Keysight N9010A EXA Specifications

Keysight X-Series Signal Analyzers
This manual provides documentation for the following Analyzer:
N9010A EXA Signal Analyzer
EXA Specifications Guide
(Comprehensive
Reference Data)
Notices
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.
Trademark Acknowledgments
Manual Part Number
N9010-90025
Edition
Edition 1, November 2020
S
upersedes: September 2020
Published by: Keysight Technologies
1400 Fountaingrove Parkway Santa Rosa, CA 95403
Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.
Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.
U.S. Government Rights
The Software is “commercial computer software,” as defined by Federal Acquisition Regulation (“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and Department of Defense FAR Supplement (“DFARS”) 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at
http://www.keysight.com/find/sweula
The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional
government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.
Safety Notices
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Where to Find the Latest Information
Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:
http://www.keysight.com/find/exa
To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:
http://www.keysight.com/find/MyKeysight
Information on preventing instrument damage can be found at:
www.keysight.com/find/PreventingInstrumentRepair
Is your product software up-to-date?
Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:
http://www.keysight.com/find/techsupport
3
4
Contents
1. EXA Signal Analyzer
Definitions and Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Conditions Required to Meet Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Standard Frequency Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Precision Frequency Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Frequency Readout Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Frequency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Frequency Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Sweep Time and Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Gated Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Number of Frequency Sweep Points (buckets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Nominal Measurement Time vs. Span [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Resolution Bandwidth (RBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Preselector Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Video Bandwidth (VBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Amplitude Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Maximum Safe Input Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Display Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Marker Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Input Attenuation Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Resolution Bandwidth Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Display Scale Fidelity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Available Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Gain Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1 dB Gain Compression Point (Two-tone). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Displayed Average Noise Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Third Order Intermodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Nominal Dynamic Range vs. Offset Frequency vs. RBW for Freq Option 526 [Plot] (MY/SG/US5648>SN prefix MY/SG/US5340, ship standard with N9010A-EP3,
SN prefix MY/SG/US5648, ship standard with N9010A-EP5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Nominal Dynamic Range vs. Offset Frequency vs. RBW for Freq Option
526 [Plot]
5
Contents
(SN prefix <MY/SG/US5340) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Nominal Dynamic Range at 1 GHz for Freq Option 526 [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Nominal Dynamic Range Bands 1-4 for Freq Option 526 [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . 53
Phase Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Nominal Phase Noise of Different LO Optimizations [Plot]
(MY/SG/US5648>SN prefix MY/SG/US5340, Ship standard with N9010A-EP3). . . . . . . . . . . . . 56
Nominal Phase Noise of Different LO Optimizations for Freq Option 526 [Plot]
(SN prefix <MY/SG/US5340) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Nominal Phase Noise of Different LO Optimizations [Plot]
(SN prefix MY/SG/US5648, Ship standard with N9010A-EP5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Nominal Phase Noise of Different Center Frequencies [Plot]
(MY/SG/US5648>SN prefix MY/SG/US5340, Ship standard with N9010A-EP3). . . . . . . . . . . . . 58
Nominal Phase Noise of Different Center Frequencies for Freq Option 526 [Plot]
(SN prefix <MY/SG/US5340) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Nominal Phase Noise of Different Center Frequencies [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Power Suite Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Adjacent Channel Power (ACP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Burst Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TOI (Third Order Intermodulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Rear Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2. I/Q Analyzer
Specifications Affected by I/Q Analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Clipping-to-Noise Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Time Record Length (IQ pairs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
3. VXA Vector Signal Analysis Application
Vector Signal Analysis Performance (N9064A-1FP/1TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Center Frequency Tuning Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Frequency Span, Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
FFT Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Frequency Points per Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6
Contents
FFT Window Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ADC overload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Amplitude Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
IF Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Third Order Intermodulation distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Noise Density at 1 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Image Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
LO Related Spurious . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Other Spurious. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Analog Modulation Analysis (N9064A-1FP/1TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
AM Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
PM Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
FM Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Flexible Digital Modulation Analysis (N9064A-2FP/2TP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Residual EVM for MSK Modulation Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Residual EVM for Video Modulation Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
WLAN Modulation Analysis (N9064A-3FP/3TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
IEEE 802.11a/g OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
IEEE 802.11b/g DSSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4. Option B25 - 25 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
IF Spurious Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Time Record Length (IQ pairs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5. Option B40 - 40 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Capture Time [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7
Contents
6. Option CR3 - Connector Rear, 2nd IF Output
Specifications Affected by Connector Rear, 2nd IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Other Connector Rear, 2nd IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Aux IF Out Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Second IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7. Option CRP - Connector Rear, Arbitrary IF Output
Specifications Affected by Connector Rear, Arbitrary IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Other Connector Rear, Arbitrary IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Aux IF Out Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Arbitrary IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8. Option EA3 - Electronic Attenuator, 3.6 GHz
Specifications Affected by Electronic Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Other Electronic Attenuator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Range (Frequency and Attenuation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Distortions and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Absolute Amplitude Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Electronic Attenuator Switching Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9. Option EMC - Precompliance EMI Features
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
EMI Resolution Bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
EMI Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Quasi-Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
RMS Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10. Option ESC - External Source Control
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Power Sweep Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Measurement Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Supported External Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
11. Option EXM - External Mixing
Specifications Affected by External mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Other External Mixing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Connection Port EXT MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Mixer Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
IF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
LO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8
Contents
12. Option MPB - Microwave Preselector Bypass
Specifications Affected by Microwave Preselector Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Other Microwave Preselector Bypass Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Additional Spurious Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13. Option NFE - Noise Floor Extension
Specifications Affected by Noise Floor Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Displayed Average Noise Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Displayed Average Noise Level with Noise Floor Extension Improvement. . . . . . . . . . . . . . . . . . 147
Displayed Average Noise Level with Noise Floor Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14. Option P03, P07, P13, P26, P32 and P44 - Preamplifier
Specifications Affected by Preamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Other Preamp Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Noise figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
1 dB Gain Compression Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Displayed Average Noise Level (DANL)Preamp On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Frequency Response — Preamp On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Nominal VSWR — Preamp On, Freq Option 526 [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Third Order Intermodulation Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Nominal Dynamic Range at 1 GHz, Preamp On, Freq Option 526 [Plot] . . . . . . . . . . . . . . . . . 160
15. Option PFR - Precision Frequency Reference
Specifications Affected by Precision Frequency Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
16. Option TDS - Time Domain Scan
Specifications Affected by Time Domain Scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Other Time Domain Scan Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
17. Option YAS - Y-Axis Screen Video Output
Specifications Affected by Y-Axis Screen Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Other Y-Axis Screen Video Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
General Port Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Screen Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Continuity and Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
18. Analog Demodulation Measurement Application
RF Carrier Frequency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Maximum Information Bandwidth (Info BW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Capture Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Post-Demodulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Maximum Audio
Frequency Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9
Contents
Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
FM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
FM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Carrier Frequency Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Carrier Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Post-Demod Distortion Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Distortion Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Residual FM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Hum & Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
AM Depth Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
AM Rate Accuracy
Carrier Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Post-Demod Distortion Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Distortion Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
FM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Residual AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Phase Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
PM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
PM Rate Accuracy Carrier Frequency Error
Carrier Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Phase Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Post-Demod Distortion Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Distortion Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Analog Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
FM Stereo/Radio Data System (RDS) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
FM Stereo Modulation Analysis Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
19. Noise Figure Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Noise Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Noise Figure Uncertainty Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Uncertainty versus Calibration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Nominal Instrument Noise Figure, Freq Option 526 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Nominal Instrument Input VSWR, DC Coupled, Freq Option 526 . . . . . . . . . . . . . . . . . . . . . . . 194
10
Contents
20. Phase Noise Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Maximum Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Measurement Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Offset Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Amplitude Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Nominal Phase Noise at Different Center Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
21. 1xEV-DO Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Channel Pow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Spectrum Emission Mask and Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
QPSK EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Modulation Accuracy (Composite Rho) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
In-Band Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Alternative Frequency Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
22. 802.16 OFDMA Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
In-Band Frequency Range for Warranted Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
23. Bluetooth Measurement Application
Basic Rate Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Output Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Modulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Initial Carrier Frequency Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Low Energy Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Output Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Modulation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Initial Carrier Frequency Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
LE In-band Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11
Contents
Enhanced Data Rate (EDR) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
EDR Relative Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
EDR Modulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
EDR Carrier Frequency Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
EDR In-band Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Bluetooth Basic Rate and Enhanced Data Rate (EDR) System . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Bluetooth Low Energy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
24. cdma2000 Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
QPSK EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Modulation Accuracy (Composite Rho) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
25. CMMB Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Modulation Analysis Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Modulation Analysis Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
CMMB Modulation Analysis Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
26. Digital Cable TV Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
DVB-C 64QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
27. DTMB Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
12
Contents
16QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
28. DVB-T/H with T2 Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Spurious Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
DVB-T 64QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
DVB-T2 256QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
29. GSM/EDGE Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
EDGE Error Vector Magnitude (EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Power vs. Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
EDGE Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Power Ramp Relative Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Phase and Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Output RF Spectrum (ORFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Frequency Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
In-Band Frequency Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
30. iDEN/WiDEN/MotoTalk Measurement Application
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Amplitude Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Application Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Parameter Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
iDEN Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
iDEN Signal Demod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
MotoTalk Signal Demod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
31. ISDB-T Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Modulation Analysis Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Modulation Analysis Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
ISDB-T Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
ISDB-Tmm Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
13
Contents
32. LTE Measurement Application
Supported Air Interface Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Transmit On/Off Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Operating Band, FDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Operating Band, TDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
33. LTE/LTE-A Measurement Application
Supported Air Interface Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Transmit On/Off Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
NB-IoT Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
C-V2X Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
C-V2X Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
NB-IoT Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
LTE FDD Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
LTE TDD Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
34. Multi-Standard Radio Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Conformance EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
35. TD-SCDMA Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Single Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329
14
Contents
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Modulation Accuracy (Composite EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
36. W-CDMA Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
QPSK EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Modulation Accuracy (Composite EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
37. Single Acquisition Combined Fixed WiMAX Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Tx Output Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
64QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
In-Band Frequency Range for Warranted Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
38. WLAN Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Power vs. Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Spurious Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
CCK 11Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
List Sequence Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Transmit Output Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
64QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
CCK 11Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
In-Band Frequency Range for Warranted Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
15
Contents
16
Keysight X-Series Signal Analyzer N9010A
Specification Guide
1 EXA Signal Analyzer
This chapter contains the specifications for the core signal analyzer. The specifications and characteristics for the measurement applications and options are covered in the chapters that follow.
17
EXA Signal Analyzer Definitions and Requirements
Definitions and Requirements
This book contains signal analyzer specifications and supplemental information. The distinction among specifications, typical performance, and nominal values are described as follows.
Definitions
— Specifications describe the performance of parameters covered by the
product warranty (temperature = 5 to 55°C temperature range" or "Full range", unless otherwise noted).
— 95th percentile values indicate the breadth of the population (≈2σ) of
performance tolerances expected to be met in 95% of the cases with a 95% confidence, for any ambient temperature in the range of 20 to 30°C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.
1
also referred to as "Full
— Typical describes additional product performance information that is not
covered by the product warranty. It is performance beyond specification that 80% of the units exhibit with a 95% confidence level over the temperature range 20 to 30°C. Typical performance does not include measurement uncertainty.
— Nominal values indicate expected performance, or describe product
performance that is useful in the application of the product, but is not covered by the product warranty.
Conditions Required to Meet Specifications
The following conditions must be met for the analyzer to meet its specifications.
— The analyzer is within its calibration cycle. See the General section of this
chapter.
— Under auto couple control, except that Auto Sweep Time Rules = Accy.
— For signal frequencies < 10 MHz, DC coupling applied.
— Any analyzer that has been stored at a temperature range inside the
allowed storage range but outside the allowed operating range must be stored at an ambient temperature within the allowed operating range for at least two hours before being turned on.
1. For earlier instruments (S/N prefix <MY/SG/US5052), the operating temperature ranges from 5 to 50°C
1 8
EXA Signal Analyzer Definitions and Requirements
— The analyzer has been turned on at least 30 minutes with Auto Align set to
Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from “Time and Temperature” to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user.If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances.
Certification
Keysight Technologies certifies that this product met its published specifications at the time of shipment from the factory. Keysight Technologies further certifies that its calibration measurements are traceable to the International System of Units (SI) via national metrology institutes (www.keysight.com/find/NMI) that are signatories to the CIPM Mutual Recognition Arrangement.
