Keysight N9040B User Manual

Page 1
Keysight X-Series Signal Analyzers
This manual provides documentation for the following Analyzer:
N9040B UXA Signal Analyzer
UXA Specification Guide
(Comprehensive Reference Data)
Page 2
Notices
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.
Trademark Acknowledgments
Manual Part Number
N9040-90002
Edition
Edition 1, December 2020
S
upersedes: August 2020
Published by: Keysight Technologies
1400 Fountaingrove Parkway Santa Rosa, CA 95403
Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.
Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.
U.S. Government Rights
The Software is “commercial computer software,” as defined by Federal Acquisition Regulation (“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and Department of Defense FAR Supplement (“DFARS”) 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at
http://www.keysight.com/find/sweula
The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional
government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.
Safety Notices
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Page 3
Where to Find the Latest Information
Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:
http://www.keysight.com/find/uxa
To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:
http://www.keysight.com/find/MyKeysight
Information on preventing instrument damage can be found at:
www.keysight.com/find/PreventingInstrumentRepair
Is your product software up-to-date?
Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:
http://www.keysight.com/find/techsupport
3
Page 4
4
Page 5
Contents
1. UXA Signal Analyzer
Definitions and Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Conditions Required to Meet Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Precision Frequency Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Frequency Readout Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Frequency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Frequency Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Sweep Time and Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Gated Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Number of Frequency Sweep Points (buckets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Resolution Bandwidth (RBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Preselector Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Video Bandwidth (VBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Amplitude Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Maximum Safe Input Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Display Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Marker Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Input Attenuation Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Nominal VSWR Band [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Nominal VSWR, above 3.5 GHz [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Resolution Bandwidth Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Display Scale Fidelity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Available Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Gain Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Displayed Average Noise Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Displayed Average Noise Level (DANL) without Noise Floor Extension (mmW) . . . . . . . . . . . . . . 44
Displayed Average Noise Level (DANL) without Noise Floor Extension (RF/µW) . . . . . . . . . . . . . 46
Displayed Average Noise Level with Noise Floor Extension Improvement (mmW) . . . . . . . . . . . . 48
Displayed Average Noise Level with Noise Floor Extension Improvement (RF/µW) . . . . . . . . . . . 49
Displayed Average Noise Level with Noise Floor Extension (mmW) . . . . . . . . . . . . . . . . . . . . . . . 50
Displayed Average Noise Level with Noise Floor Extension (RF/µW) . . . . . . . . . . . . . . . . . . . . . . 51
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Second Harmonic Distortion (mmW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5
Page 6
Contents
Second Harmonic Distortion (RF/µW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Third Order Intermodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Phase Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Nominal Phase Noise at Different Carrier Frequencies, Phase Noise Optimized vs Offset Frequency
[Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Nominal Phase Noise at Different Phase Noise/Spurs Optimization [Plot] . . . . . . . . . . . . . . . . . . . 62
Power Suite Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Adjacent Channel Power (ACP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Multi-Carrier Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Burst Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
TOI (Third Order Intermodulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Rear Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2. I/Q Analyzer, Standard
Specifications Affected by I/Q Analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Clipping-to-Noise Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3. Standard Option CR3 - Connector Rear, 2nd IF Output
Specifications Affected by Connector Rear, 2nd IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Other Connector Rear, 2nd IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Aux IF Out Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Second IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4. Standard Option EXM - External Mixing
Specifications Affected by External mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Other External Mixing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Connection Port EXT MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Mixer Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
IF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
External Mixer IF Input VSWR [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
LO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6
Page 7
Contents
5. Standard Option LNP - Low Noise Path Specifications
Specifications Affected by Low Noise Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Other Low Noise Path Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6. Standard Option MPB - Microwave Preselector Bypass
Specifications Affected by Microwave Preselector Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Other Microwave Preselector Bypass Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Additional Spurious Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7. Standard Option B25 - 25 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
IF Spurious Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Full Scale (ADC Clipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8. Option B40 - 40 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SFDR (Spurious-Free Dynamic Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
IF Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Full Scale (ADC Clipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Third Order Intermodulation Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Noise Density with Preselector Bypass (MPB on). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9. Option B2X - 255 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
SFDR (Spurious-Free Dynamic Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
IF Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Full Scale (ADC Clipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Full Scale (ADC Clipping) - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7
Page 8
Contents
Third Order Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Noise Density - Preselector Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Noise Density - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10. Option B5X - 510 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
SFDR (Spurious-Free Dynamic Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
IF Residual Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
IF Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Full Scale (ADC Clipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Full Scale (ADC Clipping) - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Third Order Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Noise Density - Preselector Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Noise Density - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
11. Option H1G - 1 GHz Analysis Bandwidth
Specifications Affected When the H1G Path Is Not Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
LO-Related Spurious Responses
(Offset from carrier 300 Hz to 10 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Phase Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
SFDR (Spurious-Free Dynamic Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
SFDR (Spurious-Free Dynamic Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
IF Residual Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IF Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Full Scale (ADC Clipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Full Scale (ADC Clipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Noise Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Rear Panel Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
TRIGGER 3 IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
IF2 OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8
Page 9
Contents
IF2 OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12. Option FBP - Full Bypass Path
Specifications Affected by Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Other Specifications Affected by Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Maximum Safe Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Displayed Average Noise Level (DANL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Additional Spurious Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13. Option ALV - Log Video Out
Specifications Affected by Log Video Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Other Log Video Out Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Aux IF Out Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Fast Log Video Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Nominal Output Voltage (Open Circuit) versus Input Level [Plot] . . . . . . . . . . . . . . . . . . . . . . . . 172
14. Option CRP - Connector Rear, Arbitrary IF Output
Specifications Affected by Connector Rear, Arbitrary IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Other Connector Rear, Arbitrary IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Aux IF Out Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Arbitrary IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
15. Option EA3 - Electronic Attenuator, 3.6 GHz
Specifications Affected by Electronic Attenuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Other Electronic Attenuator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Range (Frequency and Attenuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Distortions and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Electronic Attenuator Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
16. Option EMC - Precompliance EMI Features
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
EMI Resolution Bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
EMI Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Quasi-Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
RMS Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
17. Options P08, P13, P26, P44, and P50 - Preamplifiers
Specifications Affected by Preamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Other Preamp Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Noise figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1 dB Gain Compression Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9
Page 10
Contents
Displayed Average Noise Level (DANL) (without Noise Floor Extension) . . . . . . . . . . . . . . . . . . . 193
Frequency Response — Preamp On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Nominal VSWR — Preamp On Band [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Nominal VSWR — Preamp On Band [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Third Order Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
18. Options RT1, RT2 - Real-time Spectrum Analyzer (RTSA)
Real-time Spectrum Analyzer Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
General Frequency Domain Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Density View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Spectrogram View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Frequency Mask Trigger (FMT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
19. Option YAV - Y-Axis Video Output
Specifications Affected by Y-Axis Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Other Y-Axis Video Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
General Port Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Screen Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Continuity and Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Log Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Linear Video (AM Demod) Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
20. 5G NR Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Frequency Range: FR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Frequency Range: FR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
21. Analog Demodulation Measurement Application
RF Carrier Frequency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Maximum Information Bandwidth (Info BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Capture Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
Post-Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Maximum Audio Frequency Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10
Page 11
Contents
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
FM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
FM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
FM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Carrier Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Post-Demod Distortion Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Residual FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
AM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
AM Depth Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
AM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Post-Demod Distortion Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
FM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Residual AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
PM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
PM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
PM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Carrier Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Post-Demod Distortion Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Analog Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
FM Stereo/Radio Data System (RDS) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
FM Stereo Modulation Analysis Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
22. Bluetooth Measurement Application
Basic Rate Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Output Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Modulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Initial Carrier Frequency Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Low Energy Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Output Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Modulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Initial Carrier Frequency Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
LE In-band Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Enhanced Data Rate (EDR) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
EDR Relative Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
11
Page 12
Contents
EDR Modulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
EDR Carrier Frequency Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
EDR In-band Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Bluetooth Basic Rate and Enhanced Data Rate (EDR) System . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Bluetooth Low Energy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
23. GSM/EDGE Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
EDGE Error Vector Magnitude (EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
EDGE Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Power Ramp Relative Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Phase and Frequency Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Output RF Spectrum (ORFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
In-Band Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
24. LTE/LTE-A Measurement Application
Supported Air Interface Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Transmit On/Off Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
NB-IoT Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
C-V2X Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
C-V2X Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
NB-IoT Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
LTE FDD Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
LTE TDD Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
25. Multi-Standard Radio Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Conformance EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
26. Noise Figure Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
12
Page 13
Contents
Noise Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Noise Figure Uncertainty Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Uncertainty versus Calibration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Nominal Noise Figure Uncertainty versus Calibration Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Nominal Instrument Noise Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Nominal VSWR — Preamp On Band [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Nominal VSWR — Preamp On Band [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
27. Phase Noise Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Maximum Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Measurement Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Offset Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Amplitude Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Nominal Phase Noise at Different Center Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
28. Pulse Measurement Software
Pulse Measurement Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Frequency and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Frequency Error RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Frequency/Phase Pulse to Pulse Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
29. Short Range Communications Measurement Application
ZigBee (IEEE 802.15.4) Measurement Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
EVM (Modulation Accuracy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Z-Wave (ITU-T G.9959) Measurement Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
FSK Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
30. Vector Modulation Analysis Application
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Residual EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Residual EVM for MSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Residual EVM for VSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
31. W-CDMA Measurement Application
Conformance with 3GPP TS 25.141 Base Station Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
13
Page 14
Contents
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
QPSK EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Modulation Accuracy (Composite EVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
32. WLAN Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Spurious Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
64QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
256QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1024QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
CCK 11Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
In-Band Frequency Range for Warranted Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
14
Page 15
Keysight X-Series Signal Analyzer N9040B
Specification Guide
1 UXA Signal Analyzer
This chapter contains the specifications for the core signal analyzer. The specifications and characteristics for the measurement applications and options are covered in the chapters that follow.
15
Page 16
UXA Signal Analyzer Definitions and Requirements
Definitions and Requirements
This book contains signal analyzer specifications and supplemental information. The distinction among specifications, typical performance, and nominal values are described as follows.
Definitions
— Specifications describe the performance of parameters covered by the product warranty
(temperature = 0 to 55°C also referred to as "Full temperature range" or "Full range", unless otherwise noted).
— 95th percentile values indicate the breadth of the population (≈2σ) of performance tolerances
expected to be met in 95% of the cases with a 95% confidence, for any ambient temperature in the range of 20 to 30°C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.
— Typical describes additional product performance information that is not covered by the product
warranty. It is performance beyond specification that 80% of the units exhibit with a 95% confidence level over the temperature range 20 to 30°C. Typical performance does not include measurement uncertainty.
— Nominal values indicate expected performance, or describe product performance that is useful
in the application of the product, but is not covered by the product warranty.
Conditions Required to Meet Specifications
The following conditions must be met for the analyzer to meet its specifications.
— The analyzer is within its calibration cycle. See the General section of this chapter. — Under auto couple control, except that Auto Sweep Time Rules = Accy. — For signal frequencies <10 MHz, DC coupling applied. — Any analyzer that has been stored at a temperature range inside the allowed storage range but
outside the allowed operating range must be stored at an ambient temperature within the allowed operating range for at least two hours before being turned on.
— The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto
Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from “Time and Temperature” to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances.
Certification
Keysight Technologies certifies that this product met its published specifications at the time of shipment from the factory. Keysight Technologies further certifies that its calibration measurements are traceable to the International System of Units (SI) via national metrology institutes (www.keysight.com/find/NMI) that are signatories to the CIPM Mutual Recognition Arrangement.
16
Page 17
UXA Signal Analyzer Frequency and Time
Frequency and Time
Description Specifications Supplemental Information
Frequency Range
Maximum Frequency
Option 508 8.4 GHz
Option 513 13.6 GHz
Option 526 26.5 GHz
Option 544 44 GHz
Option 550 50 GHz
Preamp Option P08 8.4 GHz
Preamp Option P13 13.6 GHz
Preamp Option P26 26.5 GHz
Preamp Option P44 44 GHz
Preamp Option P50 50 GHz
Minimum Frequency
Preamp AC Coupled DC Coupled
Off 10 MHz 2 Hz
On 10 MHz 9 kHz
Band
0 (2 Hz to 3.6 GHz)
1 (3.5 to 8.4 GHz) 1— 1 Options 508, 513, 526, 544, 550
2 (8.3 to 13.6 GHz) 1— 2 Options 513, 526, 544, 550
3 (13.5 to 17.1 GHz) 2— 2 Options 526, 544, 550
c
Harmonic Mixing Mode
1— 1 Options 508, 513, 526, 544, 550
LO Multiple (N
a
)
Band Overlaps
b
4 (17.0 to 26.5 GHz) 2— 4 Options 526, 544, 550
5 (26.4 to 34.5 GHz) 2— 4 Options 544, 550
6 (34.4 to 50 GHz) 4— 8 Options 544, 550
a. N is the LO multiplication factor. For negative mixing modes (as indicated by the “—” in the “Harmonic Mixing
Mode” column), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF.
17
Page 18
UXA Signal Analyzer Frequency and Time
b. In the band overlap regions, for example, 3.5 to 3.6 GHz, the analyzer may use either band for measurements, in
this example Band 0 or Band 1. The analyzer gives preference to the band with the better overall specifications (which is the lower numbered band for all frequencies below 26 GHz), but will choose the other band if doing so is necessary to achieve a sweep having minimum band crossings. For example, with CF = 3.58 GHz, with a span of 40 MHz or less, the analyzer uses Band 0, because the stop frequency is 3.6 GHz or less, allowing a span without band crossings in the preferred band. If the span is between 40 and 160 MHz, the analyzer uses Band 1, because the start frequency is above 3.5 GHz, allowing the sweep to be done without a band crossing in Band 1, though the stop frequency is above 3.6 GHz, preventing a Band 0 sweep without band crossing. With a span greater than 160 MHz, a band crossing will be required: the analyzer sweeps up to 3.6 GHz in Band 0; then executes a band crossing and continues the sweep in Band 1. Specifications are given separately for each band in the band overlap regions. One of these specifications is for the preferred band, and one for the alternate band. Continuing with the example from the previous paragraph (3.58 GHz), the preferred band is band 0 (indicated as frequencies under 3.6 GHz) and the alternate band is band 1 (3.5 to 8.4 GHz). The specifications for the preferred band are warranted. The specifications for the alternate band are not warranted in the band overlap region, but performance is nominally the same as those warranted specifications in the rest of the band. Again, in this example, consider a signal at 3.58 GHz. If the sweep has been configured so that the signal at 3.58 GHz is measured in Band 1, the analysis behavior is nominally as stated in the Band 1 specification line (3.5 to 8.4 GHz) but is not warranted. If warranted performance is necessary for this sig­nal, the sweep should be reconfigured so that analysis occurs in Band 0. Another way to express this situation in this example Band 0/Band 1 crossing is this: The specifications given in the “Specifications” column which are described as “3.5 to 8.4 GHz” represent nominal performance from 3.5 to 3.6 GHz, and warranted performance from 3.6 to 8.4 GHz.
c. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency
option 508, 513 or 526 and with firmware of version A.16.17 or later.
18
Page 19
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Precision Frequency Reference
Accuracy ±[(time since last adjustment x
aging rate) + temperature stability + calibration accuracy
a]b
Temperature Stability
Full temperature range
Aging Rate
±4.5 × 10
−9
±2.5 × 10
10
/day (nominal)
Total Aging
−8
1 Year
Settability
Warm-up and Retrace
c
300 s after turn on
600 s after turn on
Achievable Initial Calibration Accuracy
d
±3 × 10
±4 × 10
±3.1 × 10
−11
8
Nominal
±1 × 10
±1 × 10
7
of final frequency
8
of final frequency
Standby power Standby power is supplied to both
the CPU and the frequency reference oscillator.
