannot be zeroed, then the zero change effect is present.
Model 425 Gaussmeter
The unit of measure is G/° C. It is generally a fixed number, and can be either a positive or negative value. This error is specific to each probe and can be a fixed magnitude anywhere from the negative maximum to positive maximum value.
2.4.3 Radiation 15
Example of zero error: assume that the Model 425 is zeroed at +25 °C and then the tem­perature rises to +50 °C (,T = +25 °C). For an HMMT-6J04-VR, the worst-case zero drift would be ±0.09 G/°C × 25 °C = ±2.25 G (maximum).
This is the maximum temperature error to be expected. Most Lake Shore probes exhibit lower temperature coefficients.
2.4.2.2 The Temperature Coefficient of Sensitivity (Calibration)
The temperature coefficient of sensitivity is related to a change in the magnetic sensi­tivity of the Hall device with temperature. This change is present only when a field is measured. The larger the field, the greater the error in G for the same temperature change.
This characteristic is present in all probes and is specified in units of %G/° C. The intrinsic value is always negative for Lake Shore HSE and HST probes, meaning that the sensitivity of the Hall sensor decreases with increased temperature. Therefore, the reading will be lower than the actual magnetic field when the probe is at a tem­perature higher than room temperature. Lake Shore Hall probes are calibrated at room temperature (25 °C); when they are used in temperatures other than this, tem­perature coefficient becomes another source of error. Lake Shore HST probes nor­mally exhibit a temperature coefficient of sensitivity about ten times better (lower) than the HSE probes.

2.4.3 Radiation

Simply handling the probe at the stem can cause sufficient temperature change of the sensor, which can cause the reading to drift; handling the probe by the stem is not recom­mended as it can break the probe.
Examples of sensitivity error: assume that the Model 425 is zeroed at +25 °C and then the temperature rises to +50 °C (Delta T = +25 °C). For an HMMT-6J04-VR and Model 425 (no compensation), measuring a 1.000 kG field, the worst-case sensitivity change would be -0.04%/°C × 25 °C = -1% (maximum); -1% of 1.000 kG = -10 G (reads low 10 G).
Also note that if the probe were a Model HMMT-6J04-VF, the worst case sensitivity change would be -0.005%/°C × 25 °C = -0.125% (maximum); -0.125% of 1.000 kG =
-1.25 G (reads low 1.25 G).
This is the maximum temperature error to be expected. Most Lake Shore probes exhibit lower temperature coefficients.
The HST and HSE probes use a highly doped indium arsenide conductor. The HST material is the more highly doped of the two and therefore will be less affected by radiation. Some general information relating to highly doped indium arsenide Hall generators is provided in the following list. The changes in sensitivity are the maxi­mums expected if the sensor is exposed at the given rates indefinitely.
D Gamma radiation seems to have little effect on the Hall generators D Proton radiation up to 10 Mrad causes sensitivity changes less than 0.5% D Neutron cumulative radiation (>0.1 MeV, 10
15
/cm2) can cause a 3% to 5%
decrease in sensitivity
In all cases the radiation effects on the Hall sensors seem to saturate and diminish with cumulative exposure; the length of time for these effects to diminish varies depending upon radiation intensity.
| www.lakeshore.com
16 cHAPTER 2: Background

2.5 Probe Considerations

2.5.1 Orientation

This section defines and discusses things to consider when selecting a probe.
Because accessing the field is part of the challenge when selecting a probe, field ori­entation dictates the most basic probe geometry choice of transverse versus axial. Other variations are also available for less common, more challenging applications. Listed below are the standard configurations for HSE and HST probes; UHS probes require special construction that is not described here.
D Tra ns ver se : most often rectangular in shape, transverse probes measure fields per-
pindicular to their stem width. They are useful for most general purpose field measurements and are essential for work in magnet gaps. Several stem lengths and thicknesses are available as standard probes.
D Axial: usually round, axial probes measure fields perpindicular to their end. They
can also be used for general-purpose measurements, but are most commonly used to measure fields produced by solenoids. Several stem lengths and diame­ters are available as standard probes.
D Flexible: with a flexible portion in the middle of their stem, flexible probes have an
active area at the tip that remains rigid and somewhat exposed. This unique fea­ture makes them significantly more fragile than other transverse probes. Flexible probes should only be selected for narrow-gap measurement applications.
D Ta ng en ti a l: these probes are transverse probes designed to measure fields parallel
to and near a surface. The active area is very close to the stem tip. These probes are intended for this specific application and should not be selected for general transverse measurements.

2.5.2 Frequency

Flexible and tangential probes are significantly more fragile than other transverse probes.
D Multiple axis: multi-axis probes are available for multi-axis gaussmeters like the
Lake Shore Model 460. These probes are not compatible with the Model 425.
Hall effect gaussmeters are equally well suited for measuring either static, DC fields or periodic, AC fields, but proper probe selection is required to achieve optimal performance. HST probes are not recommended for use in wide band mode because of their lower sensitivity. These probes perform better with the the noise cancellation benefits of the narrow band mode.
D Metal stem: these probe stems are the best choice for DC and low frequency AC
measurements. Non-ferrous metals are used for probe stems because they provide the best protection for the delicate Hall effect sensor without altering the measured field. Aluminum is the most common metal stem material, but brass can also be used. Metal stems do have one drawback: eddy currents are generated in them when they are placed in AC fields. These eddy currents oppose the field and cause measurement error. The error magnitude is proportional to frequency, and is most noticeable above 800 Hz.
D Non-metal stem: these probe stems are required for higher frequency AC fields and
for measuring pulse fields—fiberglass/epoxy is a common non-metal stem material. Alternatively, the Hall effect sensor can be left exposed on its ceramic substrate, but provides less protection for the sensor. Eddy currents do not limit the frequency range of these non-conductive materials, but other factors may.
Model 425 Gaussmeter
None of these probe types are suitable for direct exposure to high voltage. The possibility exists for damage to equipment or injury to the operator if the probe is exposed to high voltage.
Loading...
+ 54 hidden pages