19
EXA Signal Analyzer Frequency and Time
Frequency and Time
Description Specifications Supplemental Information
Frequency Range
Maximum Frequency
Option 503 3.6 GHz
Option 507 7 GHz
Option 513 13.6 GHz
Option 526 26.5 GHz
Option 532 32 GHz
Option 544 44 GHz
Preamp Option P03 3.6 GHz
Preamp Option P07 7 GHz
Preamp Option P13 13.6 GHz
Preamp Option P26 26.5 GHz
Preamp Option P32 32 GHz
Preamp Option P44 44 GHz
Minimum Frequency
Preamp
AC Coupled
a
DC Coupled
Off 10 MHz 10 Hz
On 10 MHz 100 kHz
Band Harmonic
LO Multiple (N
b
) Band Overlaps
Mixing Mode
0 (10 Hz to 3.6 GHz)
d
1 1 Options 503, 507, 513, 526, 532,
544
1 (3.5 GHz to 7 GHz) 1 1 Option 507
c
1 (3.5 GHz to 8.4 GHz) 1 1 Options 513, 526, 532, 544
2 (8.3 GHz to 13.6 GHz) 1 2 Options 513, 526, 532, 544
3 (13.5 to 17.1 GHz) 2 2 Options 526, 532, 544
4 (17.0 to 26.5 GHz) 2 4 Options 526, 532, 544
2 0
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
5 (26.4 GHz to 32 GHz) 2 4 Option 532
5 (26.4 GHz to 34.5 GHz) 2 4 Option 544
6 (34.4 GHz to 44 GHz) 4 8 Option 544
a. AC Coupled only applicable to Freq Options 503, 507, 513, and 526. b. N is the LO multiplication factor. For negative mixing modes (as indicated by the “” in the “Harmonic Mixing
Mode” column), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF (5.1225 GHz for band 0, 322.5 MHz for all other bands).
c. In the band overlap regions, for example, 3.5 to 3.6 GHz, the analyzer may use either band for measurements, in
this example Band 0 or Band 1. The analyzer gives preference to the band with the better overall specifications (which is the lower numbered band for all frequencies below 26 GHz), but will choose the other band if doing so is necessary to achieve a sweep having minimum band crossings. For example, with CF = 3.58 GHz, with a span of 40 MHz or less, the analyzer uses Band 0, because the stop frequency is 3.6 GHz or less, allowing a span without band crossings in the preferred band. If the span is between 40 and 160 MHz, the analyzer uses Band 1, because the start frequency is above 3.5 GHz, allowing the sweep to be done without a band crossing in Band 1, though the stop frequency is above 3.6 GHz, preventing a Band 0 sweep without band crossing. With a span greater than 160 MHz, a band crossing will be required: the analyzer sweeps up to 3.6 GHz in Band 0; then executes a band crossing and continues the sweep in Band 1. Specifications are given separately for each band in the band overlap regions. One of these specifications is for the preferred band, and one for the alternate band. Continuing with the example from the previous paragraph (3.58 GHz), the preferred band is band 0 (indicated as frequencies under 3.6 GHz) and the alternate band is band 1 (3.5 to 8.4 GHz). The specifications for the preferred band are warranted. The specifications for the alternate band are not warranted in the band overlap region, but performance is nominally the same as those warranted specifications in the rest of the band. Again, in this example, consider a signal at 3.58 GHz. If the sweep has been configured so that the signal at 3.58 GHz is measured in Band 1, the analysis behavior is nominally as stated in the Band 1 specification line (3.5 to 8.4 GHz) but is not warranted. If warranted performance is necessary for this sig­nal, the sweep should be reconfigured so that analysis occurs in Band 0. Another way to express this situation in this example Band 0/Band 1 crossing is this: The specifications given in the “Specifications” column which are described as “3.5 to 7.0 GHz” represent nominal performance from 3.5 to 3.6 GHz, and warranted performance
from 3.6 to 7.0 GHz. d. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency option 507, 513 or 526 and S/N US55370107, MY56070764, or SG56070701. Band 0 can also be extendable in earlier instruments with firmware of version A.18.05 or later and a field adjustment to perform that extension.
21
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental
Information
Standard Frequency Reference
Accuracy ±[(time since last adjustment × aging
rate) + temperature stability + calibration accuracy
a
]
Temperature Stability
6
20 to 30°C
Full temperature range
Aging Rate
±2 × 10
±2 × 10
±1 × 10
6
6
/year
b
8
6
10 Hz × N (nominal)
c
p-p in 20 ms
Achievable Initial Calibration Accuracy
Settability
Residual FM
(Center Frequency = 1 GHz
±1.4 × 10
±2 × 10
10 Hz RBW, 10 Hz VBW)
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the adjust-
ment procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration
Accuracy.” b. For periods of one year or more. c. N is the LO multiplication factor.
2 2
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Precision Frequency Reference
(Option PFR)
Accuracy ±[(time since last adjustment ×
aging rate) + temperature stability + calibration accuracy
a]b
Temperature Stability
20 to 30°C
Full temperature range
Aging Rate
±1.5 × 10
±5 × 10
8
8
Nominally linear
10
±5 × 10
Total Aging
7
1 Year
2 Years
Settability
Warm-up and Retrace
d
300 s after turn on
900 s after turn on
Achievable Initial Calibration Accuracy
e
±1 × 10
±1.5 × 10
±2 × 10
±4 × 10
9
8
7
Nominal
±1 × 10
±1 × 10
7
of final frequency
8
of final frequency
Standby power to reference oscillator Not supplied
Residual FM
(Center Frequency = 1 GHz
0.25 Hz × N (nominal)
10 Hz RBW, 10 Hz VBW)
c
/day (nominal)
f
p-p in 20 ms
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the adjust-
ment procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration
Accuracy.” b. The specification applies after the analyzer has been powered on for four hours. c. Narrow temperature range performance is nominally linear with temperature. For example, for
25±3º C, the stability would be only three-fifths as large as the warranted 25±5º C, thus ±0.9 × 10
8
.
d. Standby mode does not apply power to the oscillator. Therefore warm-up applies every time the power is
turned on. The warm-up reference is one hour after turning the power on. Retracing also occurs every time
warm-up occurs. The effect of retracing is included within the “Achievable Initial Calibration Accuracy” term of
the Accuracy equation.
23
EXA Signal Analyzer Frequency and Time
e. The achievable calibration accuracy at the beginning of the calibration cycle includes these effects:
1) Temperature difference between the calibration environment and the use environment
2) Orientation relative to the gravitation field changing between the calibration environment and the use envi-
ronment
3) Retrace effects in both the calibration environment and the use environment due to turning the instrument
power off.
4) Settability
f. N is the LO multiplication factor.
Description Specifications Supplemental Information
Frequency Readout Accuracy ±(marker freq × freq ref accy. + 0.25% ×
a
+ 2 Hz + 0.5 × horizontal
)
Example for EMC
span + 5% × RBW resolution
d
b
Single detector only
±0.0032% (nominal)
a. The warranted performance is only the sum of all errors under autocoupled conditions. Under non-autocoupled
conditions, the frequency readout accuracy will nominally meet the specification equation, except for conditions in which the RBW term dominates, as explained in examples below. The nominal RBW contribution to frequency readout accuracy is 2% of RBW for RBWs from 1 Hz to 390 kHz, 4% of RBW from 430 kHz through 3 MHz (the widest autocoupled RBW), and 30% of RBW for the (manually selected) 4, 5, 6 and 8 MHz RBWs. First example: a 120 MHz span, with autocoupled RBW. The autocoupled ratio of span to RBW is 106:1, so the RBW selected is 1.1 MHz. The 5% × RBW term contributes only 55 kHz to the total frequency readout accuracy, compared to 300 kHz for the 0.25% × span term, for a total of 355 kHz. In this example, if an instrument had an unusually high RBW centering error of 7% of RBW (77 kHz) and a span error of 0.20% of span (240 kHz), the total actual error (317 kHz) would still meet the computed specification (355 kHz). Second example: a 20 MHz span, with a 4 MHz RBW. The specification equation does not apply because the Span: RBW ratio is not autocoupled. If the equation did apply, it would allow 50 kHz of error (0.25%) due to the span and 200 kHz error (5%) due to the RBW. For this non-autocoupled RBW, the RBW error is nominally 30%, or 1200 kHz.
b. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by
span/(Npts –1), where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector mode is “normal” and the span > 0.25 × (Npts –1) × RBW, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is autocoupled and there are 1001 sweep points, that exception occurs only for spans > 750 MHz.
c. Specifications apply to traces in most cases, but there are exceptions. Specifications always apply to the peak
detector. Specifications apply when only one detector is in use and all active traces are set to Clear Write. Spec­ifications also apply when only one detector is in use in all active traces and the "Restart" key has been pressed since any change from the use of multiple detectors to a single detector. In other cases, such as when multiple simultaneous detectors are in use, additional errors of 0.5, 1.0 or 1.5 sweep points will occur in some detectors, depending on the combination of detectors in use.
d. In most cases, the frequency readout accuracy of the analyzer can be exceptionally good. As an example, Key-
sight has characterized the accuracy of a span commonly used for Electro-Magnetic Compatibility (EMC) testing using a source frequency locked to the analyzer. Ideally, this sweep would include EMC bands C and D and thus sweep from 30 to 1000 MHz. Ideally, the analysis bandwidth would be 120 kHz at 6 dB, and the spacing of the points would be half of this (60 kHz). With a start frequency of 30 MHz and a stop frequency of 1000.2 MHz and a total of 16168 points, the spacing of points is ideal. The detector used was the Peak detector. The accuracy of frequency readout of all the points tested in this span was with ±0.0032% of the span. A perfect analyzer with this many points would have an accuracy of ±0.0031% of span. Thus, even with this large number of display points, the errors in excess of the bucket quantization limitation were negligible.
c
2 4
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Frequency Counter
a
See note
b
Count Accuracy ±(marker freq × freq ref accy. + 0.100 Hz)
Delta Count Accuracy ±(delta freq. × freq ref accy. + 0.141 Hz)
Resolution 0.001 Hz
a. Instrument conditions: RBW = 1 kHz, gate time = auto (100 ms), S/N 50 dB, frequency = 1 GHz b. If the signal being measured is locked to the same frequency reference as the analyzer, the specified count
accuracy is ±0.100 Hz under the test conditions of footnote a. This error is a noisiness of the result. It will increase with noisy sources, wider RBWs, lower S/N ratios, and source frequencies > 1 GHz.
Description Specifications Supplemental Information
Frequency Span
Range
Option 503 0 Hz, 10 Hz to 3.6 GHz
Option 507 0 Hz, 10 Hz to 7 GHz
Option 513 0 Hz, 10 Hz to 13.6 GHz
Option 526 0 Hz, 10 Hz to 26.5 GHz
Option 532 0 Hz, 10 Hz to 32 GHz
Option 544 0 Hz, 10 Hz to 44 GHz
Resolution 2 Hz
Span Accuracy
Swept
FFT
±(0.25% × span + horizontal resolution
±(0.1% × span + horizontal resolution
a
)
a
)
a. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by
span/(Npts 1), where Npts is the number of sweep points. For example, with the factory preset value of 1001
sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector
mode is “normal” and the span > 0.25 × (Npts − 1) × RBW, peaks can occur only in even-numbered points, so
the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is
auto coupled and there are 1001 sweep points, that exception occurs only for spans > 750 MHz.
25
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Sweep Time and Trigger
Sweep Time Range Span = 0 Hz Span 10 Hz
1 μs to 6000 s 1 ms to 4000 s
Sweep Time Accuracy Span 10 Hz, swept Span 10 Hz, FFT Span = 0 Hz
±0.01% (nominal) ±40% (nominal) ±0.01% (nominal)
Sweep Trigger Free Run, Line, Video, External 1,
External 2, RF Burst, Periodic Timer
Delayed Trigger
a
Range
Span 10 Hz 150 to 500 ms
Span = 0 Hz
10 s to +500 ms
b
Resolution 0.1 μs
a. Delayed trigger is available with line, video, RF burst and external triggers. b. Prior to A.19.28 software, zero span trigger delay was limited to -150 ms to 500 ms.
2 6
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Triggers Additional information on some of the triggers and
gate sources
Video Independent of Display Scaling and Reference Level
Minimum settable level 170 dBm Useful range limited by noise
Maximum usable level
Highest allowed mixer level
a
+ 2 dB (nominal)
Detector and Sweep Type relationships
Sweep Type = Swept
Detector = Normal, Peak, Sample or Negative Peak
Triggers on the signal before detection, which is similar to the displayed signal
Detector = Average Triggers on the signal before detection, but with a
single-pole filter added to give similar smoothing to that of the average detector
Sweep Type = FFT Triggers on the signal envelope in a bandwidth
wider than the FFT width
RF Burst
Level Range
40 to 10 dBm plus attenuation (nominal)
b
Level Accuracy ±2 dB + Absolute Amplitude Accuracy (nominal)
Bandwidth (10 dB) 16 MHz (nominal)
Frequency Limitations If the start or center frequency is too close to zero,
LO feedthrough can degrade or prevent triggering. How close is too close depends on the bandwidth listed above.
External Triggers See “Trigger Inputs” on page 76
TV Triggers Triggers on the leading edge of the selected sync
pulse of standardized TV signals.
Amplitude Requirements –65 dBm minimum video carrier power at the input
mixer, nominal
Compatible Standards NTSC-M,
NTSC-Japan, NTSC-4.43, PAL-M, PAL-N, PAL-N Combination, PAL-B/-D/-G/-H/-I. PAL-60, SECAM-L
Field Selection Entire Frame, Field
One, Field Two
27
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Line Selection 1 to 525, or 1 to 625,
standard dependent
a. The highest allowed mixer level depends on the IF Gain. It is nominally –10 dBm for Preamp Off and IF Gain =
Low.
b. Noise will limit trigger level range at high frequencies, such as above 15 GHz.
Description Specifications Supplemental Information
Gated Sweep
Gate Methods Gated LO
Gated Video Gated FFT
Span Range Any span
Gate Delay Range 0 to 100.0 s
Gate Delay Settability 4 digits, 100 ns
Gate Delay Jitter 33.3 ns p-p (nominal)
Gate Length Range
(Except Method = FFT)
Gated Frequency and Amplitude Errors
Gate Sources External 1
Description Specifications Supplemental Information
Number of Frequency Sweep Points (buckets)
Factory preset 1001
Range 1 to 100,001 Zero and non-zero spans
100 ns to 5.0 s Gate length for the FFT method is fixed at
1.83/RBW, with nominally 2% tolerance.
Nominally no additional error for gated measurements when the Gate Delay is greater than the MIN FAST setting
Pos or neg edge triggered External 2 Line RF Burst Periodic
2 8
EXA Signal Analyzer Frequency and Time
Nominal Measurement Time vs. Span [Plot]
29
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Resolution Bandwidth (RBW)
Range (−3.01 dB bandwidth) 1 Hz to 8 MHz
Bandwidths above 3 MHz are 4, 5, 6, and 8 MHz. Bandwidths 1 Hz to 3 MHz are spaced at 10% spacing using the E24 series (24 per decade): 1.0, 1.1, 1.2, 1.3, 1.5, 1.6,
1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9,
4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 in each decade.