Residual FM
(Center Frequency = 1 GHz
0.25 Hz × N (nominal)
e
p-p in 20 ms
10 Hz RBW, 10 Hz VBW)
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the adjust-
ment procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration
Accuracy.” b. The specification applies after the analyzer has been powered on for four hours. c. Standby mode applies power to the oscillator. Therefore warm-up and retrace only apply if the power connec-
tion is lost and restored. The warm-up reference is one hour after turning the power on. The effect of retracing
is included within the “Achievable Initial Calibration Accuracy” term of the Accuracy equation. d. The achievable calibration accuracy at the beginning of the calibration cycle includes these effects:
1) Temperature difference between the calibration environment and the use environment
2) Orientation relative to the gravitation field changing between the calibration environment and the use envi-
ronment
3) Retrace effects in both the calibration environment and the use environment due to turning the instrument
power off.
4) Settability
e. N is the LO multiplication factor.
19
Page 20
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Frequency Readout Accuracy ±(marker freq × freq ref accy +
a
+ 2 Hz +
b
)
Example for EMC
0.10span + 5% × RBW
0.5 × horizontal resolution
d
Single detector only
±0.0032% (nominal)
a. The warranted performance is only the sum of all errors under autocoupled conditions. Under non-autocoupled
conditions, the frequency readout accuracy will nominally meet the specification equation, except for conditions in which the RBW term dominates, as explained in examples below. The nominal RBW contribution to frequency readout accuracy is 2% of RBW for RBWs from 1 Hz to 390 kHz, 4% of RBW from 430 kHz through 3 MHz (the widest autocoupled RBW), and 30% of RBW for the (manually selected) 4, 5, 6 and 8 MHz RBWs. First example: a 120 MHz span, with autocoupled RBW. The autocoupled ratio of span to RBW is 106:1, so the RBW selected is 1.1 MHz. The 5% × RBW term contributes only 55 kHz to the total frequency readout accu­racy, compared to 120 kHz for the 0.10% × span term, for a total of 175 kHz. Second example: a 20 MHz span, with a 4 MHz RBW. The specification equation does not apply because the Span: RBW ratio is not autocoupled. If the equation did apply, it would allow 20 kHz of error (0.10%) due to the span and 200 kHz error (5%) due to the RBW. For this non-autocoupled RBW, the RBW error is nominally 30%, or 1200 kHz.
b. Horizontal resolution is due to the marker reading out one of the trace points. The points are spaced by
span/(Npts – 1), where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector mode is “normal” and the span > 0.25 × (Npts – 1) × RBW, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is autocoupled and there are 1001 sweep points, that exception occurs only for spans >750 MHz
c. Specifications apply to traces in most cases, but there are exceptions. Specifications always apply to the peak
detector. Specifications apply when only one detector is in use and all active traces are set to Clear Write. Spec­ifications also apply when only one detector is in use in all active traces and the "Restart" key has been pressed since any change from the use of multiple detectors to a single detector. In other cases, such as when multiple simultaneous detectors are in use, additional errors of 0.5, 1.0 or 1.5 sweep points will occur in some detectors, depending on the combination of detectors in use.
d. In most cases, the frequency readout accuracy of the analyzer can be exceptionally good. As an example, Key-
sight has characterized the accuracy of a span commonly used for Electro-Magnetic Compatibility (EMC) testing using a source frequency locked to the analyzer. Ideally, this sweep would include EMC bands C and D and thus sweep from 30 to 1000 MHz. Ideally, the analysis bandwidth would be 120 kHz at 6 dB, and the spacing of the points would be half of this (60 kHz). With a start frequency of 30 MHz and a stop frequency of 1000.2 MHz and a total of 16168 points, the spacing of points is ideal. The detector used was the Peak detector. The accuracy of frequency readout of all the points tested in this span was with ±0.0032% of the span. A perfect analyzer with this many points would have an accuracy of ±0.0031%
of span. Thus, even with this large number of display
points, the errors in excess of the bucket quantization limitation were negligible.
c
20
Page 21
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Frequency Counter
a
See note
b
Count Accuracy ±(marker freq × freq ref accy. + 0.100 Hz)
Delta Count Accuracy ±(delta freq. × freq ref accy. + 0.141 Hz)
Resolution 0.001 Hz
a. Instrument conditions: RBW = 1 kHz, gate time = auto (100 ms), S/N 50 dB, frequency = 1 GHz b. If the signal being measured is locked to the same frequency reference as the analyzer, the specified count
accuracy is ±0.100 Hz under the test conditions of footnote a. This error is a noisiness of the result. It will increase with noisy sources, wider RBWs, lower S/N ratios, and source frequencies > 1 GHz.
Description Specifications Supplemental Information
Frequency Span
Range
Option 508 0 Hz, 10 Hz to 8.4 GHz
Option 513 0 Hz, 10 Hz to 13.6 GHz
Option 526 0 Hz, 10 Hz to 26.5 GHz
Option 544 0 Hz, 10 Hz to 44 GHz
Option 550 0 Hz, 10 Hz to 50 GHz
Resolution 2 Hz
Span Accuracy
Swept
FFT
±(0.1% × span + horizontal resolution
±(0.1% × span + horizontal resolution
a
)
a
)
a. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by
span/(Npts 1), where Npts is the number of sweep points. For example, with the factory preset value of 1001
sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector
mode is “normal” and the span > 0.25 × (Npts − 1) × RBW, peaks can occur only in even-numbered points, so
the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is
auto coupled and there are 1001 sweep points, that exception occurs only for spans >750 MHz.
21
Page 22
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Sweep Time and Trigger
Sweep Time Range Span = 0 Hz Span 10 Hz
1 μs to 6000 s 1 ms to 4000 s
Sweep Time Accuracy Span 10 Hz, swept Span 10 Hz, FFT Span = 0 Hz
±0.01% (nominal) ±40% (nominal) ±0.01% (nominal)
Sweep Trigger Free Run, Line, Video, External 1,
External 2, RF Burst, Periodic Timer
Delayed Trigger
a
Range
Span 10 Hz 150 to 500 ms
Span = 0 Hz
10 s to +500 ms
b
Resolution 0.1 μs
a. Delayed trigger is available with line, video, RF burst and external triggers. b. Prior to A.19.28 software, zero span trigger delay was limited to -150 ms to 500 ms.
22
Page 23
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Triggers Additional information on some of the triggers and
gate sources
Video Independent of Display Scaling and Reference Level
Minimum settable level 170 dBm Useful range limited by noise
Maximum usable level
Highest allowed mixer level
a
+ 2 dB (nominal)
Detector and Sweep Type relationships
Sweep Type = Swept
Detector = Normal, Peak, Sample or Negative Peak
Triggers on the signal before detection, which is similar to the displayed signal
Detector = Average Triggers on the signal before detection, but with a
single-pole filter added to give similar smoothing to that of the average detector
Sweep Type = FFT Triggers on the signal envelope in a bandwidth
wider than the FFT width
RF Burst
Level Range
Level Accuracy
c
40 to 10 dBm plus attenuation (nominal)
Absolute ±2 dB + Absolute Amplitude Accuracy (nominal)
Relative ±2 dB (nominal)
Bandwidth (10 dB)
b
Most cases
d
>80 MHz (nominal)
Start Freq <300 MHz, RF Burst Level Type = Absolute
Sweep Type = Swept 16 MHz (nominal)
Sweep Type = FFT
FFT Width > 25 MHz; FFT Width 8 to 25 MHz; FFT Width < 8 MHz
>80 MHz (nominal) 30 MHz (nominal) 16 MHz (nominal)
Frequency Limitations If the start or center frequency is too close to zero,
LO feedthrough can degrade or prevent triggering. How close is too close depends on the bandwidth listed above.
23
Page 24
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
External Triggers See “Trigger Inputs” on page 78
TV Triggers Triggers on the leading edge of the selected sync
pulse of standardized TV signals.
Amplitude Requirements –65 dBm minimum video carrier power at the input
mixer, nominal
Compatible Standards NTSC-M,
NTSC-Japan, NTSC-4.43, PAL-M, PAL-N, PAL-N Combination, PAL-B/-D/-G/-H/-I. PAL-60, SECAM-L
Field Selection Entire Frame, Field
One, Field Two
Line Selection 1 to 525, or 1 to 625,
standard dependent
a. The highest allowed mixer level depends on the IF Gain. It is nominally –10 dBm for Preamp Off and IF Gain =
Low.
b. Noise will limit trigger level range at high frequencies, such as above 15 GHz. c. With positive slope trigger. Trigger level with negative slope is nominally 1 to 4 dB lower than positive slope. d. Include RF Burst Level Type = Relative.
24
Page 25
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Gated Sweep
Gate Methods Gated LO
Gated Video Gated FFT
Span Range Any span
Gate Delay Range 0 to 100.0 s
Gate Delay Settability 4 digits, 100 ns
Gate Delay Jitter 33.3 ns p-p (nominal)
Gate Length Range
(Except Method = FFT)
Gated FFT and Gated Video Frequency and Amplitude Errors
1 μs to 5.0 s Gate length for the FFT method is fixed at
1.83/RBW, with nominally 2% tolerance.
Nominally no additional error for gated measurements when the Gate Delay is greater than the MIN FAST setting
Gated LO Frequency Errors
Gate 10 μs Nominally no additional error when the Gate
Delay is greater than the MIN FAST setting
1.0 μs ≤ Gate < 10 μs Nominal error given by 100 ns × N × (Span/ST) × (SpanPosition × ST / GateLength); see footnote
Gated LO Amplitude Errors Nominally no additional error when the Gate
Delay is greater than the MIN FAST setting
Phase Noise Effects Gated LO method overrides the loop
configuration to force single loop in place of dual loop.
Gate Sources External 1
Pos or neg edge triggered
External 2 Line RF Burst Periodic
a
a. ST is sweep time; SpanPosition is the location of the on-screen signal, 0 being the left edge of the screen and 1
being the right edge. N is the harmonic mixing number.
Description Specifications Supplemental Information
Number of Frequency Sweep Points (buckets)
Factory preset 1001
Range 1 to 100,001 Zero and non-zero spans
25
Page 26
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Resolution Bandwidth (RBW)
Range (3.01 dB bandwidth) Standard
1 Hz to 8 MHz Bandwidths above 3 MHz are 4, 5, 6, and 8 MHz. Bandwidths 1 Hz to 3 MHz are spaced at 10% spacing using the E24 series (24 per decade): 1.0, 1.1, 1.2, 1.3, 1.5, 1.6,
1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9,
4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 in each decade.
With Option B2X, B5X, or H1G and
Option RBE
a
10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, 133, 150, 200, and 212 MHz, in Spectrum Analyzer mode and zero span.
Power bandwidth accuracy
b
RBW Range CF Range
1 Hz to 100 kHz All ±0.5% (0.022 dB)
110 kHz to 1.0 MHz < 3.6 GHz ±1.0% (0.044 dB)
1.1 to 2.0 MHz < 3.6 GHz ±0.07 dB (nominal)
2.2 to 3 MHz < 3.6 GHz 0 to −0.2 dB (nominal)
4 to 8 MHz < 3.6 GHz 0 to −0.4 dB (nominal)
Noise BW to RBW ratio
Accuracy (−3.01 dB bandwidth)
c
d
1.056 ±2% (nominal)
1 Hz to 1.3 MHz RBW ±2% (nominal)
1.5 MHz to 3 MHz RBW
CF 3.6 GHz CF > 3.6 GHz
±7% (nominal) ±8% (nominal)
4 MHz to 8 MHz RBW
CF 3.6 GHz CF > 3.6 GHz
±15% (nominal) ±20% (nominal)
Selectivity (60 dB/3 dB) 4.1:1 (nominal)
a. Option RBE enables wider bandwidth filters in zero span in the Signal Analyzer mode. Available detectors are
Peak+ and Average. VBW filtering is disabled. Minimum sweep time is the greater of 200 μS or 200ns/pt. The filter shape is approximately square. Support for Average detector was first added in SW Version A.23.05.
26
Page 27
UXA Signal Analyzer Frequency and Time
b. The noise marker, band power marker, channel power and ACP all compute their results using the power band-
width of the RBW used for the measurement. Power bandwidth accuracy is the power uncertainty in the results of these measurements due only to bandwidth-related errors. (The analyzer knows this power bandwidth for each RBW with greater accuracy than the RBW width itself, and can therefore achieve lower errors.) The war­ranted specifications shown apply to the Gaussian RBW filters used in swept and zero span analysis. There are four different kinds of filters used in the spectrum analyzer: Swept Gaussian, Swept Flattop, FFT Gaussian and FFT Flattop. While the warranted performance only applies to the swept Gaussian filters, because only they are kept under statistical process control, the other filters nominally have the same performance.
c. The ratio of the noise bandwidth (also known as the power bandwidth) to the RBW has the nominal value and
tolerance shown. The RBW can also be annotated by its noise bandwidth instead of this 3 dB bandwidth. The accuracy of this annotated value is similar to that shown in the power bandwidth accuracy specification.
d. Resolution Bandwidth Accuracy can be observed at slower sweep times than auto-coupled conditions. Normal
sweep rates cause the shape of the RBW filter displayed on the analyzer screen to widen significantly. The true bandwidth, which determines the response to impulsive signals and noise-like signals, is not affected by the sweep rate.
Description Specification Supplemental information
Analysis Bandwidth
a
With Option B25 (standard) 25 MHz
With Option B40 40 MHz
With Option B2X 255 MHz
With Option B5X 510 MHz
a. Analysis bandwidth is the instantaneous bandwidth available about a center frequency over which the input sig-
nal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
27
Page 28
UXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Preselector Bandwidth
Mean Bandwidth at CF
a
Freq Option 526 Freq Option > 526
5 GHz 58 MHz 46 MHz
10 GHz 57 MHz 52 MHz
15 GHz 59 MHz 53MHz
20 GHz 64 MHz 55 MHz
25 GHz 74 MHz 56 MHz
35 GHz 62 MHz
44 GHz 70 MHz
Standard Deviation 9% 7%
3 dB Bandwidth 7.5% relative to 4 dB bandwidth, nominal
a. The preselector can have a significant passband ripple. To avoid ambiguous results, the 4 dB bandwidth is
characterized.
Description Specifications Supplemental Information
Video Bandwidth (VBW)
Range Same as Resolution Bandwidth range
plus wide-open VBW (labeled 50 MHz)
Accuracy ±6% (nominal)
in swept mode and zero span
a. For FFT processing, the selected VBW is used to determine a number of averages for FFT results. That number is
chosen to give roughly equivalent display smoothing to VBW filtering in a swept measurement. For example, if VBW = 0.1 × RBW, four FFTs are averaged to generate one result.
a
28
Page 29
UXA Signal Analyzer Amplitude Accuracy and Range
Amplitude Accuracy and Range
Description Specifications Supplemental Information
Measurement Range
Preamp Off Displayed Average Noise Level to +30 dBm
Preamp On Displayed Average Noise Level to +24 dBm Options P08, P13, P26, P44, P50
Input Attenuation Range 0 to 70 dB, in 2 dB steps
Description Specifications Supplemental Information
Maximum Safe Input Level Applies with or without preamp
(Options P08, P13, P26, P44, P50)
Average Total Power +30 dBm (1 W)
Peak Pulse Power
(≤10 μs pulse width,1% duty cycle,
input attenuation 30 dB)
DC voltage
DC Coupled ±0.2 Vdc
AC Coupled ±100 Vdc
Description Specifications Supplemental Information
Display Range
Log Scale Ten divisions displayed;
Linear Scale Ten divisions
Description Specifications Supplemental Information
Marker Readout
+50 dBm (100 W)
0.1 to 1.0 dB/division in 0.1 dB steps, and 1 to 20 dB/division in 1 dB steps
Resolution
Log (decibel) units
Trace Averaging Off, on-screen 0.01 dB
Trace Averaging On or remote 0.001 dB
Linear units resolution ≤1% of signal level (nominal)
29
Page 30
UXA Signal Analyzer Amplitude Accuracy and Range
Frequency Response
Description Specifications Supplemental Information
Frequency Response Refer to the footnote for
(Maximum error relative to reference condition (50 MHz)
b
Mechanical attenuator only Swept operation
c
, LNP offd,
,
Attenuation 10 dB)
Option 544 or 550 (mmW)
Option 508, 513, or 526 (μW)
20 to 30°C Full range 95th Percentile (≈2σ)
3 Hz to 10 MHz x x ±0.46 dB ±0.54 dB
10 to 20 MHz x ±0.35 dB ±0.44 dB ±0.19 dB
Band Overlaps on page 17.
Freq Option 526 only: Modes above 18 GHz
a
10 to 20 MHz
20 to 50 MHz
20 to 50 MHz
e
x ±0.46 dB ±0.54 dB ±0.20 dB
x ±0.35 dB ±0.44 dB ±0.19 dB
x ±0.35 dB ±0.44 dB ±0.20 dB
50 MHz to 3.6 GHz x ±0.35 dB ±0.44 dB ±0.14 dB
50 MHz to 3.6 GHz
3.6 to 3.7 GHz (Band 0) x
3.5 to 5.2 GHz
3.5 to 5.2 GHz
5.2 to 8.4 GHz
5.2 to 8.4 GHz
8.3 to 13.6 GHz
8.3 to 13.6 GHz
13.5 to 17.1 GHz
13.5 to 17.1 GHz
gh
gh
gh
gh
gh
gh
gh
gh
x ±0.35 dB ±0.47 dB ±0.16 dB
See note
x ±1.5 dB ±2.5 dB ±0.50 dB
x ±1.7 dB ±3.5 dB ±0.69 dB
x ±1.5 dB ±2.5 dB ±0.42 dB
x ±1.5 dB ±2.5 dB ±0.42 dB
x ±2.0 dB ±2.7 dB ±0.51 dB
x ±2.0 dB ±2.5 dB ±0.39 dB
x ±2.0 dB ±2.7 dB ±0.57 dB
x ±2.0 dB ±2.7 dB ±0.54 dB
f
17.0 to 22 GHz
17.0 to 22 GHz
gh
gh
x ±2.0 dB ±2.7 dB ±0.65 dB
x ±2.0 dB ±2.8 dB ±0.62 dB
30
Page 31
UXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
22.0 to 26.5 GHz
22.0 to 26.5 GHz
26.4 to 34.5 GHz
34.4 to 50 GHz
gh
gh
gh
gh
x ±2.5 dB ±3.7 dB ±0.87 dB
x ±2.5 dB ±3.5 dB ±0.59 dB
x ±2.5 dB ±3.6 dB ±0.93 dB
x ±3.2 dB ±4.9 dB ±1.28 dB
a. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. Only analyzers with frequency Option 526 that do not also have input connector Option C35 will have these modes.With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six
such modes. The effect of these modes with this connector are included within these specifications. b. See the Electronic Attenuator (Option EA3) chapter for Frequency Response using the electronic attenuator. c. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional
error source, the error in switching between swept and FFT sweep types, is nominally ±0.01 dB and is included
within the “Absolute Amplitude Error” specifications. d. Refer to LNP Chapter for the frequency response specifications with LNP on. e. Specifications apply with DC coupling at all frequencies. With AC coupling, specifications apply at frequencies of
50 MHz and higher. Statistical observations at 10 MHz and lower show that most instruments meet the specifica-
tions, but a few percent of instruments can be expected to have errors that, while within the specified limits, are
closer to those limits than the measurement uncertainty guardband, and thus are not warranted. The AC coupling
effect at 20 to 50 MH is negligible, but not warranted. f. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency
Option 508, 513 or 526 and with firmware of version A.16.17 or later. Subject to these conditions, statistical
observations show that performance nominally fits within the same range within the 3.6 to 3.7 GHz frequencies as
within the next lower specified frequency range, but is not warranted. g. Specifications for frequencies >3.5 GHz apply for sweep rates 100 MHz/ms. h. Preselector centering applied.
31
Page 32
UXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
IF Frequency Response
a
Freq Option 526 only: Modes above 18 GHz
b
(Demodulation and FFT response relative to the center frequency)
Center Freq (GHz)
Span (MHz)
c
Preselector
Max Errord Midwidth Error
(95th Percentile)
Slope (dB/MHz) (95th Percentile)
RMSe (nominal)
<3.6 10 ±0.20 dB ±0.12 dB ±0.10 0.02 dB
3.6, 26.5 10 On 0.23 dB
3.6, 26.5 10
Off
±0.25 dB ±0.12 dB ±0.10 0.02 dB
f
>26.5, 50 10 On 0.12 dB
f
>26.5, 50 10
Off
±0.30 dB ±0.12 dB ±0.10 0.024 dB
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF fre-
quency, in addition to the IF passband effects.
b. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. Only analyzers with frequency Option 526 that do not also have input connector Option C35 will have these modes.With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum Analyzer Mode, this would be
the FFT width.
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression
± [Midwidth Error + (f × Slope)], but never exceeds ±Max Error. Here the Midwidth Error is the error at the center frequency for a given FFT span. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. When using the Spectrum Analyzer mode with an analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple cen­ters of FFT widths; in this case the f in the equation is the offset from the nearest center. Performance is nominally three times better at most center frequencies.
e. The “rms” nominal performance is the standard deviation of the response relative to the center frequency, inte-
grated across the span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
f. Standard Option MPB is enabled.
32
Page 33
UXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
IF Phase Linearity Deviation from mean phase linearity
Freq Option 526 only: Modes above
a
18 GHz
Center Freq (GHz)
Span (MHz)
Preselector
Peak-to-peak
(nominal)
RMS (nominal)
0.02, <3.6 10 n/a 0.14° 0.032°
c
3.6 10
Off
0.27° 0.057°
3.6 10 On 0.93° 0.22°
a. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. Only analyzers with frequency Option 526 that do not also have input connector Option C35 will have these modes.With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
b. The listed performance is the standard deviation of the phase deviation relative to the mean phase deviation
from a linear phase condition, where the rms is computed across the span shown and over the range of center frequencies shown.
c. Standard Option MPB is enabled.
b
33
Page 34
UXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Absolute Amplitude Accuracy
At 50 MHz
20 to 30°C Full temperature range
At all frequencies 20 to 30°C Full temperature range
a
±0.24 dB
±0.13 dB
(95th percentile)
±0.28 dB
a
±(0.24 dB + frequency response) ±(0.28 dB + frequency response)
95th Percentile Absolute Amplitude Accuracy
b
(Wide range of signal levels, RBWs, RLs, etc.,
0.01 to 3.6 GHz) Atten = 10 dB Atten = 10, 20, 30, or 40 dB
±0.16 dB ±0.18 dB
Amplitude Reference Accuracy ±0.05 dB (nominal)
Preamp On
c
±(0.36 dB + frequency response)
(P08, P13, P26, P44, P50)
a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over the following
subset of settings and conditions: 1 Hz ≤ RBW ≤ 1MHz; Input signal 10 to 50 dBm (details below); Input attenuation 10 dB; span < 5 MHz (nominal additional error for span 5 MHz is 0.02 dB); all settings auto-cou­pled except Swp Time Rules = Accuracy; combinations of low signal level and wide RBW use VBW 30 kHz to reduce noise. When using FFT sweeps, the signal must be at the center frequency. This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Res­olution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference. The only difference between signals within the range above –50 dBm and those signals below that level is the scale fidelity. Our specifications and experience show no difference between signals above and below this level. The only reason our Absolute Amplitude Uncertainty specification does not go below this level is that noise detracts from our ability to verify the performance at all levels with acceptable test times and yields. So the per­formance is not warranted at lower levels, but we fully expect it to be the same.
34
Page 35
UXA Signal Analyzer Amplitude Accuracy and Range
b. Absolute Amplitude Accuracy for a wide range of signal and measurement settings, covers the 95th percentile
proportion with 95% confidence. Here are the details of what is covered and how the computation is made: The wide range of conditions of RBW, signal level, VBW, reference level and display scale are discussed in foot­note a. There are 44 quasi-random combinations used, tested at a 50 MHz signal frequency. We compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the fre­quency response adjustment frequencies. We again compute the 95th percentile proportion with 95% confi­dence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute amplitude accuracy to a national stan­dards organization. We also compute the 95th percentile accuracy of tracing the calibration of the relative fre­quency response to a national standards organization. We take the root-sum-square of these four independent Gaussian parameters. To that rss we add the environmental effects of temperature variations across the 20 to 30°C range. These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB. A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB. The 95th percentile result was 0.21 dB.
c. Same settings as footnote a, except that the signal level at the preamp input is 40 to 80 dBm. Total power at
preamp (dBm) = total power at input (dBm) minus input attenuation (dB). This specification applies for signal frequencies above 100 kHz.
Description Specifications Supplemental Information
Input Attenuation Switching Uncertainty Refer to the footnote for
Band Overlaps on page 17
(Relative to 10 dB (reference setting))
50 MHz (reference frequency), preamp off
Attenuation 12 to 40 dB ±0.14 dB ±0.04 dB (typical)
Attenuation 2 to 8 dB, or > 40 dB ±0.18 dB ±0.06 dB (typical)
Attenuation 0 dB ±0.05 dB (nominal)
Attenuation >2 dB, preamp off
3 Hz to 3.6 GHz ±0.3 dB (nominal)
3.5 to 8.4 GHz ±0.5 dB (nominal)
8.3 to 13.6 GHz ±0.7 dB (nominal)
13.5 to 26.5 GHz ±0.7 dB (nominal)
26.5 to 50 GHz ±1.0 dB (nominal)
35
Page 36
UXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
RF Input VSWR
(at tuned frequency, DC coupled)
10 dB atten. 50 MHz (ref condition) 1.07:1 (nominal)
0 dB atten. 0.01 to 3.6 GHz < 2.2:1 (nominal)
95th Percentile
a
RF/μW mmW
Band 0 (0.01 to 3.6 GHz,10 dB atten) 1.101 1.116
Band 1 (3.5 to 8.4 GHz,10 dB atten) 1.278 1.144
Band 2 (8.3 to 13.6 GHz,10 dB atten) 1.341 1.158
Band 3 (13.5 to 17.1 GHz,10 dB atten) 1.58 1.258
Band 4 (17.0 to 26.5 GHz,10 dB atten) 1.560 1.233
Band 5 (26.4 to 34.5 GHz,10 dB atten) 1.363
Band 6 (34.4 to 50 GHz,10 dB atten) 1.55
Nominal VSWR vs. Freq, 10 dB See plots following
Atten. > 10 dB Similar to atten. = 10
dB
RF Calibrator (e.g. 50 MHz) is On Open input
Alignments running Open input for some, unless "All but RF" is
selected
Preselector centering Open input
a. X-Series analyzers have a reflection coefficient that is excellently modeled with a Rayleigh probability distribu-
tion. Keysight recommends using the methods outlined in Application Note 1449-3 and companion Average Power Sensor Measurement Uncertainty Calculator to compute mismatch uncertainty. Use this 95th percentile VSWR information and the Rayleigh model (Case C or E in the application note) with that process.
36
Page 37
Nominal VSWR Band [Plot]
UXA Signal Analyzer Amplitude Accuracy and Range
37
Page 38
Nominal VSWR, above 3.5 GHz [Plot]
UXA Signal Analyzer Amplitude Accuracy and Range
38
Page 39
UXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Resolution Bandwidth Switching Uncertainty Relative to reference BW of 30 kHz,
verified in low band
a
1.0 Hz to 1.5 MHz RBW ±0.03 dB
1.6 MHz to 2.7 MHz RBW ±0.05 dB
3.0 MHz RBW ±0.10 dB
Manually selected wide RBWs: 4, 5, 6, 8 MHz ±0.30 dB
a. RBW switching uncertainty is verified at 50 MHz. It is consistent for all measurements made without the prese-
lector, thus in Band 0 and also in higher bands with the Preselector Bypass option. In preselected bands, the slope of the preselector passband can interact with the RBW shape to make an apparent additional RBW switching uncertainty of nominally ±0.05 dB/MHz times the RBW.
Description Specifications Supplemental Information
Reference Level
Range
Log Units 170 to +30 dBm, in 0.01 dB steps
Linear Units 707 pV to 7.07 V, with 0.01 dB resolution (0.11%)
Accuracy
0 dB
a
a. Because reference level affects only the display, not the measurement, it causes no additional error in measure-
ment results from trace data or markers.
Description Specifications Supplemental Information
Display Scale Switching Uncertainty
a
Switching between Linear and Log
Log Scale Switching
0 dB
0 dB
a
a. Because Log/Lin and Log Scale Switching affect only the display, not the measurement, they cause no addi-
tional error in measurement results from trace data or markers.
39
Page 40
UXA Signal Analyzer
3
σ
320dB()110
SN 3dB+()20dB()
+log=
Amplitude Accuracy and Range
Description Specifications Supplemental Information
Display Scale Fidelity
ab
Absolute Log-Linear Fidelity
(Relative to the reference condition: 25 dBm input through 10 dB attenuation, thus
35 dBm at the input mixer)
Input mixer level
c
Linearity
Typ ical
18 dBm ML 10 dBm ±0.10 dB ±0.04 dB
ML < −18 dBm ±0.07 dB ±0.02 dB
Relative Fidelity
d
Applies for mixer levelc range from 10 to
80 dBm, mechanical attenuator only, preamp off, and dither on.
Sum of the following terms: Nominal
high level term
instability term
slope term
prefilter term
Up to ±0.015 dB
0.0019 dBrms
From equation
Up to ±0.005 dB
e
f
g
h
a. Supplemental information: The amplitude detection linearity specification applies at all levels below 10 dBm at
the input mixer; however, noise will reduce the accuracy of low level measurements. The amplitude error due to noise is determined by the signal-to-noise ratio, S/N. If the S/N is large (20 dB or better), the amplitude error due to noise can be estimated from the equation below, given for the 3-sigma (three standard deviations) level.