Power bandwidth accuracy
a
RBW Range CF Range
1 Hz to 750 kHz All ±1.0% (0.044 dB)
820 kHz to 1.2 MHz <3.6 GHz ±2.0% (0.088 dB)
1.3 to 2.0 MHz <3.6 GHz ±0.07 dB (nominal)
2.2 to 3 MHz <3.6 GHz 0 to0.2 dB (nominal)
4 to 8 MHz <3.6 GHz 0 to0.4 dB (nominal)
Noise BW to RBW ratio
Accuracy (−3.01 dB bandwidth)
b
c
1.056 ±2% (nominal)
1 Hz to 1.3 MHz RBW ±2% (nominal)
1.5 MHz to 3 MHz RBW CF ≤ 3.6 GHz CF > 3.6 GHz
4 MHz to 8 MHz RBW
CF 3.6 GHz CF > 3.6 GHz
±7% (nominal) ±8% (nominal)
±15% (nominal) ±20% (nominal)
Selectivity (60 dB/3 dB) 4.1:1 (nominal)
a. The noise marker, band power marker, channel power and ACP all compute their results using the power band-
width of the RBW used for the measurement. Power bandwidth accuracy is the power uncertainty in the results of these measurements due only to bandwidth-related errors. (The analyzer knows this power bandwidth for each RBW with greater accuracy than the RBW width itself, and can therefore achieve lower errors.) The war­ranted specifications shown apply to the Gaussian RBW filters used in swept and zero span analysis. There are four different kinds of filters used in the spectrum analyzer: Swept Gaussian, Swept Flattop, FFT Gaussian and FFT Flattop. While the warranted performance only applies to the swept Gaussian filters, because only they are kept under statistical process control, the other filters nominally have the same performance.
3 0
EXA Signal Analyzer Frequency and Time
b. The ratio of the noise bandwidth (also known as the power bandwidth) to the RBW has the nominal value and
tolerance shown. The RBW can also be annotated by its noise bandwidth instead of this 3 dB bandwidth. The accuracy of this annotated value is similar to that shown in the power bandwidth accuracy specification.
c. Resolution Bandwidth Accuracy can be observed at slower sweep times than auto-coupled conditions. Normal
sweep rates cause the shape of the RBW filter displayed on the analyzer screen to widen by nominally 6%. This widening declines to 0.6% nominal when the Swp Time Rules key is set to Accuracy instead of Normal. The true bandwidth, which determines the response to impulsive signals and noise-like signals, is not affected by the sweep rate.
Description Specification Supplemental information
Analysis Bandwidth
a
Standard 10 MHz
With Option B25
b
25 MHz
With Option B40 40 MHz
a. Analysis bandwidth is the instantaneous bandwidth available about a center frequency over which the input sig-
nal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
b. Option B25 is standard for instruments ordered after May 1, 2011.
Description Specifications Supplemental Information
Preselector Bandwidth Relevant to many options, such as B25 Wide IF Bandwidth, in
Bands 1 and higher. Nominal.
Mean Bandwidth at CF
a
Freq option 526 Freq option > 526
5 GHz 58 MHz 46 MHz
10 GHz 57 MHz 52 MHz
15 GHz 59 MHz 53 MHz
20 GHz 64 MHz 55 MHz
25 GHz 74 MHz 56 MHz
35 GHz 62 MHz
44 GHz 70 MHz
Standard Deviation 9% 7%
–3 dB Bandwidth –7.5% relative to –4 dB bandwidth, nominal
a. The preselector can have a significant passband ripple. To avoid ambiguous results, the –4 dB bandwidth is
characterized.
31
EXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Video Bandwidth (VBW)
Range Same as Resolution Bandwidth range
plus wide-open VBW (labeled 50 MHz)
Accuracy ±6% (nominal)
in swept mode and zero span
a. For FFT processing, the selected VBW is used to determine a number of averages for FFT results. That number is
chosen to give roughly equivalent display smoothing to VBW filtering in a swept measurement. For example, if VBW = 0.1 × RBW, four FFTs are averaged to generate one result.
a
3 2
EXA Signal Analyzer Amplitude Accuracy and Range
Amplitude Accuracy and Range
Description Specifications Supplemental Information
Measurement Range
Preamp Off Displayed Average Noise Level to +23 dBm
Preamp On Displayed Average Noise Level to +23 dBm Option P03, P07, P13,
P26, P32, P44
Input Attenuation Range
Standard 0 to 60 dB, in 10 dB steps
With Option FSA 0 to 60 dB, in 2 dB steps
Description Specifications Supplemental Information
Maximum Safe Input Level Applies with or without preamp
(Option P03, P07, P13, P26, P32, P44)
Average Total Power +30 dBm (1 W)
Peak Pulse Power
(≤10 μs pulse width,1% duty cycle,
input attenuation 30 dB)
DC voltage
DC Coupled ±0.2 Vdc
AC Coupled ±100 Vdc
Description Specifications Supplemental Information
Display Range
Log Scale Ten divisions displayed;
Linear Scale Ten divisions
+50 dBm (100 W)
0.1 to 1.0 dB/division in 0.1 dB steps, and 1 to 20 dB/division in 1 dB steps
33
EXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Marker Readout
Resolution
Log (decibel) units
Trace Averaging Off, on-screen 0.01 dB
Trace Averaging On or remote 0.001 dB
Linear units resolution ≤1% of signal level (nominal)
3 4
EXA Signal Analyzer Amplitude Accuracy and Range
Frequency Response
Description Specifications Supplemental Information
Frequency Response Refer to the footnote for
(Maximum error relative to reference condition (50 MHz)
b
Mechanical attenuator only Swept operation
c
Attenuation 10 dB)
Option 532 or 544 (mmW)
Option 503, 507, 513, or 526 (RF/μW)
20 to 30°C Full range 95th Percentile (≈2σ)
9 kHz to 10 MHz x ±0.8 dB ±1.0 dB ±0.40 dB
Band Overlaps on page 20.
Freq Option 526 only: Modes above 18 GHz
a
9 kHz to 10 MHz
d
10 MHz
to 3.6 GHz
10 to 50 MHz
50 MHz to 3.6 GHz
ef
3.5 to 7
3.5 to 5.2 GHz
5.2 to 8.4 GHz
ef
ef
x ±0.6 dB ±0.8 dB ±0.28 dB
x
±0.6 dB ±0.65 dB ±0.21 dB
x ±0.45 dB ±0.57 dB ±0.21 dB
x ±0.45 dB ±0.70 dB ±0.20 dB
x
±2.0 dB ±3.0 dB ±0.69 dB
x ±1.7 dB ±3.5 dB ±0.91 dB
x ±1.5 dB ±2.7 dB ±0.61 dB
3.6 to 3.7 GHz (Band 0) x
7 to 13.6 GHz x ±2.5 dB ±3.2 dB
8.3 to 13.6 GHz
13.5 to 22 GHz
13.5 to 17.1 GHz
17.0 to 22 GHz
22.0 to 26.5 GHz
ef
ef
ef
ef
ef
x
±2.0 dB ±2.7 dB ±0.61 dB
x
±3.0 dB ±3.7 dB
x ±2.0 dB ±2.7 dB ±0.67 dB
x ±2.0 dB ±3.0 dB ±0.78 dB
x
±3.2 dB ±4.2 dB
See note
g
22.0 to 26.5 GHz
26.4 to 34.5 GHz
34.4 to 44 GHz
ef
ef
ef
x ±2.5 dB ±3.5 dB ±0.72 dB
x ±2.5 dB ±3.5 dB ±1.11 dB
x ±3.2 dB ±4.9 dB ±1.42 dB
35
EXA Signal Analyzer Amplitude Accuracy and Range
a. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N
connector used with frequency Option 526. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. The effect of these modes with this connector are included within
these specifications. b. See the Electronic Attenuator (Option EA3) chapter for Frequency Response using the electronic attenuator. c. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional
error source, the error in switching between swept and FFT sweep types, is nominally ±0.01 dB and is included
within the “Absolute Amplitude Error” specifications. d. Specifications apply with DC coupling at all frequencies. With AC coupling, specifications apply at frequencies of
50 MHz and higher. Statistical observations at 10 MHz show that most instruments meet the specifications, but a
few percent of instruments can be expected to have errors exceeding 0.5 dB at 10 MHz at the temperature
extreme. The effect at 20 to 50 MHz is negligible, but not warranted. e. Specifications for frequencies > 3.5 GHz apply for sweep rates 100 MHz/ms. f. Preselector centering applied. g. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency
Option 507, 513 or 526 and S/N ≥ US55370107, MY56070764, or SG56070701. Band 0 can also be extendable
in earlier instruments with firmware of version A.18.05 or later and a field adjustment to perform that extension.
Subject to these conditions, statistical observations show that performance nominally fits within the same range within the 3.6 to 3.7 GHz frequencies as within the next lower specified frequency range, but is not warranted.
Description Specifications Supplemental Information
IF Frequency Response
a
Modes above 18 GHz
b
(Demodulation and FFT response relative to the center frequency)
Center Freq (GHz)
Span (MHz)
c
Preselector
Max Errord
(Exception
e
)
Midwidth (95th Percentile)
Error
Slope (dB/MHz) (95th Percentile)
RMSf (nominal)
<3.6 10 ±0.40 dB ±0.12 dB ±0.10 0.04 dB
3.6, 26.5 10 On 0.25 dB
g
3.6 10
Off
±0.45 dB ±0.12 dB ±0.10 0.04 dB
>26.5 10 On 0.35 dB
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF fre-
quency, in addition to the IF passband effects. b. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N
connector used with frequency Option 526. With the use of Type-N to APC 3.5 mm adapter part number
1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change,
with phase errors of nominally up to ±1.2°. c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum Analyzer Mode, this would
be the FFT width.
3 6
EXA Signal Analyzer Amplitude Accuracy and Range
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression
± [Midwidth Error + (f × Slope)], but never exceeds ±Max Error. Here the Midwidth Error is the error at the center
frequency for a given FFT span. Usually, the span is no larger than the FFT width in which case the center of the
FFT width is the center frequency of the analyzer. When using the Spectrum Analyzer mode with an analyzer span
is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple cen-
ters of FFT widths; in this case the f in the equation is the offset from the nearest center. Performance is nominally
three times better at most center frequencies. e. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT widths of 7.2 to 8
MHz. f. The “rms” nominal performance is the standard deviation of the response relative to the center frequency, inte-
grated across the span. This performance measure was observed at a center frequency in each harmonic mixing
band, which is representative of all center frequencies; it is not the worst case frequency. g. Option MPB is installed and enabled.
Description Specifications Supplemental Information
IF Phase Linearity Deviation from mean phase linearity
Modes above 18 GHz
a
Center Freq (GHz) Span
(MHz)
Preselector Peak-to-peak
(nominal)
RMS (nominal)
0.02, <3.6 10 n/a 0.4° 0.1°
3.6, 10
Off
0.4° 0.1°
c
3.6 (Option 526) 10 On 1.0° 0.2°
a. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the
Type-N connector used with frequency Option 526. With the use Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
b. The listed performance is the standard deviation of the phase deviation relative to the mean phase deviation from
a linear phase condition, where the rms is computed across the span shown and over the range of center fre­quencies shown.
c. Option MPB is installed and enabled.
b
37
EXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Absolute Amplitude Accuracy
At 50 MHz
a
20 to 30°C Full temperature range
At all frequencies
a
20 to 30°C Full temperature range
95th Percentile Absolute Amplitude Accuracy
b
±0.40 dB ±0.43 dB
±(0.40 dB + frequency response) ±(0.43 dB + frequency response)
±0.15 dB (95th percentile)
±0.27 dB
(Wide range of signal levels, RBWs, RLs, etc.,
0.01 to 3.6 GHz, Atten = 10 dB)
Amplitude Reference Accuracy ±0.05 dB (nominal)
Preamp On
c
±(0.39 dB + frequency response) (nominal)
a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over the following
subset of settings and conditions: 1 Hz ≤ RBW ≤ 1 MHz; Input signal −10 to −50 dBm (details below); Input attenuation 10 dB; span < 5 MHz (nominal additional error for span ≥ 5 MHz is 0.02 dB); all settings auto-cou­pled except Swp Time Rules = Accuracy; combinations of low signal level and wide RBW use VBW ≤ 30 kHz to reduce noise. When using FFT sweeps, the signal must be at the center frequency. This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Res­olution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference. The only difference between signals within the range ending at –50 dBm and those signals below that level is the scale fidelity. Our specifications show the possibility of increased errors below –80 dBm at the mixer, thus –70 dBm at the input. Therefore, one reasonably conservative approach to estimating the Absolute Amplitude Uncertainty below –70 dBm at the mixer would be to add an additional ±0.10 dB (the difference between the above –80 dBm at the mixer scale fidelity at the lower level scale fidelity) to the Absolute Amplitude Uncertainty.
3 8
EXA Signal Analyzer Amplitude Accuracy and Range
b. Absolute Amplitude Accuracy for a wide range of signal and measurement settings, covers the 95th percentile
proportion with 95% confidence. Here are the details of what is covered and how the computation is made: The wide range of conditions of RBW, signal level, VBW, reference level and display scale are discussed in foot­note a. There are 44 quasi-random combinations used, tested at a 50 MHz signal frequency. We compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the fre­quency response adjustment frequencies. We again compute the 95th percentile proportion with 95% confi­dence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute amplitude accuracy to a national stan­dards organization. We also compute the 95th percentile accuracy of tracing the calibration of the relative fre­quency response to a national standards organization. We take the root-sum-square of these four independent Gaussian parameters. To that rss we add the environmental effects of temperature variations across the 20 to 30°C range. These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB. A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB. Then the worst of the two computed 95th percentile results (they ere very close) is shown.
c. Same settings as footnote a, except that the signal level at the preamp input is 40 to 80 dBm. Total power at
preamp (dBm) = total power at input (dBm) minus input attenuation (dB). This specification applies for signal frequencies above 100 kHz.
Description Specifications Supplemental Information
Input Attenuation Switching Uncertainty Refer to the footnote for
Band Overlaps on page 20
50 MHz (reference frequency) ±0.20 dB ±0.08 dB (typical)
Attenuation > 2 dB, preamp off
(Relative to 10 dB (reference setting))
9 kHz to 3.6 GHz ±0.3 dB (nominal)
3.5 to 7.0 GHz ±0.5 dB (nominal)
7.0 to 13.6 GHz ±0.7 dB (nominal)
13.5 to 26.5 GHz ±0.7 dB (nominal)
26.5 to 44 GHz ±1.0 dB (nominal)
39
EXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
RF Input VSWR
Nominal
a
at tuned frequency, DC Coupled
10 dB attenuation, 50 MHz 1.07:1
Input Attenuation
Frequency 0 dB ≥10 dB
Option 526
10 MHz to 3.6 GHz <2.2:1 <1.2:1
3.6 to 26.5 GHz <1.9:1
Option >526
10 MHz to 3.6 GHz <2.2:1 <1.2:1
3.6 to 26.5 GHz <1.5:1
26.5 to 44 GHz <1.8:1
RF calibrator (e.g. 50 MHz) is On Open input
Alignments running Open input for some, unless "All but RF" is selected
Preselector Centering Open input
a. The nominal SWR stated is at the worst case RF frequency in three representative instruments.
Description Specifications Supplemental Information
Resolution Bandwidth Switching Uncertainty Relative to reference BW of 30 kHz,
1.0 Hz to 3 MHz RBW ±0.10 dB
verified in low band
a
Manually selected wide RBWs: 4, 5, 6, 8 MHz ±1.0 dB
a. RBW switching uncertainty is verified at 50 MHz. It is consistent for all measurements made without the prese-
lector, thus in Band 0 and also in higher bands with the Preselector Bypass option. In preselected bands, the slope of the preselector passband can interact with the RBW shape to make an apparent additional RBW switching uncertainty of nominally ±0.05 dB/MHz times the RBW.
4 0
EXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Reference Level
Range
Log Units 170 to +23 dBm, in 0.01 dB steps
Linear Units 707 pV to3.16 V, with 0.01 dB resolution (0.11%)
Accuracy
0 dB
a
a. Because reference level affects only the display, not the measurement, it causes no additional error in measure-
ment results from trace data or markers.
Description Specifications Supplemental Information
Display Scale Switching Uncertainty
Switching between Linear and Log
Log Scale Switching
0 dB
0 dB
a
a
a. Because Log/Lin and Log Scale Switching affect only the display, not the measurement, they cause no addi-
tional error in measurement results from trace data or markers.
Description Specifications Supplemental Information
Display Scale Fidelity
ab
Absolute Log-Linear Fidelity
(Relative to the reference condition: 25 dBm input through 10 dB attenuation, thus
35 dBm at the input mixer)
Input mixer level
c
Linearity
80 dBm ML 10 dBm ±0.15 dB
ML < 80 dBm ±0.25 dB
Relative Fidelity
d
Applies for mixer levelc range from 10 to
80 dBm, mechanical attenuator only, preamp off, and dither on.
Sum of the following terms: Nominal
high level term
instability term
slope term
prefilter term
Up to ±0.045 dB
Up to ±0.018 dB
From equation
Up to ±0.005 dB
41
e
f
g
EXA Signal Analyzer
3
σ
320dB()110
SN 3dB+()20dB()
+log=
Amplitude Accuracy and Range
a. Supplemental information: The amplitude detection linearity specification applies at all levels below 10 dBm at
the input mixer; however, noise will reduce the accuracy of low level measurements. The amplitude error due to noise is determined by the signal-to-noise ratio, S/N. If the S/N is large (20 dB or better), the amplitude error due to noise can be estimated from the equation below, given for the 3-sigma (three standard deviations) level.
The errors due to S/N ratio can be further reduced by averaging results. For large S/N (20 dB or better), the 3-sigma level can be reduced proportional to the square root of the number of averages taken.
b. The scale fidelity is warranted with ADC dither set to Medium. Dither increases the noise level by nominally only
0.1 dB for the most sensitive case (preamp Off, best DANL frequencies). With dither Off, scale fidelity for low
level signals, around 60 dBm or lower, will nominally degrade by 0.2 dB. c. Mixer level = Input Level Input Attenuation d. The relative fidelity is the error in the measured difference between two signal levels. It is so small in many cases
that it cannot be verified without being dominated by measurement uncertainty of the verification. Because of
this verification difficulty, this specification gives nominal performance, based on numbers that are as conserva-
tively determined as those used in warranted specifications. We will consider one example of the use of the error
equation to compute the nominal performance.
Example: the accuracy of the relative level of a sideband around 60 dBm, with a carrier at 5 dBm, using atten-
uation = 10 dB, RBW = 3 kHz, evaluated with swept analysis. The high level term is evaluated with P1 =
15 dBm and P2 = 70 dBm at the mixer. This gives a maximum error within ±0.025 dB. The instability term is
±0.018 dB. The slope term evaluates to ±0.050 dB. The prefilter term applies and evaluates to the limit of
±0.005 dB. The sum of all these terms is ±0.098 dB.
e. Errors at high mixer levels will nominally be well within the range of ±0.045 dB × {exp[(P1 Pref)/(8.69 dB)]
exp[(P2 Pref)/(8.69 dB)]} (exp is the natural exponent function, e
x
). In this expression, P1 and P2 are the pow­ers of the two signals, in decibel units, whose relative power is being measured. Pref is 10 dBm (−10 dBm is the highest power for which linearity is specified). All these levels are referred to the mixer level.
f. Slope error will nominally be well within the range of ±0.0009 × (P1 P2). P1 and P2 are defined in footnote e. g. A small additional error is possible. In FFT sweeps, this error is possible for spans under 4.01 kHz. For non-FFT
measurements, it is possible for RBWs of 3.9 kHz or less. The error is well within the range of ±0.0021 × (P1 ­P2) subject to a maximum of ±0.005 dB. (The maximum dominates for all but very small differences.) P1 and P2 are defined in footnote e.
Description Specifications Supplemental Information
Available Detectors Normal, Peak, Sample, Negative Peak,
Average
Average detector works on RMS, Voltage and Logarithmic scales
4 2
EXA Signal Analyzer Dynamic Range
Dynamic Range
Gain Compression
Description Specifications Supplemental Information
1 dB Gain Compression Point (Two-tone)
20 MHz to 26.5 GHz (Option 526) +9 dBm (nominal)
20 MHz to 26.5 GHz (Option >526) +6 dBm (nominal)
26.5 to 44 GHz (Option >526) 0 dBm (nominal)
Clipping (ADC Over-range)
Any signal offset 10 dBm
Signal offset > 5 times IF prefilter bandwidth and IF Gain set to Low
IF Prefilter Bandwidth
Zero Span or Sweep Type = FFT, –3 dB Bandwidth
f
Swept
, RBW =
3.9 kHz <4.01 kHz 8.9 kHz
FFT Width = (nominal)
abc
Maximum power at
d
mixer
(nominal)
Low frequency exceptions
+12 dBm (nominal)
e
4.3 to 27 kHz <28.81 kHz 79 kHz
30 to 160 kHz <167.4 kHz 303 kHz
180 to 390 kHz <411.9 kHz 966 kHz
430 kHz to 8 MHz <7.99 MHz 10.9 MHz
a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to incorrectly measure
on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
b. Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally equal the specification
for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.
43
EXA Signal Analyzer Dynamic Range
c. Reference level and off-screen performance: The reference level (RL) behavior differs from some earlier analyz-
ers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarith­mic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a mea­surement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation, compression, and display scale fidel­ity) and small signal effects (noise), the measurement results can change with RL changes when the input atten-
uation is set to auto. d. Mixer power level (dBm) = input power (dBm) input attenuation (dB). e. The ADC clipping level declines at low frequencies (below 50 MHz) when the LO feedthrough (the signal that
appears at 0 Hz) is within 5 times the prefilter bandwidth (see table) and must be handled by the ADC. For
example, with a 300 kHz RBW and prefilter bandwidth at 966 kHz, the clipping level reduces for signal frequen-
cies below 4.83 MHz. For signal frequencies below 2.5 times the prefilter bandwidth, there will be additional
reduction due to the presence of the image signal (the signal that appears at the negative of the input signal fre-
quency) at the ADC. f. This table applies without Option FS1 or FS2, fast sweep, enabled. Option FS1 or FS2 is only enabled if the
license for FS1 or FS2 is present and one or more of the following options are also present:B40, MPB, or DP2.
With Option FS1 or FS2, this table applies for sweep rates that are manually chosen to be the same as or
slower than "traditional" sweep rates, instead of the much faster sweep rates, such as autocoupled sweep rates,
available with FS1. Sweep rate is defined to be span divided by sweep time. If the sweep rate is 1.1 times
RBW-squared, the table applies. Otherwise, compute an "effective RBW" = Span / (SweepTime × RBW). To
determine the IF Prefilter Bandwidth, look up this effective RBW in the table instead of the actual RBW. For
example, for RBW = 3 kHz, Span = 300 kHz, and Sweep time = 42 ms, we compute that Sweep Rate = 7.1
MHz/s, while RBW-squared is 9 MHz/s. So the Sweep Rate is < 1.1 times RBW-squared and the table applies;
row 1 shows the IF Prefilter Bandwidth is nominally 8.9 kHz. If the sweep time is 1 ms, then the effective RBW
computes to 100 kHz. This would result in an IF Prefilter Bandwidth from the third row, nominally 303 kHz.
4 4
EXA Signal Analyzer Dynamic Range
Displayed Average Noise Level
Description Specifications Supplemental
Information
Displayed Average Noise Level (DANL)
a
Input terminated Sample or Average detector Averaging type = Log
Refer to the footnote for
Band Overlaps on page 20.
0 dB input attenuation IF Gain = High
1 Hz Resolution Bandwidth
mmW without Option B40, DP2, or MPB
mmW with Option B40, DP2, or MPB
RF/μW(Option 503, 507, 513, or 526)
20 to 30°CFull range Typical
10 Hz x
20 Hz x
100 Hz x
1 kHz x
x x –90 dBm (nominal)
x x –100 dBm (nominal)
x x –110 dBm (nominal)
x x –120 dBm (nominal)
9 kHz to 1 MHz x –125 dBm (nominal)
9 kHz to 1 MHz
x x 130 dBm
1 to 10 MHz
1 MHz to 1.2 GHz
b
x 147 dBm 145 dBm 149 dBm
x x 152 dBm 151 dBm 155 dBm
10 MHz to 2.1 GHz x 148 dBm 146 dBm 150 dBm
1.2 to 2.1 GHz
x x 151 dBm 150 dBm 154 dBm
2.1 to 3.6 GHz x 147 dBm 145 dBm 149 dBm
2.1 to 3.6 GHz
x x 149 dBm 148 dBm 152 dBm
3.5 to 7 GHz x 147 dBm 145 dBm 149 dBm
3.5 to 4.2 GHz
3.5 to 4.2 GHz
3.6 to 3.7 x
x 142 dBm 140 dBm 146 dBm
x 144 dBm 142 dBm 147 dBm
See note
4.2 to 8.4 GHz x 143 dBm 141 dBm 148 dBm
4.2 to 8.4 GHz
x 145 dBm 143 dBm 150 dBm
c
45
EXA Signal Analyzer Dynamic Range
Description Specifications Supplemental
Information
7 to 13.6 GHz x 143 dBm 141 dBm 147 dBm
8.3 to 13.6 GHz
8.3 to 13.6 GHz
x 145 dBm 143 dBm 148 dBm
x 147 dBm 145 dBm 150 dBm
13.5 to 20 GHz x 137 dBm 134 dBm 142 dBm
13.5 to 20 GHz
13.5 to 20 GHz
x 142 dBm 140 dBm 146 dBm
x 145 dBm 143 dBm 148 dBm
20 to 26.5 GHz x 134 dBm 130 dBm 140 dBm
20 to 26.5 GHz
20 to 26.5 GHz
26.4 to 34 GHz
26.4 to 34 GHz
33.9 to 44 GHz
33.9 to 44 GHz
Additional DANL, IF Gain=Low
d
x 139 dBm 137 dBm 143 dBm
x 142 dBm 140 dBm 145 dBm
x 137 dBm 133 dBm 142 dBm
x 140 dBm 136 dBm 144 dBm
x 131 dBm 127 dBm 137 dBm
x 135 dBm 131 dBm 140 dBm
x x x 160.5 dBm (nominal)
a. DANL for zero span and swept is measured in a 1 kHz RBW and normalized to the narrowest available RBW,
because the noise figure does not depend on RBW and 1 kHz measurements are faster. b. DANL below 10 MHz is affected by phase noise around the LO feedthrough signal. Specifications apply with the
best setting of the Phase Noise Optimization control, which is to choose the “Best Close-in φ Noise" for fre-
quencies below 25 kHz, and “Best Wide Offset φ Noise" for frequencies above 25 kHz. c. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency option 507, 513 or 526 and S/N US55370107, MY56070764, or SG56070701. Band 0 can also be extendable in earlier instruments with firmware of version A.18.05 or later and a field adjustment to perform that extension. Subject to these conditions, statistical observations show that performance nominally fits within the same range within the 3.6 to 3.7 GHz frequencies as within the next lower specified frequency range, but is not warranted. d. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, bet-
ter compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto
coupling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case.
That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on
center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the pow-
ers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANLtotal = 10 ×
log (10^(DANLhigh/10) + 10^(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT
IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low
settings.