The errors due to S/N ratio can be further reduced by averaging results. For large S/N (20 dB or better), the 3-sigma level can be reduced proportional to the square root of the number of averages taken.
b. The scale fidelity is warranted with ADC dither set to Medium. Dither increases the noise level by nominally only
0.28 dB for the most sensitive case (preamp Off, best DANL frequencies). With dither Off, scale fidelity for low level signals, around 60 dBm or lower, will nominally degrade by 0.2 dB. Dither High will give exceptional lin­ear relative scale fidelity, but increase DANL by 0.63 dB instead of 0.28 dB.
c. Mixer level = Input Level Input Attenuation d. The relative fidelity is the error in the measured difference between two signal levels. It is so small in many cases
that it cannot be verified without being dominated by measurement uncertainty of the verification. Because of this verification difficulty, this specification gives nominal performance, based on numbers that are as conserva­tively determined as those used in warranted specifications. We will consider one example of the use of the error equation to compute the nominal performance. Example: the accuracy of the relative level of a sideband around 60 dBm, with a carrier at 5dBm, using atten­uation = 10 dB, RBW = 3 kHz, evaluated with swept analysis. The high level term is evaluated with P1 =
15 dBm and P2 = 70 dBm at the mixer. This gives a maximum error within ±0.008 dB. The instability term is ±0.0019 dB if the measurement is completed within a minute. The slope term evaluates to ±0.022 dB. The pre- filter term applies and evaluates to the limit of ±0.005 dB. The sum of all these terms is ±0.037 dB.
40
Page 41
UXA Signal Analyzer Amplitude Accuracy and Range
e. Errors at high mixer levels will nominally be well within the range of ±0.015 dB × {exp[(P1 Pref)/(8.69 dB)]
exp[(P2 Pref)/(8.69 dB)]} (exp is the natural exponent function, e
x
). In this expression, P1 and P2 are the pow-
ers of the two signals, in decibel units, whose relative power is being measured. Pref is 10 dBm (10 dBm is the highest power for which linearity is specified). All these levels are referred to the mixer level.
f. The stability of the analyzer gain can be an error term of importance when no settings have changed. These have
been studied carefully in the UXA. One source of instability is the variation in analyzer response with time when fully warmed up in a stable lab environment. This has been observed to be well modeled as a random walk pro­cess, where the difference in two measurements spaced by time t is given by a × sqrt(t), where a is
0.0019 dBrms per root minute. The other source of instability is updated alignments from running full or partial alignments in the background or invoking an alignment. Invoked alignments (Align Now, All) have a standard deviation of 0.0018 dB, and performing these will restart the random walk behavior. Partial alignments (Auto Align set to "Partial") have a standard deviation that is, coincidentally, also 0.0018 dBrms, and only occurs once every ten minutes. The standard deviation from full background alignment (Auto Align set to "Normal") is 0.015 dBrms; with these alignments on, there is no additional random walk behavior. (Keysight recommends setting alignments (Auto Align) to Normal in order to make the best measurements over long periods of time or in envi­ronments without very high temperature stability. For short term measurements in highly stable environments, setting alignments to Partial can give the best stability. Setting Alignments to Off is not recommended where stability matters.)
g. Slope error will nominally be well within the range of ±0.0004 × (P1 P2). P1 and P2 are defined in footnote e. h. A small additional error is possible. In FFT sweeps, this error is possible for spans under 4.01 kHz. For non-FFT
measurements, it is possible for RBWs of 3.9 kHz or less. The error is well within the range of ±0.0021 × (P1 ­P2) subject to a maximum of ±0.005 dB. (The maximum dominates for all but very small differences.) P1 and P2 are defined in footnote e.
Description Specifications Supplemental Information
Available Detectors Normal, Peak, Sample, Negative Peak,
Average
Average detector works on RMS, Voltage and Logarithmic scales
41
Page 42
UXA Signal Analyzer Dynamic Range
Dynamic Range
Gain Compression
Description Specifications Supplemental Information
1 dB Gain Compression Point (Two-tone)
20 to 40 MHz +2 dBm (nominal)
40 to 3.6 GHz +5 dBm (nominal)
3.6 to 26.5 GHz +10 dBm (nominal)
26.5 to 50 GHz 0 dBm (nominal)
Clipping (ADC Over-range)
Any signal offset 10 dBm
Signal offset > 5 times IF prefilter bandwidth and IF Gain set to Low
IF Prefilter Bandwidth
Zero Span or Sweep Type = FFT, –3 dB Bandwidth
abc
Maximum power at mixer LNP off
Low frequency exceptions
+12 dBm (nominal)
d
,
e
f
Swept
3.9 kHz <4.01 kHz 8.9 kHz
4.3 to 27 kHz <28.81 kHz 79 kHz
30 to 160 kHz <167.4 kHz 303 kHz
180 to 390 kHz <411.9 kHz 966 kHz
430 kHz to 8 MHz <7.99 MHz 10.9 MHz
, RBW =
a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to incorrectly measure
on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
b. Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally equal the specification
for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.
FFT Width = (nominal)
42
Page 43
UXA Signal Analyzer Dynamic Range
c. Reference level and off-screen performance: The reference level (RL) behavior differs from some earlier analyz-
ers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarith­mic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a mea­surement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation, compression, and display scale fidel­ity) and small signal effects (noise), the measurement results can change with RL changes when the input atten­uation is set to auto.
d. Mixer power level (dBm) = input power (dBm) input attenuation (dB). e. The ADC clipping level declines at low frequencies (below 50 MHz) when the LO feedthrough (the signal that
appears at 0 Hz) is within 5 times the prefilter bandwidth (see table) and must be handled by the ADC. For example, with a 300 kHz RBW and prefilter bandwidth at 966 kHz, the clipping level reduces for signal frequen­cies below 4.83 MHz. For signal frequencies below 2.5 times the prefilter bandwidth, there will be additional reduction due to the presence of the image signal (the signal that appears at the negative of the input signal fre­quency) at the ADC.
f. This table applies without Option FS1 or FS2, fast sweep. With Option FS1or FS2, which is a standard
option in the UXA, this table applies for sweep rates that are manually chosen to be the same as or slower than "traditional" sweep rates, instead of the much faster sweep rates, such as autocoupled sweep rates, available with FS1or FS2. Sweep rate is defined to be span divided by sweep time. If the sweep rate is 1.1 times RBW-squared, the table applies. Otherwise, compute an "effective RBW" = Span / (SweepTime × RBW). To determine the IF Prefilter Bandwidth, look up this effective RBW in the table instead of the actual RBW. For example, for RBW = 3 kHz, Span = 300 kHz, and Sweep time = 42 ms, we compute that Sweep Rate = 7.1 MHz/s, while RBW-squared is 9 MHz/s. So the Sweep Rate is < 1.1 times RBW-squared and the table applies; row 1 shows the IF Prefilter Bandwidth is nominally 8.9 kHz. If the sweep time is 1 ms, then the effective RBW computes to 100 kHz. This would result in an IF Prefilter Bandwidth from the third row, nominally 303 kHz.
43
Page 44
UXA Signal Analyzer Dynamic Range
Displayed Average Noise Level
Description Specifications Supplemental Information
Displayed Average Noise Level (DANL) without Noise Floor Extension
(mmW)
Option 544 or 550 LNP
3 to 10 Hz x –95 dBm (nominal)
10 to 100 Hz x –114 dBm (nominal)
100 Hz to 1 kHz x –128 dBm (nominal)
1 to 9 kHz x –136 dBm (nominal)
9 to 100 kHz x 141 dBm 141 dBm 144 dBm
100 kHz to 1 MHz x 150 dBm 150 dBm 154 dBm
1 to 10 MHz
10 MHz to 1.2 GHz x 153 dBm 152 dBm 155 dBm
1.2 to 2.1 GHz x 151 dBm 150 dBm 153 dBm
a
LNP on20 to 30°CFull range Typical
off
b
x 154 dBm 153 dBm 156 dBm
Input terminated Sample or Average detector Averaging type = Log 0 dB input attenuation IF Gain = High
1 Hz Resolution Bandwidth
Refer to the footnote for
Band Overlaps on page 17.
2.1 to 3 GHz x 150 dBm 149 dBm 152 dBm
3.0 to 3.6 GHz x 149 dBm 148 dBm 151 dBm
3.5 to 4.2 GHz x 145 dBm 142 dBm 148 dBm
3.5 to 4.2 GHz x 151 dBm 149 dBm 154 dBm
4.2 to 6.6 GHz x 144 dBm 142 dBm 148 dBm
4.2 to 6.6 GHz x 152 dBm 150 dBm 154 dBm
6.6 to 8.4 GHz x 147 dBm 145 dBm 149 dBm
6.6 to 8.4 GHz x 153 dBm 151 dBm 155 dBm
8.3 to 13.6 GHz x 147 dBm 145 dBm 149 dBm
8.3 to 13.6 GHz x 153 dBm 151 dBm 155 dBm
13.5 to 14 GHz x 144 dBm 142 dBm 148 dBm
13.5 to 14 GHz x 150 dBm
148 dBm 153 dBm
44
Page 45
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
14 to 17 GHz x 145 dBm 143 dBm 148 dBm
14 to 17 GHz x 151 dBm 149 dBm 153 dBm
17 to 22.5 GHz x 141 dBm 139 dBm 146 dBm
17 to 22.5 GHz x 149 dBm 147 dBm 152 dBm
22.5 to 26.5 GHz x 139 dBm 137 dBm 143 dBm
22.5 to 26.5 GHz x 146 dBm 145 dBm 150 dBm
26.4 to 30 GHz x 138 dBm 136 dBm 143 dBm
26.4 to 30 GHz x 146 dBm 144 dBm 150 dBm
30 to 34 GHz x 138 dBm 135 dBm 143 dBm
30 to 34 GHz x 146 dBm 144 dBm 150 dBm
33.9 to 37 GHz x 134 dBm 131 dBm 140 dBm
33.9 to 37 GHz x 142 dBm 139 dBm 148 dBm
37 to 40 GHz x 132 dBm 129 dBm 139 dBm
37 to 46 GHz x 141 dBm 138 dBm 146 dBm
40 to 49 GHz x 130 dBm 126 dBm 137 dBm
46 to 50 GHz x 139 dBm 136 dBm 145 dBm
49 to 50 GHz x 128 dBm 124 dBm 135 dBm
b
Additional DANL, IF Gain = Low
x x –164.5 dBm (nominal)
a. DANL for zero span and swept is measured in a 1 kHz RBW and normalized to the narrowest available RBW,
because the noise figure does not depend on RBW and 1 kHz measurements are faster.
b. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, better
compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto cou­pling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the powers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANLtotal = 10 × log (10^(DANLhigh/10) + 10^(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low set­tings.
45
Page 46
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Displayed Average Noise Level (DANL) without Noise Floor
Extension (RF/µW)
a
Option 508, 513, or 526 LNP
off
3 to 10 Hz
10 to 100 Hz
100 Hz to 1 kHz
1 to 9 kHz
9 to 100 kHz
100 kHz to 1 MHz
1 to 10 MHz
b
10 MHz to 1.2 GHz
1.2 to 2.1 GHz
x –100 dBm (nominal)
x –125 dBm (nominal)
x –130 dBm (nominal)
x –137 dBm (nominal)
x 141 dBm 141 dBm 146 dBm
x 150 dBm 150 dBm 155 dBm
x 155 dBm 152 dBm 157 dBm
x 155 dBm 153 dBm 156 dBm
x 153 dBm 152 dBm 155 dBm
Input terminated Sample or Average detector Averaging type = Log
Refer to the footnote for
Band Overlaps on page 17.
0 dB input attenuation IF Gain = High
1 Hz Resolution Bandwidth
LNP on20 to 30°CFull range Typical
2.1 to 3 GHz
3.0 to 3.6 GHz
3.5 to 4.2 GHz
3.6 to 4.2 GHz
3.6 to 3.7 GHz
x 152 dBm 151 dBm 153 dBm
x 151 dBm 149 dBm 152 dBm
x 149 dBm 147 dBm 152 dBm
x 154 dBm 152 dBm 155 dBm
x
See note
4.2 to 8.4 GHz x 150 dBm 148 dBm 152 dBm
4.2 to 8.4 GHz
8.3 to 13.6 GHz
8.3 to 13.6 GHz
13.5 to 16.9 GHz
13.5 to 16.9 GHz
16.9 to 20 GHz
16.9 to 20 GHz
x 149 dBm 147 dBm 151 dBm
x 145 dBm 143 dBm 147 dBm
x 143 dBm 140 dBm 146 dBm
x 155 dBm 153 dBm 156 dBm
x 155 dBm 153 dBm 156 dBm
x 152 dBm 150 dBm 155 dBm
x 151 dBm 149 dBm 154 dBm
c
46
Page 47
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
20.0 to 26.5 GHz
20.0 to 26.5 GHz
Additional DANL, IF Gain = Low
x 136 dBm 133 dBm 139 dBm
x 148 dBm 146 dBm 151 dBm
d
x x –164.5 dBm (nominal)
a. DANL for zero span and swept is measured in a 1 kHz RBW and normalized to the narrowest available RBW,
because the noise figure does not depend on RBW and 1 kHz measurements are faster.
b. DANL below 10 MHz is affected by phase noise around the LO feedthrough signal. Specifications apply with the
best setting of the Phase Noise Optimization control, which is to choose the “Best Close-in φ Noise" for frequen­cies below about 150 kHz, and “Best Wide Offset φ Noise" for frequencies above about 150 kHz.
c. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency
option 508, 513 or 526 and with firmware of version A.16.17 or later. Subject to these conditions, statistical observations show that performance nominally fits within the same range within the 3.6 to 3.7 GHz frequencies as within the next lower specified frequency range, but is not warranted.
d. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, bet-
ter compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto coupling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the powers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANLtotal = 10 × log (10^(DANLhigh/10) + 10^(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low set­tings.
47
Page 48
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Displayed Average Noise
95th Percentile (≈2σ)b
Level with Noise Floor Extension Improvement
(mmW)
Option 544 or 550 Preamp Off
Band 0, f > 20 MHz
a
Preamp On
d
10 dB 9 dB n/a
c
LNP On
Band 1 8 dB 9 dB 9 dB
Band 2 8 dB 8 dB 9 dB
Band 3 9 dB 8 dB 10 dB
Band 4 10 dB 8 dB 11 dB
Band 5 11 dB 8 dB 11 dB
Band 6 11 dB 7 dB 11 dB
Improvement for CW Signals
Improvement, Pulsed-RF Signals
e
f
3.5 dB (nominal)
10.8 dB (nominal)
Improvement, Noise-Like Signals 9.1 dB (nominal)
a. This statement on the improvement in DANL is based on the statistical observations of the error in the effective
noise floor after NFE is applied. That effective noise floor can be a negative or a positive power at any frequency. These 95th percentile values are based on the absolute value of that effective remainder noise power.
b. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the
factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
c. DANL of the preamp is specified with a 50Ω source impedance. Like all amplifiers, the noise varies with the
source impedance. When NFE compensates for the noise with an ideal source impedance, the variation in the remaining noise level with the actual source impedance is greatly multiplied in a decibel sense.
d. NFE does not apply to the low frequency sensitivity. At frequencies below about 1 MHz, the sensitivity is domi-
nated by phase noise surrounding the LO feedthrough. The NFE is not designed to improve that performance. At frequencies between 1 and 20 MHz the NFE effectiveness increases from nearly none to near its maximum.
e. Improvement in the uncertainty of measurement due to amplitude errors and variance of the results is modestly
improved by using NFE. The nominal improvement shown was evaluated for a 2 dB error with 250 traces aver­aged. For extreme numbers of averages, the result will be as shown in the "Improvement for Noise-like Signals" and DANL sections of this table.
f. Pulsed-RF signals are usually measured with peak detection. Often, they are also measured with many “max hold”
traces. When the measurement time in each display point is long compared to the reciprocal of the RBW, or the number of traces max held is large, considerable variance reduction occurs in each measurement point. When the variance reduction is large, NFE can be quite effective; when it is small, NFE has low effectiveness. For exam­ple, in Band 0 with 100 pulses per trace element, in order to keep the error within ±3 dB error 95% of the time, the signal can be 10.8 dB lower with NFE than without NFE.