4 6
EXA Signal Analyzer Dynamic Range
Spurious Responses
Description Specifications Supplemental Information
Spurious Responses
Preamp Off
a
(see Band Overlaps on page 20)
Residual Responses
200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies
b
100 dBm
100 dBm (nominal)
Image Responses
Tuned Freq (f) Excitation Freq
Mixer Level
c
Response
10 MHz to 26.5 GHz f+45 MHz 10 dBm 75 dBc 99 dBc (typical)
10 MHz to 3.6 GHz f+10245 MHz 10 dBm 80 dBc 103 dBc (typical)
10 MHz to 3.6 GHz f+645 MHz 10 dBm 80 dBc 107 dBc (typical)
3.5 to 13.6 GHz f+645 MHz 10 dBm 75 dBc 87 dBc (typical)
13.5 to 17.1 GHz f+645 MHz 10 dBm 71 dBc 85 dBc (typical)
17.0 to 22 GHz f+645 MHz 10 dBm 68 dBc 82 dBc (typical)
22 to 26.5 GHz f+645 MHz 10 dBm 66 dBc 78 dBc (typical)
26.5 to 34.5 GHz f+645 MHz 30 dBm –70 dBc –94 dBc (typical)
34.4 to 44 GHz f+645 MHz 30 dBm –60 dBc –79 dBc (typical)
Other Spurious Responses
Carrier Frequency ≤26.5 GHz
First RF Order
d
(f 10 MHz from carrier)
Higher RF Order
f
(f 10 MHz from carrier)
Carrier Frequency >26.5 GHz
First RF Order
d
10 dBm
68 dBc + 20
e
× log(N
)
40 dBm 80 dBc + 20
e
× log(N
)
30 dBm
Includes IF feedthrough, LO harmonic mixing responses
Includes higher order mixer responses
–90 dBc (nominal)
(f 10 MHz from carrier)
Higher RF Order
f
30 dBm –90 dBc (nominal)
(f 10 MHz from carrier)
LO-Related Spurious Responses
(f > 600 MHz from carrier 10 MHz to 3.6 GHz)
10 dBm
60 dBc
20 × log(N
g
90 dBc + 20 × log(N)
+
(typical)
e
)
47
EXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Sidebands, offset from CW signal
200 Hz
200 Hz to 3 kHz
70 dBc
73 dBc
g
(nominal)
g
(nominal)
3 kHz to 30 kHz 73 dBc (nominal)
30 kHz to 10 MHz 80 dBc (nominal)
a. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, per-
formance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level Input
Attenuation + Preamp Gain b. Input terminated, 0 dB input attenuation. c. Mixer Level = Input Level Input Attenuation. d. With first RF order spurious products, the indicated frequency will change at the same rate as the input, with
higher order, the indicated frequency will change at a rate faster than the input. e. N is the LO multiplication factor. f. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change at a rate faster
than the input frequency. g. Nominally 40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.
4 8
EXA Signal Analyzer Dynamic Range
Second Harmonic Distortion
Description Specifications Supplemental Information
a
SHI
Second Harmonic Distortion
Option 532, or 544 (mmW)
Option 503, 507, 513, or 526 (RF/μW)
(nominal)
10 MHz to 1.8 GHz x
1.8 to 7 GHz x +65 dBm
1.8 to 6.5 GHz
7 to 11 GHz x +55 dBm
6.5 to 10 GHz
11 to 13.25 GHz x +50 dBm
10 to 13.25 GHz
13.25 to 22 GHz
a. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic
distortion level relative to the mixer tone in dBc.
x +45 dBm
x +65 dBm
x +60 dBm
x +55 dBm
x +50 dBm
49
EXA Signal Analyzer Dynamic Range
Third Order Intermodulation
Description Specifications Supplemental Information
Third Order Intermodulation
Refer to the footnote for
Band Overlaps on page 20.
(Tone separation > 5 times IF Prefilter Bandwidth Verification conditions
a
b
)
mmW Option 532, or 544
RF/μW Option 526 (SN prefix <MY/SG/US5340)
RF/µW Option 526 (SN prefix MY/SG/US5648> SN prefix ≥MY/SG/US5340, ship standard with N9010A-EP3, SN prefix ≥MY/SG/US5648, ship standard with N9010A-EP5)
20 to 30°C
Intercept
c
Intercept (typical)
10 to 100 MHz
x +12 dBm +17 dBm
100 to 400 MHz x +13 dBm +17 dBm
100 to 400 MHz
x +10 dBm +14 dBm
400 MHz to 3.6 GHz x +14 dBm +18 dBm
400 MHz to 1.7 GHz
x +11 dBm +15 dBm
1.7 to 3.6 GHz x +13 dBm +17 dBm
100 MHz to 3.95 GHz x +15 dBm +19 dBm
3.6 to 3.7 (Band 0) x
See note
3.6 to 13.6 GHz x +14 dBm +18 dBm
3.6 to 5.1 GHz
x +11 dBm +17 dBm
5.1 to 7 GHz x +13 dBm +17 dBm
3.95 to 8.4 GHz x +15 dBm +18 dBm
7 to 13.6 GHz x +11 dBm +15 dBm
8.3 to 13.6 GHz x +15 dBm +18 dBm
13.6 to 26.5 GHz x +12 dBm +16 dBm
13.6 to 26.5 GHz
x +9 dBm +14 dBm
13.5 to 17.1 GHz x +11 dBm +17 dBm
d
5 0
EXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
17.0 to 26.5 GHz
26.5 to 44 GHz
Full temperature range
10 to 100 MHz
100 to 400 MHz x +10 dBm
100 to 400 MHz
400 MHz to 3.6 GHz x +12 dBm
400 MHz to 1.7 GHz
1.7 to 3.6 GHz x +12 dBm
100 MHz to 3.95 GHz x +13 dBm
3.6 to 13.6 GHz x +12 dBm
3.6 to 5.1 GHz
5.1 to 7 GHz x +12 dBm
3.95 to 8.4 GHz x +13 dBm
7 to 13.6 GHz x +10 dBm
x +10 dBm +17 dBm (nominal)
x +13 dBm (nominal)
x +10 dBm
x +9 dBm
x +10 dBm
x +10 dBm
8.3 to 13.6 GHz x +13 dBm
13.6 to 26.5 GHz x +10 dBm
13.6 to 26.5 GHz
13.5 to 17.1 GHz x +9 dBm
17.0 to 26.5 GHz x +8 dBm
a. See the IF Prefilter Bandwidth table in the Gain Compression specifications on page 43. When the tone sepa-
ration condition is met, the effect on TOI of the setting of IF Gain is negligible. TOI is verified with IF Gain set to
its best case condition, which is IF Gain = Low. b. TOI is verified with two tones, each at 18 dBm at the mixer, spaced by 100 kHz. c. Intercept = TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distortion/2)
where distortion is the relative level of the distortion tones in dBc. d. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency Option 507, 513 or 526 and S/N US55370107, MY56070764, or SG56070701. Band 0 can also be extend-
able in earlier instruments with firmware of version A.18.05 or later and a field adjustment to perform that
extension. Subject to these conditions, statistical observations show that performance nominally fits within the
same range within the 3.6 to 3.7 GHz frequencies as within the next lower specified frequency range, but is not
warranted.
x +7 dBm
51
EXA Signal Analyzer Dynamic Range
Nominal Dynamic Range vs. Offset Frequency vs. RBW for Freq Option 526 [Plot] (MY/SG/US5648>SN prefix MY/SG/US5340, ship standard with N9010A-EP3, SN prefix MY/SG/US5648, ship standard with N9010A-EP5)
Nominal Dynamic Range vs. Offset Frequency vs. RBW for Freq Option 526 [Plot] (SN prefix <MY/SG/US5340)
5 2
EXA Signal Analyzer Dynamic Range
Nominal Dynamic Range at 1 GHz for Freq Option 526 [Plot]
Nominal Dynamic Range Bands 1-4 for Freq Option 526 [Plot]
53
EXA Signal Analyzer Dynamic Range
Phase Noise
Description Specifications Supplemental Information
Phase Noise Noise Sidebands
(Center Frequency = 1 GHz Optimization Internal Reference
b
,
c
a
, Best-case
)
mmW Option 532, or 544 (SN prefix < MY/SG/US5648)
RF/µW Option 526, (SN prefix < MY/SG/US5340)
RF/μW Option 526, (MY/SG/US5648> SN prefix ≥MY/SG/US5340, ship standard with N9010A-EP3)
Option 503, 507, 513, 526, 532 or 544 (SN prefix MY/SG/US5648), ship standard with N9010A-EP5)
20 to 30°CFull range Typical
100 Hz x –87 dBc/Hz –86 dBc/Hz –102 dBc/Hz
100 Hz
x x x –84 dBc/Hz –82 dBc/Hz –88 dBc/Hz
1 kHz x –110 dBc/Hz (nominal)
1 kHz
1 kHz
x x –98 dBc/Hz (nominal)
x 101 dBc/Hz (nominal)
10 kHz x –107 dBc/Hz –106 dBc/Hz –109 dBc/Hz
10 kHz
10 kHz
10 kHz
x –103 dBc/Hz –101 dBc/Hz –105 dBc/Hz
x –99 dBc/Hz –98 dBc/Hz –102 dBc/Hz
x –103 dBc/Hz –101 dBc/Hz –106 dBc/Hz
100 kHz x –115 dBc/Hz –114 dBc/Hz –118 dBc/Hz
100 kHz
100 kHz
100 kHz
x –115 dBc/Hz –114 dBc/Hz –117 dBc/Hz
x –112 dBc/Hz –111 dBc/Hz –114 dBc/Hz
x –115 dBc/Hz –114 dBc/Hz –116 dBc/Hz
5 4
EXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
1 MHz x –134 dBc/Hz –134 dBc/Hz –136 dBc/Hz
1 MHz
1 MHz
1 MHz
10 MHz x
x –135 dBc/Hz –134 dBc/Hz –137 dBc/Hz
x –132 dBc/Hz –131 dBc/Hz –135 dBc/Hz
x –135 dBc/Hz –134 dBc/Hz –137 dBc/Hz
–148 dBc/Hz (nominal)
10 MHz x –148 dBc/Hz (nominal)
10 MHz
10 MHz
x –143 dBc/Hz (nominal)
x –149 dBc/Hz (nominal)
a. The nominal performance of the phase noise at center frequencies different than the one at which the specifica-
tions apply (1 GHz) depends on the center frequency, band and the offset. For low offset frequencies, offsets well under 100 Hz, the phase noise increases by 20 × log[(f + 0.3225)/1.3225]. For mid-offset frequencies such as 10 kHz, band 0 phase noise increases as 20 × log[(f + 5.1225)/6.1225]. For mid-offset frequencies in other bands, phase noise changes as 20 × log[(f + 0.3225)/6.1225] except f in this expression should never be lower than 5.8. For wide offset frequencies, offsets above about 100 kHz, phase noise increases as 20 × log(N). N is the LO Multi­ple as shown on page 20; f is in GHz units in all these relationships; all increases are in units of decibels.
b. Noise sidebands for lower offset frequencies, for example, 10 kHz, apply with the phase noise optimization
(PhNoise Opt) set to Best Close-in φ Noise. Noise sidebands for higher offset frequencies, for example, 1 MHz, as shown apply with the phase noise optimization set to Best Wide-offset φ Noise.
c. Specifications are given with the internal frequency reference. The phase noise at offsets below 100 Hz is
impacted or dominated by noise from the reference. Thus, performance with external references will not follow the curves and specifications. The internal 10 MHz reference phase noise is about –120 dBc/Hz at 10 Hz offset; exter­nal references with poorer phase noise than this will cause poorer performance than shown.
d. –147 dBc/Hz (nominal), for Option 503, 507, 513 or 526.
d
55
EXA Signal Analyzer Dynamic Range
Nominal Phase Noise of Different LO Optimizations [Plot] (MY/SG/US5648>SN prefix MY/SG/US5340, Ship standard with N9010A-EP3)
Nominal Phase Noise of Different LO Optimizations for Freq Option 526 [Plot] (SN prefix <MY/SG/US5340)
5 6
EXA Signal Analyzer Dynamic Range
Nominal Phase Noise of Different LO Optimizations [Plot] (SN prefix MY/SG/US5648, Ship standard with N9010A-EP5)
57
EXA Signal Analyzer Dynamic Range
Nominal Phase Noise of Different Center Frequencies [Plot] (MY/SG/US5648>SN prefix MY/SG/US5340, Ship standard with N9010A-EP3)
Nominal Phase Noise of Different Center Frequencies for Freq Option 526 [Plot] (SN prefix <MY/SG/US5340)
5 8
EXA Signal Analyzer Dynamic Range
Nominal Phase Noise of Different Center Frequencies [Plot] (SN prefix MY/SG/US5648, Ship standard with N9010A-EP5)
59
EXA Signal Analyzer Power Suite Measurements
Power Suite Measurements
The specifications for this section apply only to instruments with Frequency Option 503, 507, 513, or 526. For instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.
Description Specifications Supplemental Information
Channel Power
Amplitude Accuracy
Case: Radio Std = 3GPP W-CDMA, or IS-95
Absolute Power Accuracy
(20 to 30°C, Attenuation = 10 dB)
a. See “Absolute Amplitude Accuracy” on page 38. b. See “Frequency and Time” on page 20. c. Expressed in dB.
Description Specifications Supplemental Information
Occupied Bandwidth
Frequency Accuracy ±(Span/1000) (nominal)
±1.04 dB
Absolute Amplitude Accuracy Power Bandwidth Accuracy
±0.27 dB (95th percentile)
a
+
bc
6 0
EXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Adjacent Channel Power (ACP)
Case: Radio Std = None
Accuracy of ACP Ratio (dBc)
Accuracy of ACP Absolute Power (dBm or dBm/Hz)
Accuracy of Carrier Power (dBm), or Carrier Power PSD (dBm/Hz)
Passband Width
e
Case: Radio Std = 3GPP W-CDMA
Display Scale Fidelity
Absolute Amplitude Accuracy Power Bandwidth Accuracy
Absolute Amplitude Accuracy Power Bandwidth Accuracy
3 dB
(ACPR; ACLR)
a
b
+
cd
b
+
cd
f
Minimum power at RF Input −36 dBm (nominal)
ACPR Accuracy
g
RRC weighted, 3.84 MHz noise bandwidth, method RBW
Radio Offset Freq
MS (UE) 5 MHz ±0.18 dB At ACPR range of 30 to 36 dBc with optimum
mixer level
h
MS (UE) 10 MHz ±0.23 dB At ACPR range of 40 to 46 dBc with optimum
mixer level
i
BTS 5 MHz ±0.79 dB At ACPR range of 42 to 48 dBc with optimum
mixer level
j
BTS 10 MHz ±0.61 dB At ACPR range of 47 to 53 dBc with optimum
i
k
BTS 5 MHz ±0.34 dB
mixer level
At 48 dBc non-coherent ACPR
Dynamic Range RRC weighted, 3.84 MHz noise
bandwidth
l
Noise Correction
Offset Freq
Method
ACLR (typical)
Optimum MLm (Nominal)
Off 5 MHz Filtered IBW 68 dB 8 dBm
Off 5 MHz Fast 67 dB 9 dBm
Off 10 MHz Filtered IBW 74 dB 2 dBm
On 5 MHz Filtered IBW 73 dB 8 dBm
On 10 MHz Filtered IBW 76 dB 2 dBm
61
EXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
RRC Weighting Accuracy
White noise in Adjacent Channel TOI-induced spectrum rms CW error
n
0.00 dB nominal
0.001 dB nominal
0.012 dB nominal
a. The effect of scale fidelity on the ratio of two powers is called the relative scale fidelity. The scale fidelity speci-
fied in the Amplitude section is an absolute scale fidelity with –35 dBm at the input mixer as the reference point.