48
Page 49
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Displayed Average Noise
95th Percentile (≈2σ)b
Level with Noise Floor Extension Improvement
(RF/µW)
Option 508, 513, or 526 Preamp Off
Band 0, f > 20 MHz
a
c
Preamp On
d
9 dB 10 dB
LNP On
n/a
Band 1 10 dB 9 dB 10 dB
Band 2 10 dB 10 dB 10 dB
Band 3 9 dB 9 dB 10 dB
Band 4 9 dB 8 dB 9 dB
Improvement for CW Signals
Improvement, Pulsed-RF Signals
e
f
3.5 dB (nominal)
10.8 dB (nominal)
Improvement, Noise-Like Signals 9.1 dB (nominal)
a. This statement on the improvement in DANL is based on the statistical observations of the error in the effective
noise floor after NFE is applied. That effective noise floor can be a negative or a positive power at any frequency. These 95th percentile values are based on the absolute value of that effective remainder noise power.
b. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the
factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
c. DANL of the preamp is specified with a 50Ω source impedance. Like all amplifiers, the noise varies with the
source impedance. When NFE compensates for the noise with an ideal source impedance, the variation in the remaining noise level with the actual source impedance is greatly multiplied in a decibel sense.
d. NFE does not apply to the low frequency sensitivity. At frequencies below about 1 MHz, the sensitivity is domi-
nated by phase noise surrounding the LO feedthrough. The NFE is not designed to improve that performance. At frequencies between 1 and 20 MHz the NFE effectiveness increases from nearly none to near its maximum.
e. Improvement in the uncertainty of measurement due to amplitude errors and variance of the results is modestly
improved by using NFE. The nominal improvement shown was evaluated for a 2 dB error with 250 traces aver­aged. For extreme numbers of averages, the result will be as shown in the "Improvement for Noise-like Signals" and DANL sections of this table.
f. Pulsed-RF signals are usually measured with peak detection. Often, they are also measured with many “max hold”
traces. When the measurement time in each display point is long compared to the reciprocal of the RBW, or the number of traces max held is large, considerable variance reduction occurs in each measurement point. When the variance reduction is large, NFE can be quite effective; when it is small, NFE has low effectiveness. For exam­ple, in Band 0 with 100 pulses per trace element, in order to keep the error within ±3 dB error 95% of the time, the signal can be 10.8 dB lower with NFE than without NFE.
49
Page 50
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Displayed Average Noise
95th Percentile (≈2σ)
b
Level with Noise Floor Extension (mmW)
Option 544 or 550 Preamp Off
Band 0, f >20 MHz
a
Preamp On
e
163 dBm 174 dBm n/a
cd
LNP On
Band 1 157 dBm 173 dBm 163 dBm
Band 2 159 dBm 174 dBm 164 dBm
Band 3 160 dBm 174 dBm 164 dBm
Band 4 155 dBm 171 dBm 163 dBm
Band 5 156 dBm 169 dBm 162 dBm
Band 6 148 dBm 161 dBm 156 dBm
a. DANL with NFE is unlike DANL without NFE. It is based on the statistical observations of the error in the effec-
tive noise floor after NFE is applied. That effective noise floor can be a negative or a positive power at any fre­quency. These 95th percentile values are based on the absolute value of that effective remainder noise power.
b. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the
factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
c. DANL of the preamp is specified with a 50Ω source impedance. Like all amplifiers, the noise varies with the
source impedance. When NFE compensates for the noise with an ideal source impedance, the variation in the remaining noise level with the actual source impedance is greatly multiplied in a decibel sense.
d. NFE performance can give results below theoretical levels of noise in a termination resistor at room tempera-
ture, about –174 dBm/Hz. this is intentional and usually desirable. NFE is not designed to report the noise at the input of the analyzer; it reports how much more noise is at the input of the analyzer than was present in its alignment. And its alignment includes the noise of a termination at room temperature. So it can often see the added noise below the theoretical noise. Furthermore, DANL is defined with log averaging in a 1 Hz RBW, which is about 2.3 dB lower than the noise density (power averaged) in a 1 Hz noise bandwidth.
e. NFE does not apply to the low frequency sensitivity. At frequencies below about 1 MHz, the sensitivity is domi-
nated by phase noise surrounding the LO feedthrough. The NFE is not designed to improve that performance. At frequencies between 1 and 20 MHz the NFE effectiveness increases from nearly none to near its maximum.
50
Page 51
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Displayed Average Noise
95th Percentile (≈2σ)b
Level with Noise Floor Extension (RF/µW)
Option 508, 513, or 526 Preamp Off Preamp
Band 0, f >20 MHz
a
LNP On
cd
On
e
163 dBm 174 dBm n/a
Band 1 162 dBm 174 dBm 166 dBm
Band 2 162 dBm 174 dBm 167 dBm
Band 3 159 dBm 172 dBm 165 dBm
Band 4 148 dBm 166 dBm 162 dBm
a. DANL with NFE is unlike DANL without NFE. It is based on the statistical observations of the error in the effective
noise floor after NFE is applied. That effective noise floor can be a negative or a positive power at any frequency. These 95th percentile values are based on the absolute value of that effective remainder noise power.
b. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the
factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
c. DANL of the preamp is specified with a 50Ω source impedance. Like all amplifiers, the noise varies with the
source impedance. When NFE compensates for the noise with an ideal source impedance, the variation in the remaining noise level with the actual source impedance is greatly multiplied in a decibel sense.
d. NFE performance can give results below theoretical levels of noise in a termination resistor at room temperature,
about –174 dBm/Hz. this is intentional and usually desirable. NFE is not designed to report the noise at the input of the analyzer; it reports how much more noise is at the input of the analyzer than was present in its alignment. And its alignment includes the noise of a termination at room temperature. So it can often see the added noise below the theoretical noise. Furthermore, DANL is defined with log averaging in a 1 Hz RBW, which is about 2.3 dB lower than the noise density (power averaged) in a 1 Hz noise bandwidth.
e. NFE does not apply to the low frequency sensitivity. At frequencies below about 1 MHz, the sensitivity is domi-
nated by phase noise surrounding the LO feedthrough. The NFE is not designed to improve that performance. At frequencies between 1 and 20 MHz the NFE effectiveness increases from nearly none to near its maximum.
51
Page 52
UXA Signal Analyzer Dynamic Range
Spurious Responses
Description Specifications Supplemental Information
Spurious Responses
Preamp Off
a
(see Band Overlaps on page 17)
Residual Responses
b
200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies
100 dBm
100 dBm (nominal)
Image Responses
Tuned Freq (f) Excitation Freq
Mixer Level
c
Response Response (typical)
RF/μW mmW RF/μW mmW
10 MHz to 26.5 GHz f+45 MHz 10 dBm −80 dBc 80 dBc 105 dBc 104 dBc
26.5 GHz to 50 GHz f+45 MHz 30 dBm 90 dBc
(nominal)
10 MHz to 3.6 GHz f+10245 MHz 10 dBm −80 dBc 80 dBc 106 dBc 106 dBc
10 MHz to 3.6 GHz f+645 MHz 10 dBm −80 dBc 80 dBc 101 dBc 101 dBc
3.5 to 13.6 GHz f+645 MHz 10 dBm
78 dBc
d
80 dBc 86 dBc 106 dBc
13.5 to 17.1 GHz f+645 MHz 10 dBm −74 dBc 80 dBc 84 dBc 106 dBc
17.0 to 22 GHz f+645 MHz 10 dBm −70 dBc 80 dBc 78 dBc 101 dBc
22 to 26.5 GHz f+645 MHz 10 dBm −66 dBc 70 dBc 75 dBc 102 dBc
26.5 to 34.5 GHz f+645 MHz 30 dBm 70 dBc −98 dBc
34.4 to 42 GHz f+645 MHz 30 dBm 60 dBc −84 dBc
42 to 50 GHz f+645 MHz 30 dBm 75 dBc
(nominal)
Other Spurious Responses
Mixer Level
c
Response
Carrier Frequency 26.5 GHz
First RF Order (f 10 MHz from carrier)
e
10 dBm 80 dBc + 20 ×
f
log(N
)
Includes IF feedthrough, LO harmonic mixing responses
Higher RF Order
g
(f 10 MHz from carrier)
40 dBm
80 dBc + 20 ×
log(Nf)
Includes higher order mixer responses
52
Page 53
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Carrier Frequency >26.5 GHz
First RF Order
e
30 dBm 90 dBc (nominal)
(f 10 MHz from carrier)
Higher RF Order
g
30 dBm 90 dBc (nominal)
(f 10 MHz from carrier)
LO-Related Spurious Responses
(Offset from carrier 200 Hz to 10 MHz)
Line-Related Spurious Responses
10 dBm
68 dBc
f
log(N
)
+ 20 ×
72 dBc + 20 × log(N (typical)
73 dBc
h
+ 20 x log(Nf)
hd
(nominal)
a. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, per-
formance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level Input Attenuation + Preamp Gain.
b. Input terminated, 0 dB input attenuation. c. Mixer Level = Input Level Input Attenuation. d. The following additional spurious responses specifications are supported from 8 to 12 GHz at 20 to 30º C. Image
responses are warranted to be better than –81 dBc, with 95th percentile performance of –87 dBc. LO-related spurious responses are warranted to be better than –83 dBc at 1 to 10 MHz offsets from the carrier, with phase noise optimization set to Best Wide-Offset.
e. With first RF order spurious products, the indicated frequency will change at the same rate as the input, with
higher order, the indicated frequency will change at a rate faster than the input. f. N is the LO multiplication factor. g. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change at a rate faster than
the input frequency. h. Nominally 40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.
f
)
53
Page 54
UXA Signal Analyzer Dynamic Range
Second Harmonic Distortion
Description Specifications Supplemental Information
Second Harmonic Distortion (mmW)
bc
Option 544 or 550 Mixer
Level
Source Frequency LNP off LNP on
Distortion
a
SHI
Distortion (nominal)
SHI (nominal)
10 MHz to 1.8 GHz
d
x 15 dBm 60 dBc +45 dBm
1.75 to 2.5 GHz x 15 dBm 95 dBc +80 dBm
1.75 to 3 GHz x 15 dBm 72 dBc +57 dBm
3 to 6.5 GHz x 15 dBm 77 dBc +62 dBm
2.5 to 5 GHz x 15 dBm 99 dBc +84 dBm
6.5 to 10 GHz x 15 dBm 70 dBc +55 dBm
10 to 13.25 GHz x 15 dBm 62 dBc +47 dBm
5 to 13.5 GHz x –15 dBm 105 dBc +90 dBm
13.25 to 25 GHz x 15 dBm −65 dBc +50 dBm
13.25 to 25 GHz x 15 dBm 105 dBc +90 dBm
a. Mixer level = Input Level Input Attenuation b. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic
distortion level relative to the mixer tone in dBc.
c. Performance >3.6 GHz improves greatly with standard Option LNP enabled. d. These frequencies are half of the band edge frequencies. See Band Overlaps on page 17.
54
Page 55
UXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Second Harmonic Distortion (RF/µW)
bc
Option 508, 513, or 526 Mixer
Level
Distortion
a
SHI
Source Frequency LNP
off
10 MHz to 1.8 GHz
d
1.75
to 3 GHz
d
LNP on
x –15 dBm –60 dBc +45 dBm
x –15 dBm –77 dBc +62 dBm
1.75 to 2.5 GHz x –15 dBm –95 dBc +80 dBm
3 to 6.5 GHz x 15 dBm –77 dBc +62 dBm
2.5 to 4 GHz x –15 dBm –101 dBc +86 dBm
6.5 to 10 GHz x 15 dBm –70 dBc +55 dBm
10 to 13.25 GHz x 15 dBm –62 dBc +47 dBm
4 to 13.25 GHz x –15 dBm –105 dBc +90 dBm
a. Mixer level = Input Level Input Attenuation b. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic dis-
tortion level relative to the mixer tone in dBc.
c. Performance >3.6 GHz improves greatly with standard Option LNP enabled. d. These frequencies are half of the band edge frequencies. See Band Overlaps on page 17.
55
Page 56
UXA Signal Analyzer Dynamic Range
Third Order Intermodulation
Description Specifications Supplemental Information
Third Order Intermodulation
(Tone separation > 5 times IF Prefilter Bandwidth Sweep rate reduced
a
b
Refer to the footnote for
Band Overlaps on page 17.
Refer to footnote
e
for the "Extrapolated
Distortion".
Verification conditionsc,
d
LNP off
20 to 30°C
)
Intercept
f
Intercept (typical)
10 to 300 MHz +13.5 dBm +16 dBm
300 to 600 MHz +18 dBm +21 dBm
600 MHz to 1.5 GHz +20 dBm +22 dBm
1.5 to 3.6 GHz +21 dBm +23 dBm
RF/μWmmW RF/μWmmW
3.5 to 8.4 GHz +19 dBm +16 dBm +23 dBm +23 dBm
3.6 to 3.7 GHz
See note
g
8.3 to 13.6 GHz +19 dBm +16 dBm +23 dBm +23 dBm
13.5 to 17.1 GHz +18 dBm +13 dBm +23 dBm +17 dBm
17.0 to 26.5 GHz +19 dBm +13 dBm +24 dBm +20 dBm
26.4 to 34.5 GHz +13 dBm +18 dBm
34.4 to 50 GHz +7 dBm +12 dBm
Full temperature range
10 to 300 MHz +12.5 dBm
300 to 600 MHz +17 dBm
600 MHz to 1.5 GHz +18 dBm
1.5 to 3.6 GHz +19 dBm
3.5 to 13.6 GHz +17 dBm +13 dBm
13.5 to 26.5 GHz +17 dBm +10 dBm
26.4 to 34.5 GHz +11 dBm
34.4 to 50 GHz +3 dBm
56
Page 57
UXA Signal Analyzer Dynamic Range
a. See the IF Prefilter Bandwidth table in the Gain Compression specifications on page 42. When the tone
separation condition is met, the effect on TOI of the setting of IF Gain is negligible. TOI is verified with IF Gain set to its best case condition, which is IF Gain = Low.
b. Autocoupled sweep rates using Option FS1 or FS2 are often too fast for excellent TOI performance. A
sweep rate of 1.0 × RBW IF Prefilter setting. Footnote
2
is often suitable for best TOI performance, because of how it affects the
a
links to the details.
c. TOI is verified with two tones, each at 16 dBm at the mixer, spaced by 100 kHz. d. When LNP is on, the low noise path is enabled, which causes third-order intercept (TOI) to decrease to the
same extent as that to which the DANL decreases. Therefore, LNP on does not substantially change the TOI to-noise dynamic range.
e. Traditionally, the distortion components from two tones, each at 30 dBm, were given as specifications.