The relative scale fidelity is nominally only 0.01 dB larger than the absolute scale fidelity. b. See Amplitude Accuracy and Range section. c. See Frequency and Time section. d. Expressed in decibels. e. An ACP measurement measures the power in adjacent channels. The shape of the response versus frequency of
those adjacent channels is occasionally critical. One parameter of the shape is its 3 dB bandwidth. When the
bandwidth (called the Ref BW) of the adjacent channel is set, it is the 3 dB bandwidth that is set. The passband
response is given by the convolution of two functions: a rectangle of width equal to Ref BW and the power
response versus frequency of the RBW filter used. Measurements and specifications of analog radio ACPs are
often based on defined bandwidths of measuring receivers, and these are defined by their 6 dB widths, not
their 3 dB widths. To achieve a passband whose 6 dB width is x, set the Ref BW to be x 0.572 × RBW. f. Most versions of adjacent channel power measurements use negative numbers, in units of dBc, to refer to the
power in an adjacent channel relative to the power in a main channel, in accordance with ITU standards. The
standards for W-CDMA analysis include ACLR, a positive number represented in dB units. In order to be consis-
tent with other kinds of ACP measurements, this measurement and its specifications will use negative dBc
results, and refer to them as ACPR, instead of positive dB results referred to as ACLR. The ACLR can be deter-
mined from the ACPR reported by merely reversing the sign. g. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distor-
tion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst
case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this spec-
ifications table, the optimum mixer drive level for accuracy is approximately −37 dBm − (ACPR/3), where the
ACPR is given in (negative) decibels. h. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the
required 33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is
−22 dBm, so the input attenuation must be set as close as possible to the average input power (−22 dBm).
For example, if the average input power is −6 dBm, set the attenuation to 16 dB. This specification applies for
the normal 3.5 dB peak-to-average ratio of a single code. Note that, if the mixer level is set to optimize dynamic
range instead of accuracy, accuracy errors are nominally doubled. i. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of
14 dBm.
j. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B
Base Transmission Station (BTS) within 3 dB of the required 45 dBc ACPR. This optimum mixer level is −19
dBm, so the input attenuation must be set as close as possible to the average input power − (−19 dBm). For
example, if the average input power is 7 dBm, set the attenuation to 12 dB. This specification applies for the
normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1. Note that, if the mixer level is set to
optimize dynamic range instead of accuracy, accuracy errors are nominally doubled. k. Accuracy can be excellent even at low ACPR levels assuming that the user sets the mixer level to optimize the
dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the
UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contribution of
analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity
errors. This incoherent addition case is commonly used in the industry and can be useful for comparison of
analysis equipment, but this incoherent addition model is rarely justified. This derived accuracy specification is
based on a mixer level of 14 dBm.
6 2
EXA Signal Analyzer Power Suite Measurements
l. Keysight measures 100% of the signal analyzers for dynamic range in the factory production process. This mea-
surement requires a near-ideal signal, which is impractical for field and customer use. Because field verification
is impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this “typical”
specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical.
The ACPR dynamic range is verified only at 2 GHz, where Keysight has the near-perfect signal available. The
dynamic range is specified for the optimum mixer drive level, which is different in different instruments and dif-
ferent conditions. The test signal is a 1 DPCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty. m. ML is Mixer Level, which is defined to be the input signal level minus attenuation. n. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the
passband shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This
footnote discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of
the RBW used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommo-
date the RBW filter. The effectiveness of this compensation is summarized in three ways:
White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a
spectrum that is flat across its width.
TOIinduced spectrum: If the spectrum is due to thirdorder intermodulation, it has a distinctive shape. The
computed errors of the compensated filter are 0.001 dB for the 100 kHz RBW used for UE testing with the
IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing with the Filtered IBW method. The
worst error for RBWs between 27 and 390 kHz is 0.05 dB for a 330 kHz RBW filter.
rms CW error: This error is a measure of the error in measuring a CWlike spurious component. It is evaluated
by computing the root of the mean of the square of the power error across all frequencies within the adjacent
channel. The computed rms error of the compensated filter is 0.012 dB for the 100 kHz RBW used for UE test-
ing with the IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing. The worst error for
RBWs between 27 kHz and 470 kHz is 0.057 dB for a 430 kHz RBW filter.
Description Specifications Supplemental Information
Power Statistics CCDF
Histogram Resolution
a
0.01 dB
a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power
envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.
63
EXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Burst Power
Methods Power above threshold
Power within burst width
Results Output power, average
Output power, single burst Maximum power Minimum power within burst Burst width
Description Specifications Supplemental Information
TOI (Third Order Intermodulation)
Results Relative IM tone powers (dBc)
Absolute tone powers (dBm)
Intercept (dBm)
Description Specifications Supplemental Information
Harmonic Distortion
Maximum harmonic number 10th
Results Fundamental Power (dBm)
Relative harmonics power (dBc)
Total harmonic distortion (%, dBc)
Measures TOI of a signal with two dominant tones
6 4
EXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Spurious Emissions Table-driven spurious signals;
search across regions
Case: Radio Std = 3GPP W-CDMA
Dynamic Range
a
, relative (RBW=1 MHz)
76.9 dB 77.4 dB (typical)
(1 to 3.6 GHz)
Sensitivity
b
, absolute (RBW=1 MHz)
82.5 dBm 86.5 dBm (typical)
(1 to 3.6 GHz)
Accuracy Attenuation = 10 dB
9 kHz to 3.6 GHz ±0.38 dB (95th percentile)
3.5 to 8.4 GHz ±1.22 dB (95th percentile)
8.3 to 13.6 GHz ±1.59 dB (95th percentile)
a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression
point, which will degrade accuracy 1 dB.
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the
dynamic range at far offset from 1 dB compression mixer level and sensitivity.
65
EXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Spectrum Emission Mask Table-driven spurious signals;
measurement near carriers
Case: Radio Std = cdma2000
Dynamic Range, relative (750 kHz offset
ab
)
Sensitivity, absolute (750 kHz offset
c
)
Accuracy (750 kHz offset)
Relative
Absolute
d
e
(20 to 30°C)
Case: Radio Std = 3GPP W−CDMA
Dynamic Range, relative (2.515 MHz offset
ad
)
Sensitivity, absolute (2.515 MHz offset
c
)
Accuracy (2.515 MHz offset)
Relative
d
74.3 dB 81.4 dB (typical)
97.7 dBm 101.7 dBm (typical)
±0.12 dB
±1.15 dB ±0.31 dB (95th percentile 2σ)
78.5 dB 84.2 dB (typical)
97.7 dBm 101.7 dBm (typical)
±0.15 dB
Absolute
e
±1.15 dB
±0.31 dB (95th percentile 2σ)
(20 to 30°C)
a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The
dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about 18 dBm. Mixer level is
defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is
tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz.
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for
spectrum emission levels in the offsets that are well above the dynamic range limitation.
e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See
“Absolute Amplitude Accuracy” on page 38 for more information. The numbers shown are for 0 to 3.6
GHz, with attenuation set to 10 dB.
6 6
EXA Signal Analyzer Options
Options
The following options and applications affect instrument specifications.
Option 503: Frequency range, 10 Hz to 3.6 GHz
Option 507: Frequency range, 10 Hz to 7 GHz
Option 513: Frequency range, 10 Hz to 13.6 GHz
Option 526: Frequency range, 10 Hz to 26.5 GHz
Option 532: Frequency range, 10 Hz to 32 GHz
Option 544: Frequency range, 10 Hz to 44 GHz
Option B25: Analysis bandwidth, 25 MHz
Option B40: Analysis bandwidth, 40 MHz
Option CR3: Connector Rear, second IF Out
Option CRP: Connector Rear, arbitrary IF Out
Option EA3: Electronic attenuator, 3.6 GHz
Option EMC: Precompliance EMC Features
Option ESC: External source control
Option EXM: External mixing
Option FSA: 2 dB fine step attenuator
Option MPB: Preselector bypass
Option NFE: Noise floor extension, instrument alignment
Option P03: Preamplifier, 3.6 GHz
Option P07: Preamplifier, 7 GHz
Option P13: Preamplifier, 13.6 GHz
Option P26: Preamplifier, 26.5 GHz
Option P32: Preamplifier, 32 GHz
Option P44: Preamplifier, 44 GHz
Option PFR: Precision frequency reference
Option TDS: Time domain scan
Option YAS: Y-Axis Screen Video output
N6149A: iDEN/WiDEN/MotoTalk measurement application
N6152A: Digital Cable TV measurement application
N6153A: DVB-T/H measurement application
67
EXA Signal Analyzer Options
N6155A: ISDB-T with T2 measurement application
N6156A: DTMB measurement application
N6158A: CMMB measurement application
N9051A: Pulse measurement software
N9063A: Analog Demodulation measurement application
N9064A: VXA Vector Signal and WLAN measurement application
N9068A: Phase Noise measurement application
N9069A: Noise Figure measurement application
N9071A: GSM/EDGE/EDGE Evolution measurement application
N9072A: cdma2000/cdmaOne measurement application
N9073A: W-CDMA/HSPA/HSPA+ measurement application
N9074A: Single Acquisition Combined Fixed WiMAX measurement application
N9075A: 802.16 OFDMA measurement application
N9076A: 1xEV-DO measurement application
N9077A: WLAN measurement application
N9079A: TD-SCDMA measurement application
N9080A: LTE-FDD measurement application
N9080B: LTE-Advanced FDD measurement application
N9081A: Bluetooth measurement application
N9082A: LTE-TDD measurement application
N9082B: LTE-Advanced TDD measurement application
N9083A: Multi-Standard Radio (MSR) measurement application
6 8
EXA Signal Analyzer General
General
Description Specifications Supplemental Information
Calibration Cycle 2 years
Description Specifications Supplemental Information
Temperature Range
Operating
a
Altitude ≤ 2,300 m0 to 55°C
Altitude = 4,500 m 0 to 47°C
Derating
Storage
Altitude
b
c
d
40 to +70°C
4,500 m (approx 15,000 feet)
Humidity
Relative humidity Type tested at 95%, +40°C
(non-condensing)
a. For earlier instruments (S/N prefix <MY/SG/US5052), the operating temperature ranges from 5 to 50°C. b. The maximum operating temperature derates linearly from altitude of 4,500 m to 2,300 m. c. For earlier instruments (S/N prefix <MY/SG/US5052), and installed with hard disk drives, the storage tempera-
ture ranges from –40 to +65°C.
d. For earlier instrument (S/N prefix <MY/SG/US5052), the altitude was specified as 3,000 m (approximately
10,000 feet).
Description Specifications Supplemental Information
Environmental and Military Specifications
Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of Storage, Transportation and End-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
69
EXA Signal Analyzer General
Description Specifications
EMC Complies with the essential requirements of the European EMC Directive as well as
current editions of the following standards (dates and editions are cited in the Declaration of Conformity):
— IEC/EN 61326-1 or IEC/EN 61326-2-1 — CISPR 11 Group 1, Class A — AS/NZS CISPR 11 —ICES/NMB-001
This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB-001 du Canada.
Acoustic statement (European Machinery Directive 2002/42/EC, 1.7.4.2u
Acoustic noise emission
LpA <70 dB
Operator position
Normal operation mode
Description Specification Supplemental Information
Acoustic Noise--Further Information
Ambient Temperature
< 40°C Nominally under 55 dBA Sound Pressure. 55 dBA is generally
40°C Nominally under 65 dBA Sound Pressure. 65 dBA is generally
Description Specifications
Safety Complies with European Low Voltage Directive 2006/95/EC
— IEC/EN 61010-1 3rd Edition — Canada: CSA C22.2 No. 61010-1-12 — USA: UL 61010-1 3rd Edition
Values given are per ISO 7779 standard in the "Operator Sitting" position
considered suitable for use in quiet office environments.
considered suitable for use in noisy office environments. (The fan speed, and thus the noise level, increases with increasing ambient temperature.)
7 0
EXA Signal Analyzer General
Description Specification Supplemental Information
Power Requirements
a
Low Range
Voltage 100/120 V
Frequency
Serial Prefix < MY4801,
50/60 Hz
SG4801, or US4801
Serial Prefix MY4801,
50/60/400 Hz
SG4801, or US4801
High Range
Voltage 220/240 V
Frequency 50/60 Hz
Power Consumption, On 350 W Maximum
Power Consumption, Standby 20 W Standby power is not supplied to
frequency reference oscillator.
Typical instrument configuration Power (nominal)
Base 3.6 GHz instrument (N9010A-503) 176 W
Base 7 GHz instrument (N9010A-507) 179 W
Base 13 GHz instrument (N9010A-513) 183 W
Base 26.5 GHz instrument (N9010A-526) 194 W
Base 32/44 GHz instrument (N9010A-532/544) 225 W
Adding Option B40, MPB, or DP2 to base instrument +45 W
a. Mains supply voltage fluctuations are not to exceed 10% of the nominal supply voltage.