When spectrum analyzers were not as good as they are now, these distortion products were easily mea­sured. As spectrum analyzers improved, the measurement began to be made at higher levels and extrapo­lated to the industry-standard 30 dBm test level. This extrapolation was justified by excellent conformance with the third-order model, wherein distortion in dBc was given by twice the difference between the test tone level and the intercept, both given in dBm units. In UXA, we no longer make that extrapolation in this Specifications Guide. One reason we don’t extrapolate is that the model does not work as well as it had with higher levels of dis­tortion in older and less capable analyzers, so that the computation is misleading; distortions at low test lev­els will be modestly higher than predicted from the formula. The second reason is that the distortion components are so small as to be unmeasurable, and thus highly irrelevant, in many cases. Please note the slope of the third-order intermodulation lines in the graphs that follow. The slope differs somewhat from that of the ideal third-order model, which would have a slope of 2.
f. Intercept = TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distortion/2)
where distortion is the relative level of the distortion tones in dBc.
g. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with fre-
quency option 508, 513 or 526 and with firmware of version A.16.17 or later. Subject to these conditions, statistical observations show that performance nominally fits within the same range within the 3.6 to 3.7 GHz frequencies as within the next lower specified frequency range, but is not warranted.
57
Page 58
UXA Signal Analyzer Dynamic Range
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot]
58
Page 59
UXA Signal Analyzer Dynamic Range
Phase Noise
Description Specifications Supplemental Information
Phase Noise
(Center Frequency = 1 GHz
c
Best-case Optimization Internal Reference
d
)
Noise Sidebands
b
a
Offset Frequency 20 to 30°CFull range
10 Hz
Wide Ref Loop BW
See note
e
93 dBc/Hz (typical)
e
Narrow Ref Loop BW 88 dBc/Hz (nominal)
100 Hz 107 dBc/Hz 107 dBc/Hz 112 dBc/Hz (typical)
1 kHz 124 dBc/Hz 123 dBc/Hz 127 dBc/Hz (typical)
10 kHz 134 dBc/Hz 132 dBc/Hz 135 dBc/Hz (typical)
100 kHz 139 dBc/Hz 138 dBc/Hz 141 dBc/Hz (typical)
f
1 MHz
145 dBc/Hz 144 dBc/Hz 146 dBc/Hz (typical)
10 MHz 155 dBc/Hz 154 dBc/Hz 157 dBc/Hz (typical)
a. Noise sidebands around a signal are dominantly phase noise sidebands. With the extremely low phase noise of
the UXA, AM sidebands are non-negligible contributors. These specifications apply to the sum of the AM and
PM sidebands. b. The nominal performance of the phase noise at center frequencies different than the one at which the specifications apply (1 GHz) depends on the center frequency, band and the offset. For low offset frequencies,
offsets well under 100 Hz, the phase noise changes by 20 × log[(f+0.3225)/1.3225]. For mid-offset frequencies
such as 50 kHz, phase noise changes as 20 × log[(f+5.1225)/6.1225]. In both expressions, f is the larger of 0.5
and the carrier frequency in GHz units. For wide offset frequencies, offsets above about 500 kHz, phase noise
increases as 20 × log(N). N is the LO Multiple as shown on page 9. c. Noise sidebands for lower offset frequencies, for example, 10 kHz, apply with phase noise optimization (PNO)
set to Balance Noise and Spurs. In some frequency settings of the analyzer, a spurious response 60 to 180 MHz
offset from the carrier may be present unless the phase locked loop behavior is changed in a way that increases
the phase noise. This tradeoff is controlled such that the spurs are better than –70 dBc, at the expense of up to
7 dB increase in phase noise within ±1 octave of 1 MHz offset for those settings where this spurious is likely to
be visible. To eliminate this phase noise degradation in exchange for the aforementioned spurs, Best Close-in
Noise should be used. When the setting is changed to Best Spurs, the maximum spurious response is held to
–90 dBc, but the phase noise at all center frequencies is degraded by up to approximately 12 dB from the best
possible setting, mostly within ±1 octave of an offset of 400 kHz from the carrier. Noise sidebands for higher
offset frequencies, for example, 1 MHz, apply with the phase noise optimization set to Best Wide-Offset Noise.
59
Page 60
UXA Signal Analyzer Dynamic Range
d. Specifications are given with the internal frequency reference. The phase noise at offsets below 100 Hz is
impacted or dominated by noise from the reference. Thus, performance with external references will not follow
the curves and specifications. When using an external reference with superior phase noise, we recommend set-
ting the external reference phase-locked-loop bandwidth to wide (60 Hz), to take advantage of that superior
performance. When using an external reference with inferior phase noise performance, we recommend setting
that bandwidth to narrow (15 Hz). In these relationships, inferior and superior phase noise are with respect to
–134 dBc/Hz at 30 Hz offset from a 10 MHz reference. Because most reference sources have phase noise
behavior that falls off at a rate of 30 dB/decade, this is usually equivalent to –120 dBc/Hz at 10 Hz offset. e. Keysight measures 100% of the signal analyzers for phase noise at 10 Hz offset from a 1 GHz carrier in the fac-
tory production process. This measurement requires a signal of exceptionally low phase noise that is character-
ized with specialized processes. It is impractical for field and customer use. Because field verification is
impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this "typical"
specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical. Like all
typical specifications, there is no guardbanding for measurement uncertainty. The factory test line limit is con-
sistent with a warranted specification of –89 dBc/Hz. f. Analyzer-contributed phase noise at the low levels of this offset requires advanced verification techniques
because broadband noise would otherwise cause excessive measurement error. Keysight uses a high level low
phase noise CW test signal and sets the input attenuator so that the mixer level will be well above the normal
top-of-screen level (-10 dBm) but still well below the 1 dB compression level. This improves dynamic range
(carrier to broadband noise ratio) at the expense of amplitude uncertainty due to compression of the phase
noise sidebands of the analyzer. (If the mixer level were increased to the "1 dB Gain Compression Point," the
compression of a single sideband is specified to be 1 dB or lower. At lower levels, the compression falls off rap-
idly. The compression of phase noise sidebands is substantially less than the compression of a single-sideband
test signal, further reducing the uncertainty of this technique.) Keysight also measures the broadband noise of
the analyzer without the CW signal and subtracts its power from the measured phase noise power. The same
techniques of overdrive and noise subtraction can be used in measuring a DUT, of course.
60
Page 61
UXA Signal Analyzer Dynamic Range
Nominal Phase Noise at Different Carrier Frequencies, Phase Noise Optimized vs Offset Frequency [Plot]
61
Page 62
UXA Signal Analyzer Dynamic Range
Nominal Phase Noise at Different Phase Noise/Spurs Optimization [Plot]
62
Page 63
UXA Signal Analyzer Power Suite Measurements
Power Suite Measurements
The specifications for this section apply only to instruments with Frequency Option 508, 513, or
526.
Description Specifications Supplemental Information
Channel Power
Amplitude Accuracy
Case: Radio Std = 3GPP W-CDMA, or IS-95
Absolute Power Accuracy
(20 to 30°C, Attenuation = 10 dB)
a. See “Absolute Amplitude Accuracy” on page 34. b. See “Frequency and Time” on page 17. c. Expressed in dB.
Description Specifications Supplemental Information
Occupied Bandwidth
Frequency Accuracy ±(Span/1000) (nominal)
±0.61 dB
Absolute Amplitude Accuracy Power Bandwidth Accuracy
±0.19 dB (95th percentile)
a
+
bc
63
Page 64
UXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Adjacent Channel Power (ACP)
Case: Radio Std = None
Accuracy of ACP Ratio (dBc)
Accuracy of ACP Absolute Power (dBm or dBm/Hz)
Accuracy of Carrier Power (dBm), or Carrier Power PSD (dBm/Hz)
Passband Width
e
Case: Radio Std = 3GPP W-CDMA
Display Scale Fidelity
Absolute Amplitude Accuracy Power Bandwidth Accuracy
Absolute Amplitude Accuracy Power Bandwidth Accuracy
3 dB
(ACPR; ACLR)
a
b
+
cd
b
+
cd
f
Minimum power at RF Input −36 dBm (nominal)
ACPR Accuracy
g
RRC weighted, 3.84 MHz noise bandwidth, method RBW
Radio Offset Freq
MS (UE) 5 MHz ±0.08 dB At ACPR range of 30 to 36 dBc with optimum
mixer level
h
MS (UE) 10 MHz ±0.09 dB At ACPR range of 40 to 46 dBc with optimum
mixer level
i
BTS 5 MHz ±0.22 dB At ACPR range of 42 to 48 dBc with optimum
mixer level
j
BTS 10 MHz ±0.18 dB At ACPR range of 47 to 53 dBc with optimum
i
k
BTS 5 MHz ±0.10 dB
mixer level
At 48 dBc non-coherent ACPR
Dynamic Range RRC weighted, 3.84 MHz noise
bandwidth
m
Noise Correction
l
Offset Freq
Method
ACLR (typical)
Optimum MLn (Nominal)
Off 5 MHz Filtered IBW 81 dB 8 dBm
Off 5 MHz Fast 81 dB 8 dBm
Off 10 MHz Filtered IBW 87 dB 4 dBm
On 5 MHz Filtered IBW −82.5 dB 8 dBm
On 10 MHz Filtered IBW 89 dB 4 dBm
64
Page 65
UXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
RRC Weighting Accuracy
White noise in Adjacent Channel TOI-induced spectrum rms CW error
o
0.00 dB nominal
0.001 dB nominal
0.012 dB nominal
a. The effect of scale fidelity on the ratio of two powers is called the relative scale fidelity. The scale fidelity speci-
fied in the Amplitude section is an absolute scale fidelity with –35 dBm at the input mixer as the reference point.
The relative scale fidelity is nominally only 0.01 dB larger than the absolute scale fidelity. b. See Amplitude Accuracy and Range section. c. See Frequency and Time section. d. Expressed in decibels. e. An ACP measurement measures the power in adjacent channels. The shape of the response versus frequency of
those adjacent channels is occasionally critical. One parameter of the shape is its 3 dB bandwidth. When the
bandwidth (called the Ref BW) of the adjacent channel is set, it is the 3 dB bandwidth that is set. The passband
response is given by the convolution of two functions: a rectangle of width equal to Ref BW and the power
response versus frequency of the RBW filter used. Measurements and specifications of analog radio ACPs are
often based on defined bandwidths of measuring receivers, and these are defined by their 6 dB widths, not
their 3 dB widths. To achieve a passband whose 6 dB width is x, set the Ref BW to be x 0.572 × RBW. f. Most versions of adjacent channel power measurements use negative numbers, in units of dBc, to refer to the
power in an adjacent channel relative to the power in a main channel, in accordance with ITU standards. The
standards for W-CDMA analysis include ACLR, a positive number represented in dB units. In order to be consis-
tent with other kinds of ACP measurements, this measurement and its specifications will use negative dBc
results, and refer to them as ACPR, instead of positive dB results referred to as ACLR. The ACLR can be deter-
mined from the ACPR reported by merely reversing the sign. g. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distor-
tion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst
case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this spec-
ifications table, the optimum mixer drive level for accuracy is approximately −37 dBm − (ACPR/3), where the
ACPR is given in (negative) decibels. h. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the
required 33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is
22 dBm, so the input attenuation must be set as close as possible to the average input power (22 dBm).
For example, if the average input power is −6 dBm, set the attenuation to 16 dB. This specification applies for
the normal 3.5 dB peak-to-average ratio of a single code. Note that, if the mixer level is set to optimize dynamic
range instead of accuracy, accuracy errors are nominally doubled. i. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of
14 dBm.
j. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B
Base Transmission Station (BTS) within 3 dB of the required 45 dBc ACPR. This optimum mixer level is 18
dBm, so the input attenuation must be set as close as possible to the average input power − (−18 dBm). For
example, if the average input power is 6 dBm, set the attenuation to 12 dB. This specification applies for the
normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1. Note that, if the mixer level is set to
optimize dynamic range instead of accuracy, accuracy errors are nominally doubled. k. Accuracy can be excellent even at low ACPR levels assuming that the user sets the mixer level to optimize the
dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the
UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contribution of
analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity
errors. This incoherent addition case is commonly used in the industry and can be useful for comparison of
analysis equipment, but this incoherent addition model is rarely justified. This derived accuracy specification is
based on a mixer level of 14 dBm.
65
Page 66
UXA Signal Analyzer Power Suite Measurements
l. The dynamic range shown with Noise Correction = Off applies with Noise Floor Extension On. (Noise Correction
is the process within the measurement of making a calibration of the noise floor at the exact analyzer settings
used for the measurement. Noise Floor Extension is the factory calibration of the noise floor.) m. Keysight measures 100% of the signal analyzers for dynamic range in the factory production process. This mea-
surement requires a near-ideal signal, which is impractical for field and customer use. Because field verification
is impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this “typical”
specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical.
The ACPR dynamic range is verified only at 2 GHz, where Keysight has the near-perfect signal available. The
dynamic range is specified for the optimum mixer drive level, which is different in different instruments and dif-
ferent conditions. The test signal is a 1 DPCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty. n. ML is Mixer Level, which is defined to be the input signal level minus attenuation. o. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the
passband shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This
footnote discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of
the RBW used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommo-
date the RBW filter. The effectiveness of this compensation is summarized in three ways:
White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a
spectrum that is flat across its width.
TOIinduced spectrum: If the spectrum is due to thirdorder intermodulation, it has a distinctive shape. The
computed errors of the compensated filter are 0.001 dB for the 100 kHz RBW used for UE testing with the
IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing with the Filtered IBW method. The
worst error for RBWs between 27 and 390 kHz is 0.05 dB for a 330 kHz RBW filter.
rms CW error: This error is a measure of the error in measuring a CWlike spurious component. It is evaluated
by computing the root of the mean of the square of the power error across all frequencies within the adjacent
channel. The computed rms error of the compensated filter is 0.012 dB for the 100 kHz RBW used for UE test-
ing with the IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing. The worst error for
RBWs between 27 kHz and 470 kHz is 0.057 dB for a 430 kHz RBW filter.
Description Specifications Supplemental Information
Multi-Carrier Adjacent Channel Power
Case: Radio Std = 3GPP W-CDMA RRC weighted, 3.84 MHz noise bandwidth, Noise
Correction (NC) on
ACPR Accuracy (4 carriers)
Radio Offset
Coher
a
UUT ACPR Range
MLOpt
b
BTS 5 MHz no ±0.09 dB 42 to 48 dB 15 dBm
a. Coher = no means that the specified accuracy only applies when the distortions of the device under test are not
coherent with the third-order distortions of the analyzer. Incoherence is often the case with advanced multi-carrier amplifiers built with compensations and predistortions that mostly eliminate coherent third-order effects in the amplifier.
b. Optimum mixer level (MLOpt). The mixer level is given by the average power of the sum of the four carriers
minus the input attenuation.
66
Page 67
UXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Power Statistics CCDF
Histogram Resolution
a
0.01 dB
a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power
envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.