71
EXA Signal Analyzer General
Description Supplemental Information
Measurement Speed
a
Nominal
Standard w/ Option PC4
Local measurement and display update rate
Remote measurement and LAN transfer rate
bc
bc
11 ms (90/s) 4 ms (250/s)
6 ms (167/s) 5 ms (200/s)
Marker Peak Search 5 ms 1.5 ms
Center Frequency Tune and Transfer (RF) 22 ms 20 ms
Center Frequency Tune and Transfer (µW) 49 ms 47 ms
Measurement/Mode Switching 75 ms 39 ms
Measurement Time vs. Span See page 29
a. Sweep Points = 101. b. Factory preset, fixed center frequency, RBW = 1 MHz, 10 MHz < span 600 MHz, stop frequency 3.6 GHz,
Auto Align Off.
c. Phase Noise Optimization set to Fast Tuning, Display Off, 32 bit integer format, markers Off, single sweep, mea-
sured with IBM compatible PC with 2.99 GHz Pentium® 4 with 2 GB RAM running Windows® XP, Keysight I/O Libraries Suite Version 14.1, one meter GPIB cable, National Instruments PCI-GPIB Card and NI-488.2 DLL.
Description Specifications Supplemental Information
Display
a
Resolution 1024 × 768 XGA
Size 213 mm (8.4 in) diagonal (nominal)
a. The LCD display is manufactured using high precision technology. However, there may be up to six bright points
(white, blue, red or green in color) that constantly appear on the LCD screen. These points are normal in the manufacturing process and do not affect the measurement integrity of the product in any way.
7 2
EXA Signal Analyzer General
Description Specifications Supplemental Information
Data Storage
Standard
Internal Total
Removable solid state drive (> 120 GB)
a
Internal User 9 GB available for user data
a. For earlier instruments (S/N<MY/SG/US5537), a removable solid state drive (> 80 GB) was installed with
Option PC4. For earlier instruments (<MY50210341/SG50210026/US50210103), a removable hard disk drive (>80 GB) was installed with Option PC2 unless Option SSD was ordered. For even older instruments, a fixed hard disk (40 GB) drive was installed.
Description Specifications Supplemental Information
Weight Weight without options
Net 18 kg (40 lbs) (nominal)
Shipping 30 kg (66 lbs) (nominal)
Cabinet Dimensions Cabinet dimensions exclude front and rear
Height 177 mm (7.0 in)
protrusions.
Width 426 mm (16.8 in)
Length 368 mm (14.5 in)
73
EXA Signal Analyzer Inputs/Outputs
Inputs/Outputs
Front Panel
Description Specifications Supplemental Information
RF Input
Connector
Standard Type-N female Frequency Option 503, 507, 513, and 526
2.4 mm male Frequency Option 532 and 544
Impedance 50Ω (nominal)
Description Specifications Supplemental Information
Probe Power
Voltage/Current +15 Vdc, ±7% at 0 to 150 mA (nominal)
12.6 Vdc, ±10% at 0 to 150 mA (nominal)
GND
Description Specifications Supplemental Information
USB 2.0 Ports See Rear Panel for other ports
Host (2 ports)
Connector USB Type “A” (female)
Output Current 0.5 A (nominal)
Description Specifications Supplemental Information
Headphone Jack
Connector miniature stereo audio jack 3.5 mm (also known as "1/8 inch")
Output Power 90 mW per channel into 16Ω (nominal)
7 4
EXA Signal Analyzer Inputs/Outputs
Rear Panel
Description Specifications Supplemental Information
10 MHz Out
Connector BNC female
Impedance 50Ω (nominal)
Output Amplitude 0 dBm (nominal)
Output Configuration AC coupled, sinusoidal
Frequency 10 MHz ×
(1 + frequency reference accuracy)
Description Specifications Supplemental Information
Ext Ref In
Connector BNC female Note: Analyzer noise sidebands and spurious
response performance may be affected by the quality of the external reference used. See
footnote within the Dynamic Range section on page 54.
Impedance 50Ω (nominal)
Input Amplitude Range
sine wave square wave
Input Frequency 10 MHz (nominal)
6
Lock range
Description Specifications Supplemental Information
Sync Reserved for future use
Connector BNC female
±2 × 10 reference input frequency
of ideal external
5 to +10 dBm (nominal)
0.2 to 1.5 V peak-to-peak (nominal)
c
in the Phase Noise specifications
75
EXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Trigger Inputs
(Trigger 1 In, Trigger 2 In)
Connector BNC female
Impedance 10 kΩ (nominal)
Trigger Level Range 5 to +5 V 1.5 V (TTL) factory preset
Description Specifications Supplemental Information
Trigger Outputs
(Trigger 1 Out, Trigger 2 Out)
Connector BNC female
Impedance 50Ω (nominal)
Level 0 to 5 V (CMOS)
Description Specifications Supplemental Information
Monitor Output
Connector
Format
Resolution
VGA compatible, 15-pin mini D-SUB
1024 × 768
Either trigger source may be selected
XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
Description Specifications Supplemental Information
Analog Out Refer to Chapter 17, “Option YAS - Y-Axis
Screen Video Output”, on page 167 for
more details.
Connector BNC female
Impedance
Without DP2, B40, or MPB 50Ω (nominal)
With DP2, B40, or MPB 50Ω (nominal)
7 6
EXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Noise Source Drive +28 V (Pulsed)
Connector BNC female
Output voltage on 28.0 ± 0.1 V 60 mA maximum current
Output voltage off < 1.0 V
Description Specs Supplemental Information
SNS Series Noise Source For use with Keysight Technologies SNS Series noise sources
Description Specifications Supplemental Information
Digital Bus This port is intended for use with the Keysight N5105 and N5106 products
Connector MDR-80
only. It is not available for general purpose use.
Description Specifications Supplemental Information
USB 2.0 Ports See Front Panel for additional ports
Host (3 ports
a
)
Connector USB Type “A” (female)
Output Current 0.5 A (nominal)
Device (1 port)
Connector USB Type “B” (female)
a. Earlier instruments with SN prefix <MY/SG/US55230000 shipped with 4 USB ports.
Description Specifications Supplemental Information
GPIB Interface
Connector IEEE-488 bus connector
GPIB Codes SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and
C28, DT1, L4, C0
Mode Controller or device
Description Specifications Supplemental Information
LAN TCP/IP Interface RJ45 Ethertwist
1000BaseT
a
a. 100BaseT for older instruments (S/N prefix <MY/SG/US5006) unless Option PC2 is installed.
77
EXA Signal Analyzer Regulatory Information
Regulatory Information
This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010 3rd ed, and 664 respectively.
This product has been designed and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
This product is intended for indoor use.
The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives.
ccr.keysight@keysight.co
The Keysight email address is required by EU directives applicable to our product.
m
ICES/NMB-001 “This ISM device complies with Canadian ICES-001.”
“Cet appareil ISM est conforme a la norme NMB du Canada.”
ISM 1-A (GRP.1 CLASS A) This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.
(CISPR 11, Clause 4)
The CSA mark is a registered trademark of the CSA International.
The RCM mark is a registered trademark of the Australian Communications and Media Authority.
This symbol indicates separate collection for electrical and electronic equipment mandated under EU law as of August 13, 2005. All electric and electronic equipment are required to be separated from normal waste for disposal (Reference WEEE Directive 2002/96/EC).
China RoHS regulations include requirements related to packaging, and require compliance to China standard GB18455-2001.
This symbol indicates compliance with the China RoHS regulations for paper/fiberboard packaging.
South Korean Certification (KC) mark; includes the marking’s identifier code which follows this format:
MSIP-REM-YYY-ZZZZZZZZZZZZZZ.
7 8
EXA Signal Analyzer Regulatory Information
EMC: Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):
— IEC/EN 61326-1
— CISPR 11, Group 1, Class A
— AS/NZS CISPR 11
— ICES/NMB-001
This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB-001 du Canada.
This is a sensitive measurement apparatus by design and may have some performance loss (up to 25 dBm above the Spurious Responses, Residual specification of -100 dBm) when exposed to ambient continuous electromagnetic phenomenon in the range of 80 MHz -2.7 GHz when tested per IEC 61000-4-3.
South Korean Class A EMC declaration:
This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference. This EMC statement applies to the equipment only for use in business environment.
SAFETY: Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of
Conformity):
— IEC/EN 61010-1
— Canada: CSA C22.2 No. 61010-1
— USA: UL std no. 61010-1
79
EXA Signal Analyzer Regulatory Information
Acoustic statement: (European Machinery Directive)
Acoustic noise emission
LpA <70 dB
Operator position
Normal operation mode per ISO 7779
To find a current Declaration of Conformity for a specific Keysight product, go to:
http://www.keysight.com/go/conformity
8 0
Keysight X-Series Signal Analyzer N9010A
Specification Guide
2 I/Q Analyzer
This chapter contains specifications for the I/Q Analyzer measurement application (Basic Mode).
81
I/Q Analyzer Specifications Affected by I/Q Analyzer
Specifications Affected by I/Q Analyzer
Specification Name Information
Number of Frequency Display Trace Points (buckets)
Resolution Bandwidth See “Frequency” on page 83 in this chapter.
Video Bandwidth Not available.
Clipping-to-Noise Dynamic Range See “Clipping-to-Noise Dynamic Range” on page 84 in this
Resolution Bandwidth Switching Uncertainty Not specified because it is negligible.
Available Detectors Does not apply.
Spurious Responses The “Spurious Responses” on page 47 of core specifications still
IF Amplitude Flatness See “IF Frequency Response” on page 36 of the core
IF Phase Linearity See “IF Phase Linearity” on page 37 of the core specifications for
Does not apply.
chapter.
apply. Additional bandwidth-option-dependent spurious responses are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
specifications for the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
Data Acquisition See “Data Acquisition” on page 85 in this chapter for the 10 MHz
bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
82
I/Q Analyzer Frequency
Frequency
Description Specifications Supplemental Information
Frequency Span
Standard instrument 10 Hz to 10 MHz
Option B25
Option B40 10 Hz to 40 MHz
Resolution Bandwidth
(Spectrum Measurement) Range
Overall Span = 1 MHz Span = 10 kHz Span = 100 Hz
Window Shapes Flat Top, Uniform, Hanning, Hamming,
Analysis Bandwidth (Span) (Waveform Measurement)
Standard instrument 10 Hz to 10 MHz
Option B25 10 Hz to 25 MHz
Option B40 10 Hz to 40 MHz
a. Option B25 is standard for instruments ordered after May 1, 2011.
a
10 Hz to 25 MHz
100 mHz to 3 MHz 50 Hz to 1 MHz 1 Hz to 10 kHz 100 mHz to 100 Hz
Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB & K-B 110 dB)
83
I/Q Analyzer Clipping-to-Noise Dynamic Range
Clipping-to-Noise Dynamic Range
Description Specifications Supplemental Information
Clipping-to-Noise Dynamic Range
a
Excluding residuals and spurious responses
Clipping Level at Mixer Center frequency 20 MHz
IF Gain = Low 10 dBm 8 dBm (nominal)
IF Gain = High 20 dBm 17.5 dBm (nominal)
Noise Density at Mixer at center frequency
c
(DANL
+ IFGainEffectd) + 2.25
b
dB
e
Example
f
a. This specification is defined to be the ratio of the clipping level (also known as “ADC Over Range”) to the noise
density. In decibel units, it can be defined as clipping_level [dBm] noise_density [dBm/Hz]; the result has units
of dBFS/Hz (fs is “full scale”). b. The noise density depends on the input frequency. It is lowest for a broad range of input frequencies near the
center frequency, and these specifications apply there. The noise density can increase toward the edges of the
span. The effect is nominally well under 1 dB. c. The primary determining element in the noise density is the “Displayed Average Noise Level” on
page 45.
d. DANL is specified with the IF Gain set to High, which is the best case for DANL but not for Clipping-to-noise
dynamic range. The core specifications “Displayed Average Noise Level” on page 45, gives a line entry
on the excess noise added by using IF Gain = Low, and a footnote explaining how to combine the IF Gain noise
with the DANL. e. DANL is specified for log averaging, not power averaging, and thus is 2.51 dB lower than the true noise density.
It is also specified in the narrowest RBW, 1 Hz, which has a noise bandwidth slightly wider than 1 Hz. These two
effects together add up to 2.25 B. f. As an example computation, consider this: For the case where DANL = −151 dBm in 1 Hz, IF Gain is set to low,
and the “Additional DANL” is 160 dBm, the total noise density computes to 148.2 dBm/Hz and the Clip-
ping-to-noise ratio for a 10 dBm clipping level is 138.2 dBFS/Hz.
84
I/Q Analyzer Data Acquisition
Data Acquisition
Description Specifications Supplemental Information
Time Record Length (IQ pairs)
IQ Analyzer 4,000,000 IQ sample pairs 335 ms at 10 MHz Span
Sample Rate
At ADC
Option DP2, B40, or MPB 100 MSa/s IF Path 25 MHz
Option B40 200 MSa/s IF Path = 40 MHz
None of the above 90 MSa/s
IQ Pairs Integer submultiple of 15 Mpairs/s
depending on the span for spans of 8 MHz or narrower.
ADC Resolution
Option DP2, B40, or MPB 16 bits IF Path 25 MHz
Option B40 12 bits IF Path = 40 MHz
None of the above 14 bits
85
I/Q Analyzer Data Acquisition
86
Keysight X-Series Signal Analyzer N9010A
Specification Guide
3 VXA Vector Signal Analysis Application
This chapter contains specifications for the N9064A1 VXA vector signal modulation analysis measurement application.
Additional Definitions and Requirements
Specs & Nominals These specifications summarize the performance for the X-Series Signal
Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove those variations.
The specifications apply in the frequency range documented in In-Band Frequency Range.
The specifications for this chapter apply only to instruments with Frequency Option 503, 507, 513 or 526. For Instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.
Analyzer and apply to the VXA measurement application inside the analyzer. Values shown in the column labeled "Specs & Nominals" are a mix of warranted specifications, guaranteed-by-design parameters, and conservative but not warranted observations of performance of sample instruments.
1. In software versions prior to A.06.00, the VXA measurement application product number was 89601X. Software versions A.06.00 and beyond have renamed 89601X to N9064A.