Description Specifications Supplemental Information
Burst Power
Methods Power above threshold
Power within burst width
Results Output power, average
Output power, single burst Maximum power Minimum power within burst Burst width
Description Specifications Supplemental Information
TOI (Third Order Intermodulation)
Measures TOI of a signal with two dominant tones
Results Relative IM tone powers (dBc)
Absolute tone powers (dBm)
Intercept (dBm)
Description Specifications Supplemental Information
Harmonic Distortion
Maximum harmonic number 10th
Results Fundamental Power (dBm)
Relative harmonics power (dBc)
Total harmonic distortion (%, dBc)
67
Page 68
UXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Spurious Emissions Table-driven spurious signals;
search across regions
Case: Radio Std = 3GPP W-CDMA
Dynamic Range
a
, relative (RBW=1 MHz)
88.4 dB 90.7 dB (typical)
(1 to 3.0 GHz)
Sensitivity
b
, absolute (RBW=1 MHz)
88.5 dBm 90.5 dBm (typical)
(1 to 3.0 GHz)
Accuracy Attenuation = 10 dB
20 Hz to 3.6 GHz ±0.19 dB (95th percentile)
3.5 to 8.4 GHz ±1.13 dB (95th percentile)
8.3 to 13.6 GHz ±1.50 dB (95th percentile)
a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression
point, which will degrade accuracy 1 dB.
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the
dynamic range at far offset from 1 dB compression mixer level and sensitivity.
68
Page 69
UXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Spectrum Emission Mask Table-driven spurious signals;
measurement near carriers
Case: Radio Std = cdma2000
Dynamic Range, relative
(750 kHz offset
ab
)
Sensitivity, absolute
(750 kHz offset
c
)
Accuracy
(750 kHz offset)
d
Relative
Absolute
e
(20 to 30°C)
Case: Radio Std = 3GPP W−CDMA
Dynamic Range, relative (2.515 MHz offset
ad
)
Sensitivity, absolute
(2.515 MHz offset
c
)
Accuracy
(2.515 MHz offset)
d
Relative
84.8 dB 88.1 dB (typical)
103.7 dBm 105.7 dBm (typical)
±0.06 dB
±0.62 dB ±0.20 dB (95th percentile 2σ)
86.7 dB 91.2 dB (typical)
103.7 dBm 105.7 dBm (typical)
±0.08 dB
Absolute
e
±0.62 dB ±0.20 dB (95th percentile 2σ)
(20 to 30°C)
a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The
dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about 18 dBm. Mixer level is
defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is
tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz.
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for
spectrum emission levels in the offsets that are well above the dynamic range limitation.
e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See
“Absolute Amplitude Accuracy” on page 34 for more information. The numbers shown are for 0 to 3.6
GHz, with attenuation set to 10 dB.
69
Page 70
UXA Signal Analyzer Options
Options
The following options and applications affect instrument specifications.
Standard Option CR3: Connector Rear, second IF Out
Standard Option EXM: External mixing
Standard Option LNP: Low Noise Path
Standard Option MPB: Preselector bypass
Standard Option NFE: Noise floor extension, instrument alignment
Option 508: Frequency range, 2 Hz to 8.4 GHz
Option 513: Frequency range, 2 Hz to 13.6 GHz
Option 526: Frequency range, 2 Hz to 26.5 GHz
Option 544: Frequency range, 2 Hz to 44 GHz
Option 550: Frequency range, 2 Hz to 50 GHz
Option ALV: Auxiliary Log Video output
Option B25: Analysis bandwidth, 25 MHz
Option B40: Analysis bandwidth, 40 MHz
Option B2X: Analysis bandwidth, 255 MHz
Option B5X: Analysis bandwidth, 510 MHz
Option C35: APC 3.5 mm connector (for Freq Option 526 only)
Option CRP: Connector Rear, arbitrary IF Out
Option EA3: Electronic attenuator, 3.6 GHz
Option EMC: Precompliance EMC Features
Option P08: Preamplifier, 8.4 GHz
Option P13: Preamplifier, 13.6 GHz
Option P26: Preamplifier, 26.5 GHz
Option P44: Preamplifier, 44 GHz
Option P50: Preamplifier, 50 GHz
Option RT1: Real-time analysis up to the maximum analysis bandwidth, basic detection
Option RT2: Real-time analysis up to the maximum analysis bandwidth, optimum detection
Option RTS: Real-time I/Q data streaming
Option FBP Full Bypass Path
Option FT1: Frequency mask trigger, basic detection
70
Page 71
UXA Signal Analyzer Options
Option FT2: Frequency mask trigger, optimum detection
Option H1G 1 GHz analysis bandwidth
Option YAV: Y-Axis Video output
N9063EM0E: Analog Demod measurement application
N9067EM0E: Pulse measurement application
N9068EM0E: Phase Noise measurement application
N9069EM0E: Noise Figure measurement application
N9071EM0E: GSM/EDGE/EDGE Evolution measurement application
N9073EM0E/EM1E: WCDMA/HSPA/HSPA+ measurement application
N9077EM0E/EM1E: WLAN measurement application
N9080EM0E: LTE/LTE-Advanced FDD measurement application
N9081EM0E: Bluetooth measurement application
N9082EM0E: LTE/LTE-Advanced TDD measurement application
N9083EM0E: Multi-Standard Radio measurement application
N9084EM0E: Short Range Communications measurement application
N9085EM0E: 5G NR measurement application
71
Page 72
UXA Signal Analyzer General
General
Description Specifications Supplemental Information
Calibration Cycle 1 year
Description Specifications Supplemental Information
Environmental
Indoor use
Temperature Range
Operating
Altitude 2,300 m0 to 55°C
Altitude = 4,600 m 0 to 47°C
Derating
Storage 40 to +70°C
Altitude 4,600 m (approx 15,000 feet)
Humidity
Relative humidity Type tested at 95%, +40°C
Description Specifications Supplemental Information
Environmental and Military Specifications
a
(non-condensing)
a. The maximum operating temperature derates linearly from altitude of 4,600 m to 2,300 m.
Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of Storage, Transportation and End-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
72
Page 73
UXA Signal Analyzer General
Description Specification Supplemental Information
Acoustic Noise Values given are per ISO 7779 standard in the "Operator
Sitting" position
Ambient Temperature
< 35°C Nominally under 55 dBA Sound Pressure. 55 dBA is generally
considered suitable for use in quiet office environments.
35°C Nominally under 65 dBA Sound Pressure. 65 dBA is generally
considered suitable for use in noisy office environments. (The fan speed, and thus the noise level, increases with increasing ambient temperature.)
73
Page 74
UXA Signal Analyzer General
Description Specification Supplemental Information
Power Requirements
Low Range
Voltage 100 /120 V ± 10% operating range
Frequency 50/60/400 Hz
High Range
Voltage 220/240 V ± 10% operating range
Frequency 50/60 Hz
Power Consumption, On 850 W (Maximum) 470 W (typical)
Power Consumption, Standby 25 W Standby power is supplied to both the
CPU and the frequency reference oscillator.
The UXA has autoranging line voltage input. Before switching on the instrument, be sure the supply voltage is within the specified range and voltage fluctuations do not exceed 10 percent of the nominal supply voltage.
Description Supplemental Information
Measurement Speed
Local measurement and display update rate
Remote measurement and LAN transfer rate
a
bc
bc
Nominal
10 ms
10.7 ms
Marker Peak Search 4.4 ms
Center Frequency Tune and Transfer (Band 0) 20 ms
Center Frequency Tune and Transfer (Bands 1-4) 48 ms
Measurement/Mode Switching 100 ms
a. Sweep Points = 101. b. Factory preset, fixed center frequency, RBW = 1 MHz, 10 MHz < span 600 MHz, stop frequency 3.6 GHz,
Auto Align Off. c. Phase Noise Optimization set to Fast Tuning, Display Off, 32 bit REAL, markers Off, single sweep, measured with
HP Z420(memory 120 Gb, Windows 7. Intel Xcon CPU E5-1620 3.6 GHz), Keysight I/O Libraries Suite Version
16.317914, one meter GPIB cable, Keysight GPIB Card.
74
Page 75
UXA Signal Analyzer General
Description Specifications Supplemental Information
Display
Resolution 1280 × 800 Capacitive multi-touch screen
Size 357 mm (14.1 in) diagonal (nominal)
Description Specifications Supplemental Information
Data Storage
Removable solid state drive (SSD) 80 GB total volume; 9 GB for user data,
available on separate partition.
Secured digital (SD) memory device For calibration data backup.
Description Specifications Supplemental Information
Weight Weight without options
Net 30.9 kg (68 lbs) (nominal)
Shipping 39.5 kg (87 lbs) (nominal)
Cabinet Dimensions Cabinet dimensions exclude front and rear
Height 280 mm (11 in)
Width 459 mm (18 in)
Length 500 mm (19.8 in)
protrusions.
75
Page 76
UXA Signal Analyzer Inputs/Outputs
Inputs/Outputs
Front Panel
Description Specifications Supplemental Information
RF Input
Connector
Standard Type-N female Frequency Option 508, 513, 526
2.4 mm male Frequency Option 544, 550
Option C35 3.5 mm male Frequency Option 526 only
Impedance 50Ω (nominal)
Description Specifications Supplemental Information
Probe Power
Voltage/Current +15 Vdc, ±7% at 0 to 150 mA (nominal)
12.6 Vdc, ±10% at 0 to 150 mA (nominal)
GND
Description Specifications Supplemental Information
USB Ports
Host (3 ports) Compliant with USB 2.0
Connector USB Type “A” female
Output Current
Port marked with Lightning Bolt, if any
Port not marked with Lightning Bolt
Description Specifications Supplemental Information
0.5 A
1.2 A (nominal)
External Mixing
Connector SMA female Standard. Refer to Chapter 4, “Standard
Option EXM - External Mixing”, on page 93 for more details.
76
Page 77
UXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Headphone Jack
Connector miniature stereo audio jack 3.5 mm (also known as "1/8 inch")
Output Power 90 mW per channel into 16Ω (nominal)
Rear Panel
Description Specifications Supplemental Information
10 MHz Out
Connector BNC female
Impedance 50Ω (nominal)
Output Amplitude 0 dBm (nominal)
Output Configuration AC coupled, sinusoidal
Frequency 10 MHz ×
(1 + frequency reference accuracy)
Description Specifications Supplemental Information
Ext Ref In
Connector BNC female Note: Analyzer noise sidebands and spurious
response performance may be affected by the quality of the external reference used. See
footnote within the Dynamic Range section on page 59.
Impedance 50Ω (nominal)
Input Amplitude Range
sine wave square wave
Input Frequency 1 to 50 MHz (nominal)
6
Lock range
±2 × 10 reference input frequency
of ideal external
5 to +10 dBm (nominal)
0.2 to 1.5 V peak-to-peak (nominal)
(selectable to 1 Hz resolution)
e
in the Phase Noise specifications
Description Specifications Supplemental Information
Sync Reserved for future use
Connector BNC female
77
Page 78
UXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Trigger Inputs
(Trigger 1 In, Trigger 2 In)
Connector BNC female
Impedance 10 kΩ (nominal)
Trigger Level Range 5 to +5 V 1.5 V (TTL) factory preset
Description Specifications Supplemental Information
Trigger Outputs
(Trigger 1 Out, Trigger 2 Out)
Connector BNC female
Impedance 50Ω (nominal)
Level 0 to 5 V (CMOS)
Description Specifications Supplemental Information
Monitor Output 1 VGA compatible
Either trigger source may be selected
Connector 15-pin mini D-SUB
Format XGA (60 Hz vertical sync rates, non-interlaced)
Analog RGB
Monitor Output 2
Mini DisplayPort
Description Specifications Supplemental Information
Analog Out
Connector BNC female
Impedance 50Ω (nominal)
78
Page 79
UXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Digital Bus This port allows the UXA to connect to the X-Com data recorder for data
Connector MDR-80
Description Specifications Supplemental Information
USB Ports
Host, Super Speed 2 ports
Compatibility USB 3.0
Connector USB Type “A” (female)
Output Current 0.9 A
Host, stacked with LAN 1 port
Compatibility USB 2.0
streaming (up to 255 MHz BW with Option RTS), and to the Keysight N5105 and N5106 products only. It is not available for general purpose use.
Connector USB Type “A” (female)
Output Current 0.5 A
Device 1 port
Compatibility USB 3.0
Connector USB Type “B” (female)
Description Specifications Supplemental Information
GPIB Interface
Connector IEEE-488 bus connector
GPIB Codes SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and
C28, DT1, L4, C0
Mode Controller or device
Description Specifications Supplemental Information
LAN TCP/IP Interface RJ45 Ethertwist 1000BaseT
79
Page 80
UXA Signal Analyzer Regulatory Information
Regulatory Information
This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010 3rd ed, and 664 respectively.
This product has been designed and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
This product is intended for indoor use.
The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives.
ccr.keysight@keysight.com
ICES/NMB-001 “This ISM device complies with Canadian ICES-001.”
ISM 1-A (GRP.1 CLASS A) This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.
The CSA mark is a registered trademark of the CSA International.
The Keysight email address is required by EU directives applicable to our product.
“Cet appareil ISM est conforme a la norme NMB du Canada.”
(CISPR 11, Clause 4)
The RCM mark is a registered trademark of the Australian Communications and Media Authority.
This symbol indicates separate collection for electrical and electronic equipment mandated under EU law as of August 13, 2005. All electric and electronic equipment are required to be separated from normal waste for disposal (Reference WEEE Directive 2002/96/EC).
China RoHS regulations include requirements related to packaging, and require compliance to China standard GB18455-2001.
This symbol indicates compliance with the China RoHS regulations for paper/fiberboard packaging.
South Korean Certification (KC) mark; includes the marking’s identifier code which follows this format:
MSIP-REM-YYY-ZZZZZZZZZZZZZZ.
80
Page 81
UXA Signal Analyzer Regulatory Information
EMC: Complies with the essential requirements of the European EMC Directive as well as current
editions of the following standards (dates and editions are cited in the Declaration of Conformity):
— IEC/EN 61326-1
— CISPR 11, Group 1, Class A
— AS/NZS CISPR 11
— ICES/NMB-001
This ISM device complies with Canadian ICES-001.
Cet appareil ISM est conforme a la norme NMB-001 du Canada.
This is a sensitive measurement apparatus by design and may have some performance loss (up to 25 dBm above the Spurious Responses, Residual specification of -100 dBm) when exposed to ambient continuous electromagnetic phenomenon in the range of 80 MHz -2.7 GHz when tested per IEC 61000-4-3.
South Korean Class A EMC declaration:
This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference. This EMC statement applies to the equipment only for use in business environment.
SAFETY: Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of
Conformity):
— IEC/EN 61010-1
— Canada: CSA C22.2 No. 61010-1
— USA: UL std no. 61010-1
81
Page 82
UXA Signal Analyzer Regulatory Information
Acoustic statement: (European Machinery Directive)
Acoustic noise emission LpA <70 dB
Operator position
Normal operation mode per ISO 7779
To fin d a cu rrent Declaration of Conformity for a specific Keysight product, go to:
http://www.keysight.com/go/conformity
82
Page 83
Keysight X-Series Signal Analyzer N9040B
Specification Guide
2 I/Q Analyzer, Standard
This chapter contains specifications for the I/Q Analyzer measurement application (Basic Mode).
83
Page 84
I/Q Analyzer, Standard Specifications Affected by I/Q Analyzer
Specifications Affected by I/Q Analyzer
Specification Name Information
Number of Frequency Display Trace Points (buckets)
Resolution Bandwidth See “Frequency” on page 85 in this chapter.