87
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Vector Signal Analysis Performance (N9064A-1FP/1TP)
Frequency
Description Specs & Nominals Supplemental Information
Range See “Frequency Range” on
page 20
Center Frequency Tuning Resolution
Frequency Span, Maximum
FFT Spectrum 25 MHz (Option B25)
Frequency Points per Span
FFT Window Type
Window
Flat Top 0.41 0.01 dB >95 dBc
Gaussian Top 0.25 0.68 dB >125 dBc
Hanning 0.11 1.5 dB >31 dBc
Uniform 0.0014 4.0 dB >13 dBc
1 mHz
10 MHz (standard)
40 MHz (Option B40)
Calibrated points: 51 to 409,601 Displayed points: 51 to 524,288
Selectivity
Passband Flatness
Rejection
The window choices allow the user to optimize as needed for best amplitude accuracy, best dynamic range, or best response to transient signal characteristics.
88
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Input
Description Specs & Nominals Supplemental
Information
Range Full Scale, combines
attenuator setting and ADC gain
Standard 20 dBm to 20 dBm, 10 dB steps
Option FSA or EA3 20 dBm to 22 dBm, 2 dB steps
Option P03, P07, P13, P26, P32, P44 with neither FSA or
EA3
Options P03, P07, P13, P26, P32, P44 and either FSA or EA3
Option P07, P13, P26, P32, or P44
ADC overload +2 dBFS
40 dBm to 20 dBm, 10 dB steps, up to 3.6 GHz
40 dBm to 22 dBm, 2 dB steps, up to 3.6 GHz
40 dBm to 20 dBm, 10 dB steps, above 3.6 GHz
89
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Amplitude Accuracy
Description Specs & Nominals Supplemental Information
Absolute Amplitude Accuracy See “Absolute Amplitude Accuracy” on
page 38
Amplitude Linearity See “Display Scale Fidelity” on page 41
IF Flatness
Span 10 MHz See “IF Frequency Response” on page 36
Span 25 MHz (Option B25) See “IF Frequency Response” on
page 100
Span 40 MHz (Option B40) See “IF Frequency Response” on
page 106
Sensitivity
20 dBm range
40 dBm range Requires preamp option. Compute from Preamp
a. DANL is specified in the narrowest resolution bandwidth (1 Hz) with log averaging, in accordance with industry
and historic standards. The effect of log averaging is to reduce the noise level by 2.51 dB. The effect of using a 1 Hz RBW is to increase the measured noise because the noise bandwidth of the 1 Hz RBW filter is nominally
1.056 Hz, thus adding 0.23 dB to the level. The combination of these effects makes the sensitivity, in units of dBm/Hz, 2.27 dB higher than DANL in units of dBm in a 1 Hz RBW.
Compute from DANL
Average Noise Level” on page 45
a
DANL
; see “Displayed Average Noise
Level (DANL)Preamp On” on page 155
a
; see “Displayed
90
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Dynamic Range
Description Specs & Nominals Supplemental Information
Third Order Intermodulation distortion
(Two −20 dBFS tones, 400 MHz to 13.6 GHz, tone separation > 5 × IF Prefilter BW)
Noise Density at 1 GHz
Input Range
≥−10 dBm 137 dBFS/Hz
20 dBm to 12 dBm 127 dBFS/Hz
30 dBm to 22 dBm 129 dBFS/Hz requires preamp option
40 dBm to 32 dBm 119 dBFS/Hz requires preamp option
Residual Responses 90 dBFS (nominal)
(Range ≥ −10 dBm)
Image Responses −75 dBc
(10 MHz to 13.6 GHz, < 8 MHz span)
LO Related Spurious 60 dBc
84 dBc (nominal)
(10 MHz to 3.6 GHz, f > 600 MHz from carrier)
Other Spurious
(<8 MHz span)
100 Hz < f < 10 MHz from carrier
f 10 MHz from carrier 70 dBc 70 dBc (nominal)
70 dBc (nominal)
91
VXA Vector Signal Analysis Application Analog Modulation Analysis (N9064A-1FP/1TP)
Analog Modulation Analysis (N9064A-1FP/1TP)
Description Specs & Nominals Supplemental Information
AM Demodulation
(Span 12 MHz, Carrier ≤ −17 dBFS)
Demodulator Bandwidth Same as selected measurement span
Modulation Index Accuracy ±1%
Harmonic Distortion 55 dBc Relative to 100% modulation index
Spurious 60 dBc Relative to 100% modulation index
Cross Demodulation 0.5% AM on an FM signal with
50 kHz modulation rate, 200 kHz deviation
PM Demodulation
(Deviation < 180°, modulation rate ≤ 500 kHz, span ≤ 12 MHz)
Demodulator Bandwidth Same as selected measurement span,
except as noted
Modulation Index Accuracy ±0.5°
Harmonic Distortion 0.5%
Spurious 60 dBc
Cross Demodulation 1° PM on an 80% modulation index AM
signal, modulation rate 1 MHz
92
VXA Vector Signal Analysis Application Analog Modulation Analysis (N9064A-1FP/1TP)
Description Specs & Nominals Supplemental Information
FM Demodulation
Demodulator Bandwidth Same as selected measurement span
Modulation Index Accuracy (deviation 2 MHz, modulation rate 500 kHz)
Harmonic Distortion
Modulation Rate
50 kHz500 kHz
Spurious
Modulation Rate
50 kHz500 kHz
Cross Demodulation 0.5% of span of FM on an 80%
Deviation
200 kHz2 MHz
Deviation
200 kHz2 MHz
±0.1% of span
50 dBc
45 dBc
50 dBc
45 dBc
modulation index AM signal, modulation rate 1 MHz
93
VXA Vector Signal Analysis Application Flexible Digital Modulation Analysis (N9064A-2FP/2TP)
Flexible Digital Modulation Analysis (N9064A-2FP/2TP)
Description Specs & Nominals Supplemental Information
Accuracy Modulation formats include BPSK, D8PSK, DQPSK, QPSK,
(16/32/128/256/512/1024) QAM, (16/32/128/256)DVBQAM, π/4-DQPSK, 8-PSK. EVM normalization reference set to Constellation Maximum. Transmit filter is Root Raised Cosine with alpha = 0.35. Center frequency 1 GHz. Signal amplitude of −16 dBm, analyzer range set to −10 dBm. Result length set to at least 150 symbols, or 3 × (Number of ideal state locations). RMS style averaging with a count of 10. Phase Noise Optimization is adjusted based on the symbol rate of the measurement. Available span is dependent on the analyzer hardware bandwidth options.
Residual Errors
Residual EVM
Symbol rate/Span
1 Msps/5 MHz ≤0.7% rms
10 Msps/25 MHz ≤0.7% rms
25 Msps/40 MHz ≤1.1% rms
Magnitude Error
Symbol rate/Span
1 Msps/5 MHz ≤0.5% rms
10 Msps/25 MHz ≤0.5% rms
25 Msps/40 MHz ≤0.8% rms
Phase Error
Symbol rate/Span
1 Msps/5 MHz ≤0.6% rms
10 Msps/25 MHz ≤0.6% rms
25 Msps/40 MHz ≤1.1% rms
Frequency Error Symbol rate/500,000 Added to frequency accuracy if applicable
IQ Origin Offset
a
≤−60 dB
94
VXA Vector Signal Analysis Application Flexible Digital Modulation Analysis (N9064A-2FP/2TP)
Description Specs & Nominals Supplemental Information
Residual EVM for MSK Modulation Formats
Residual Errors
Residual EVM
Symbol rate/Span
10 Msps/25 MHz ≤0.9% rms
Phase Error
Symbol rate/Span
10 Msps/25 MHz ≤0.5% rms
Residual EVM for Video Modulation Formats
8 or 16 VSB 1.5% (SNR 36 dB) Symbol rate = 10.762 MHz,
Modulation formats include MSK and MSK2. Transmit filter is Gaussian with BT = 0.3. Center Frequency is 1 GHz. Signal amplitude of −16 dBm. Analyzer range set to -10 dBm. Result length set to 150 symbols. RMS style averaging with a count of 10. Available span is dependent on the analyzer hardware bandwidth options.
α= 0.115, frequency < 3.6 GHz, 7 MHz span, full-scale signal, range ≥ −30 dBm, result length = 800, averages = 10
16, 32, 64, 128, 256, 512, or 1024 QAM
a. I+jQ measurements performed using signal amplitude and analyzer range near 0 dBm, with a 0 Hz center fre-
quency offset. I/Q origin offset metric does not include impact of analyzer DC offsets.
1.0% (SNR 40 dB) Symbol rate = 6.9 MHz, α= 0.15, frequency < 3.6 GHz, 8 MHz span, full-scale signal, range ≥ −30 dBm, result length = 800, averages = 10
95
VXA Vector Signal Analysis Application WLAN Modulation Analysis (N9064A-3FP/3TP)
WLAN Modulation Analysis (N9064A-3FP/3TP)
Description Specs & Nominals Supplemental Information
IEEE 802.11a/g OFDM 20 averages
Center Frequency/Level combinations at which nominal performance has been characterized
Residual EVM
Equalizer training = chan est seq and data
Equalizer training = chan est seq
Frequency Error
Subcarrier spacing 312.5 kHz default
2.4 GHz, with input range ≥ −30 dBm, within 2 dB of full scale
5.8 GHz, with input range ≥ −20 dBm
47 dB
45 dB
user settable
1
Maximum subcarrier spacing is approximately the analysis BW/57, thus 438 kHz for Option B25 (25 MHz BW), and 700 kHz for Option B40 (40 MHz BW).
Lock range ±2 × sub-carrier spacing,
±625 kHz default
Frequency accuracy
IEEE 802.11b/g DSSS
Center Frequency/Level combination at which nominal performance has been characterized
Residual EVM without equalizer with equalizer enabled
Frequency Error
Lock Range ±2.5 MHz
Accuracy
a. tfa = transmitter frequency × frequency reference accuracy.
±8 Hz + tfa
2.4 GHz with total power within 2 dB of full scale
1.5%
0.5%
±8 Hz + tfa
a
a
Reference filter = Transmit filter = Gaussian with BT = 0.5
1. These options were discontinued January 2014.
96
Keysight X-Series Signal Analyzer N9010A
Specification Guide
4 Option B25 - 25 MHz Analysis Bandwidth
This chapter contains specifications for the Option B25 25 MHz Analysis Bandwidth, and are unique to this IF Path.
97
Option B25 - 25 MHz Analysis Bandwidth Specifications Affected by Analysis Bandwidth
Specifications Affected by Analysis Bandwidth
The specifications in this chapter apply when the 25 MHz path is in use. In IQ Analyzer, this will occur when the IF Path is set to 25 MHz, whether by Auto selection (depending on Span) or manually.
Specification Name Information
IF Frequency Response See specifications in this chapter.
IF Phase Linearity See specifications in this chapter.
Spurious and Residual Responses The “Spurious Responses” on page 47 still apply. Further,
bandwidth-option-dependent spurious responses are contained within this chapter.
Displayed Average Noise Level, Third-Order Intermodulation and Phase Noise
The performance of the analyzer will degrade by an unspecified extent when using this bandwidth option. This extent is not substantial enough to justify statistical process control.
98
Option B25 - 25 MHz Analysis Bandwidth Other Analysis Bandwidth Specifications
Other Analysis Bandwidth Specifications
Description Specifi-
cations
IF Spurious Response
a
Supplemental Information
Preamp Off
b
IF Second Harmonic
Apparent Freq Excitation Freq
Mixer Level
c
IF Gain
Any on-screen f (f + fc + 22.5 MHz)/2 15 dBm Low 54 dBc (nominal)
25 dBm High 54 dBc (nominal)
IF Conversion Image
Apparent Freq Excitation Freq
Mixer Level
c
IF Gain
Any on-screen f 2 × fc f + 45 MHz 10 dBm Low 70 dBc (nominal)
20 dBm High 70 dBc (nominal)
a. The level of these spurs is not warranted. The relationship between the spurious response and its excitation is
described in order to make it easier for the user to distinguish whether a questionable response is due to these mechanisms. f is the apparent frequency of the spurious signal, fc is the measurement center frequency.
b. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, per-
formance is nominally the same as long as the mixer level is interpreted to be Mixer Level = Input Level Input Attenuation Preamp Gain.
c. Mixer Level = Input Level Input Attenuation.
99
Option B25 - 25 MHz Analysis Bandwidth Other Analysis Bandwidth Specifications
Description Specifications Supplemental Information
IF Frequency Response
a
Modes above 18 GHz
b
(Demodulation and FFT response relative to the center frequency)
Center Freq (GHz)
Span (MHz)
c
Preselector
Max Errord (Exceptionse)
20 to 30°C Full range
Midwidth Error (95th Percentile)
Slope (dB/MHz) (95th Percentile)
f
RMS (nominal)
3.6 10 to 25 n/a ±0.45 dB ±0.45 dB ±0.12 dB ±0.10 0.051 dB
>3.6
>3.6
10 to ≤25
10 to ≤25
g
On 0.45 dB
h
Off
h
±0.45 dB ±0.80 dB ±0.12 dB ±0.10 0.071 dB
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF fre-
quency, in addition to the IF passband effects.
b. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N
connector used with frequency Option 526. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum analyzer Mode, this would
be the FFT width. For Span < 10 MHz. see “IF Frequency Response” on page 36.
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression ± [Midwidth Error
+ (f × Slope)], but never exceeds ±Max Error. Here the Midwidth Error is the error at the center frequency for the given FFT span. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. In the Spectrum Analyzer mode, when the analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple centers of FFT widths so the f in the equation is the offset from the nearest center. These specifications include the effect of RF frequency response as well as IF frequency response at the worst case center frequency. Performance is nominally three times better at most center frequencies.
e. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT widths of 7.2 to 8
MHz.
f. The “RMS” nominal performance is the standard deviation of the response relative to the center frequency, inte-
grated across the span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
g. For information on the preselector which affects the passband for frequencies above 3.6 GHz when Option MPB
is not in use, see “Preselector Bandwidth” on page 31.
h. Option MPB is installed and enabled.
100
Loading...