Video Bandwidth Not available.
Clipping-to-Noise Dynamic Range See “Clipping-to-Noise Dynamic Range” on page 86 in this
Resolution Bandwidth Switching Uncertainty Not specified because it is negligible.
Available Detectors Does not apply.
Spurious Responses The “Spurious Responses” on page 52 of core specifications still
IF Amplitude Flatness See “IF Frequency Response” on page 32 of the core
IF Phase Linearity See “IF Phase Linearity” on page 33 of the core specifications for
Does not apply.
chapter.
apply. Additional bandwidth-option-dependent spurious responses are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
specifications for the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
Data Acquisition See “Data Acquisition” on page 87 in this chapter for the 10 MHz
bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
84
Page 85
I/Q Analyzer, Standard Frequency
Frequency
Description Specifications Supplemental Information
Frequency Span
Option B25 (Standard) 10 Hz to 25 MHz
Option B40 10 Hz to 40 MHz
Option B2X 10 Hz to 255 MHz
Option B5X 10 Hz to 510 MHz
Option H1G
Resolution Bandwidth
(Spectrum Measurement)
Range
Overall Span = 1 MHz Span = 10 kHz Span = 100 Hz
Window Shapes Flat Top, Uniform, Hanning, Hamming,
Analysis Bandwidth (Span)
(Waveform Measurement)
Option B25 (Standard) 10 Hz to 25 MHz
Option B40 10 Hz to 40 MHz
Option B2X 10 Hz to 255 MHz
Option B5X 10 Hz to 510 MHz
Option H1G
a
a
40 MHz to 1 GHz
100 mHz to 3 MHz 50 Hz to 1 MHz 1 Hz to 10 kHz 100 mHz to 100 Hz
Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB & K-B 110 dB)
40 MHz to 1 GHz
a. In the 1 GHz bandwidth path, the span and bandwidth will be 40 MHz minimum. Below 40 MHz, a narrower IF path is used.
85
Page 86
I/Q Analyzer, Standard Clipping-to-Noise Dynamic Range
Clipping-to-Noise Dynamic Range
Description Specifications Supplemental Information
Clipping-to-Noise Dynamic Range
a
Excluding residuals and spurious responses
Clipping Level at Mixer Center frequency 20 MHz
IF Gain = Low 10 dBm 8 dBm (nominal)
IF Gain = High 20 dBm 17.5 dBm (nominal)
Noise Density at Mixer at center frequency
c
(DANL
+ IFGainEffectd) + 2.25 dB
b
e
Example
f
a. This specification is defined to be the ratio of the clipping level (also known as “ADC Over Range”) to the noise
density. In decibel units, it can be defined as clipping_level [dBm] noise_density [dBm/Hz]; the result has units of dBFS/Hz (fs is “full scale”).
b. The noise density depends on the input frequency. It is lowest for a broad range of input frequencies near the
center frequency, and these specifications apply there. The noise density can increase toward the edges of the span. The effect is nominally well under 1 dB.
c. The primary determining element in the noise density is the “Displayed Average Noise Level” on
page 44.
d. DANL is specified with the IF Gain set to High, which is the best case for DANL but not for Clipping-to-noise
dynamic range. The core specifications “Displayed Average Noise Level” on page 44, gives a line entry on the excess noise added by using IF Gain = Low, and a footnote explaining how to combine the IF Gain noise with the DANL.
e. DANL is specified for log averaging, not power averaging, and thus is 2.51 dB lower than the true noise density.
It is also specified in the narrowest RBW, 1 Hz, which has a noise bandwidth slightly wider than 1 Hz. These two effects together add up to 2.25 B.
f. As an example computation, consider this: For the case where DANL = 151 dBm in 1 Hz, IF Gain is set to low,
and the “Additional DANL” is 160 dBm, the total noise density computes to 148.2 dBm/Hz and the Clip­ping-to-noise ratio for a 10 dBm clipping level is −138.2 dBFS/Hz.
86
Page 87
I/Q Analyzer, Standard Data Acquisition
Data Acquisition
Description Specifications Supplemental Information
Time Record Length
IQ Analyzer 8,000,000 IQ sample pairs
Advanced Tools Data Packing
Waveform measurement
89600 VSA software or Fast Capture
a
b
32-bit 64-bit
Length (IQ sample pairs)
29
IFBW 255.176 MHz
IFBW >255.176 MHz
536 MSa (2
1073 MSa (2
Sa) 268 MSa (228 Sa)
29
Sa) 2536 MSa (228 Sa)
2 GB total memory
2 GB total memory
Maximum IQ Capture Time Data Packing Data Packing
(89600VSA and Fast Capture) 32-bit 64-bit 32-bit 64-bit
29
(2
10 MHz IFBW 42.94 s 21.47 s
25 MHz IFBW 17.17 s 8.58 s
40 MHz IFBW 10.73 s 5.36 s
240 MHz IFBW 1.78 s 0.89 s
255 MHz IFBW 1.78 s 0.89 s
256 MHz IFBW 3.35 s 1.67 s
)/10 MHz ×1.25) (228)/10 MHz ×1.25)
29
)/25 MHz ×1.25) (228)/25 MHz ×1.25)
(2
29
)/40 MHz ×1.25) (228)/40 MHz ×1.25)
(2
29
)/240 MHz ×1.25) (228)/240 MHz ×1.25)
(2
29
)/300 MSA/s) (228)/300 MSa/s)
(2
30
)/256 MHz ×1.25) (229)/256 MHz ×1.25)
(2
30
)/480 MHz ×1.25) (229)/480 MHz ×1.25)
480 MHz IFBW 1.78 s 0.89 s
510 MHz IFBW
1.78 s 0.89 s
(2
30
)/600 MSa/s) (229)/600 MSa/s)
(2
Maximum IQ Capture Time Data Packing
(89600 VSA and Fast Capture) 32-bit 64-bit Calculated by: Length
of IQ sample
10 MHz IFBW 42.94 s 21.47 s
pairs/Sample Rate (IQ Pairs)
c
Sample Rate (IQ Pairs) 1.25 × IFBW
ADC Resolution 16 bits
a. This can also be accessed with the remote programming command of "read:wav0?". b. This can only be accessed with the remote programming command of "init:fcap" in the IQ Analyzer (Basic) waveform
measurement.
c. For example, using 32-bit data packing at 10 MHz IF bandwidth (IFBW) the Maximum Capture Time is calculated using
29
the formula: "Max Capture Time = (2
)/(10 MHz × 1.25)".
87
Page 88
I/Q Analyzer, Standard Data Acquisition
88
Page 89
Keysight X-Series Signal Analyzer N9040B
Specification Guide
3 Standard Option CR3 - Connector Rear, 2nd IF Output
This chapter contains specifications for Option CR3, Connector Rear, 2nd IF Output.
89
Page 90
Standard Option CR3 - Connector Rear, 2nd IF Output Specifications Affected by Connector Rear, 2nd IF Output
Specifications Affected by Connector Rear, 2nd IF Output
No other analyzer specifications are affected by the presence or use of this option. New specifications are given in the following pages.
90
Page 91
Standard Option CR3 - Connector Rear, 2nd IF Output Other Connector Rear, 2nd IF Output Specifications
Other Connector Rear, 2nd IF Output Specifications
Aux IF Out Port
Description Specifications Supplemental Information
Connector SMA female Shared with other options
Impedance 50Ω (nominal)
Second IF Out
Description Specifications Supplemental Information
Second IF Out
Output Center Frequency
SA Mode 322.5 MHz
I/Q Analyzer Mode
IF Path ≤ 25 MHz 322.5 MHz
IF Path 40 MHz 250 MHz
IF Path 255 MHz 750 MHz
IF Path 510 MHz 877.1484375 MHz
IF Path 1 GHz 750 MHz
Conversion Gain at 2nd IF output center frequency
Bandwidth (6 dB)
Low band
IF Path ≤ 40 MHz
IF Path 255 MHz 255 MHz (nominal)
IF Path 510 MHz 510 MHz (nominal)
High band
With preselector
1 dB (nominal)
Up to 140 MHz (nominal)
Depends on RF center frequency
a
b
c
Range
Preselector bypassed
External Mixing 100 - 1200 MHz ±6 dB (nominal)
Residual Output Signals 94 dBm or lower (nominal)
100 - 800 MHz ±3 dB (nominal)
91
Page 92
Standard Option CR3 - Connector Rear, 2nd IF Output Other Connector Rear, 2nd IF Output Specifications
a. "Conversion Gain" is defined from RF input to IF out with 0 dB mechanical attenuation and the electronic atten-
uator off. The nominal performance applies in zero span. b. The passband width at –3 dB nominally extends from IF frequencies of 230 to 370 MHz. When the IF in use is
centered at a frequency different from 300 MHz, the passband will be asymmetric. c. The YIG-tuned preselector bandwidth nominally varies from 55 MHz for a center frequencies of 3.6 GHz
through 57 MHz at 15 GHz to 75 MHz at 26.5 GHz. The preselector effect will dominate the passband width.
See “Preselector Bandwidth” on page 28.
92
Page 93
Keysight X-Series Signal Analyzer N9040B
Specification Guide
4 Standard Option EXM - External Mixing
This chapter contains specifications for the Option EXM External Mixing.
93
Page 94
Standard Option EXM - External Mixing Specifications Affected by External mixing
Specifications Affected by External mixing
Specification Name Information
RF-Related Specifications, such as TOI, DANL, SHI, Amplitude Accuracy, and so forth.
IF-Related Specifications, such as RBW range, RBW accuracy, RBW switching uncertainty, and so forth.
New specifications: IF Input Mixer Bias LO Output
Specifications do not apply; some related specifications are contained in IF Input in this chapter
Specifications unchanged, except IF Frequency Response — see specifications in this chapter.
See specifications in this chapter.
94
Page 95
Standard Option EXM - External Mixing Other External Mixing Specifications
Other External Mixing Specifications
Description Specifications Supplemental Information
Connection Port EXT MIXER
Connector SMA, female
Impedance 50Ω (nominal) at IF and LO frequencies
Functions Triplexed for Mixer Bias, IF
Input and LO output
Description Specifications Supplemental Information
Mixer Bias
Bias Current
Range ±10 mA
Resolution 10 μA
Output impedance 477Ω (nominal)
Voltage clamp ±3.7 V (nominal)
a. The mixer bias circuit has a Norton equivalent, characterized by its short circuit current and its impedance. It is
b. The actual port current is often less than the short circuit current, due to the diode voltage drop of many mixers.
a
also clamped to a voltage range less than the Thevenin voltage capability.
Short circuit current
b
95
Page 96
Standard Option EXM - External Mixing Other External Mixing Specifications
Description Specifications Supplemental Information
IF Input
Maximum Safe Level +7 dBm
Center Frequency
IF BW 25 MHz 322.5 MHz
40 MHz IF path 250 MHz
255 MHz IF path 750 MHz
510 MHz IF path 877.1484375 MHz
1000 MHz IF path 750 MHz
Bandwidth Supports all optional IFs
ADC Clipping Level
25, 255, or 510 MHz IF paths −15 dBm (nominal)
40 MHz IF path −20 dBm (nominal)
1000 MHz IF path 15dBm (nominal)
1 dB Gain Compression 2 dBm (nominal)
Gain Accuracy
a
20 to 30°C Full Range
IF BW 25 MHz ±1.2 dB ±2.5 dB Swept and narrowband
Wider IF BW ±1.2 dB (nominal)
IF Frequency Response RMS (nominal)
CF Width
322.5 MHz (10 MHz IF path) ±5 MHz 0.05 dB
322.5 MHz (25 MHz IF path) ±12.5 MHz 0.07 dB
250 MHz (40 MHz IF path) ±20 MHz 0.10 dB
750 MHz (255 MHz IF path) ±127.5 MHz 0.12 dB
877.1484375 MHz
±255 MHz 0.15 dB
(510 MHz IF path)
750 MHz (1 GHz IF path) ±500 MHz 0.18 dB
Noise Figure
9 dB (nominal)
(322.5 MHz, swept operation high IF gain)
VSWR See plot below.
a. The amplitude accuracy of a measurement includes this term and the accuracy with which the settings of correc-
tions model the loss of the external mixer.
96
Page 97
Standard Option EXM - External Mixing Other External Mixing Specifications
External Mixer IF Input VSWR [Plot]
Description Specifications Supplemental Information
LO Output
Frequency Range 3.75 to 14.1 GHz
Output Power
3.75 to 8.72 GHz
7.8 to 14.1 GHz
a
b
c
Second Harmonic
Fundamental Feedthrough and Undesired Harmonics
c
VSWR
20 to 30°C Full Range
+15.0 to 18.0 dBm +13.5 to 19 dBm
+14.0 to 18.5 dBm Not specified
20 dB (nominal)
30 dB (nominal)
1.8:1 (nominal)
d
a. The LO output port power is compatible with Keysight M1970 and 11970 Series mixers except for the 11970K.
The power is specified at the connector. Cable loss will affect the power available at the mixer. With non­Keysight/Agilent mixer units, supplied loss calibration data may be valid only at a specified LO power that may
differ from the power available at the mixer. In such cases, additional uncertainties apply. b. LO Doubler = Off settings. c. LO Doubler = On setting. Fundamental frequency = 3.9 to 7.05 GHz. d. The reflection coefficient has a Rayleigh probability distribution from 3.75 GHz to 14.1 GHz with a median
VSWR of 1.22:1.
b
97
Page 98
Standard Option EXM - External Mixing Other External Mixing Specifications
98
Page 99
Keysight X-Series Signal Analyzer N9040B
Specification Guide
5 Standard Option LNP - Low Noise Path Specifications
This chapter contains specifications for the Option LNP, Low Noise Path.
99
Page 100
Standard Option LNP - Low Noise Path Specifications Specifications Affected by Low Noise Path
Specifications Affected by Low Noise Path
The low noise path is in use when all the following are true:
— The setting of the Microwave Path is "Low Noise Path Enabled" — The start frequency is at least 3.5 GHz and the stop frequency is above 3.6 GHz — The preamp is either not licensed, or set to Off, or set to “Low Band”
Specification Name Information
Displayed Average Noise Level (DANL) See DANL specifications on page 44 of the core specifications.
Compression
VSWR The magnitude will be very similar between LNP and non-LNP
Frequency Response See specifications in this chapter. The specifications are very similar
Second Harmonic Distortion See “Second Harmonic Distortion” on page 54 of the core
Third-Order Intermodulation
Other Input Related Spurious See “Spurious Responses” on page 52 of the core
a. The low noise path, when in use, does not substantially change the compression-to-noise dynamic range or the
TOI-to-noise dynamic range because it mostly just reduces losses in the signal path in front of all significant noise, TOI and compression-affecting circuits. In other words, the compression threshold and the third-order intercept both decrease, and to the same extent as that to which the DANL decreases.
Little change in dynamic range
operation, but the details, such as the frequencies of the peaks and valleys, will shift.
to the normal path. But the details of the response can be quite different, with the frequencies of the peaks and valleys shifting between LNP and non-LNP operation. That means that any relative measurements between, for example, a large signal measured without LNP, and a small signal measured with LNP, could be subject to relative frequency response errors as large as the sum of the individual errors.
specifications.
Little change in dynamic range
specifications. This performance with LNP is not warranted, but is nominally the same as non-LNP performance.
a
a
100
Loading...