1)This manual is valid for the following Model and associated serial numbers:
MODELSERIAL NO.REV. NO.
HSF 1500W
2)A Change Page may be included at the end of the manual. All applicable changes and
revision number changes are documented with reference to the equipment serial numbers. Before using this Instruction Manual, check your equipment serial number to identify
your model. If in doubt, contact your nearest Kepco Representative, or the Kepco Documentation Office in New York, (718) 461-7000, requesting the correct revision for your
particular model and serial number.
3)The contents of this manual are protected by copyright. Reproduction of any part can be
made only with the specific written permission of Kepco, Inc.
3.4 Output Voltage Control............................................................................................................................ 7
3.4.1 Front Panel Voltage Control .............................................................................................................. 7
3.4.2 Remote Voltage Control .................................................................................................................... 7
3.5 Current Monitor (C and M Suffix only)..................................................................................................... 8
3.7.1 Overvoltage And Overtemperature Protection .................................................................................. 9
3.7.2 Overcurrent/Current Limit Setting and Protection............................................................................ 10
3.7.3 Fan Failure ...................................................................................................................................... 10
2 Output Ratings and Specifications ..............................................................................................................2
3 Power Supply Ratings and Specifications ..................................................................................................3
4 Minimum Conditions for Relay, Meter and LED Operation .........................................................................8
iHSF 1500W 022613
Page 3
1.INTRODUCTION
1.1SCOPE OF MANUAL
This Operator's Manual covers the installation and operation of the Kepco HSF 1200W/1500W
Series of Switching Power Supplies. For service information, write directly to: Kepco Inc., 131-38
Sanford Avenue, Flushing, New York, 11355, U.S.A. Please state Model Designation and Serial
Number of your HSF Power Supply (see nameplate of the unit).
1.2DESCRIPTION
The Kepco HSF1500 Watt Series are hot swappable, high frequency switching, plug-in power
supplies. Metered models (M suffix) are completely interchangeable with the non-metered HSF
Series. Three models may be selected for outputs of 24V (1200W), 36V or 48V (1500W). They
employ forward conversion and power factor correction and are designed to operate in a fault tolerant power system with a nominal a-c input of 100V a-c to 240V a-c (input voltage range 85 to
265V a-c), 50-60Hz (input frequency range 47-440Hz). A built-in current balancing circuit and ORing diodes allow configuration for hot-swap and parallel-redundant N+1 operation.
These power supplies are designed to be used with Kepco's Series RA 19-4C rack adapters. The
RA 19-4C rack adapter accepts up to four 1200W (24V) or 1500W (36V, 48V) modules. All input/
output connections are through a 24-pin connector that plugs in to the rack adapter. All external
connections are made through the rack adapter’s I/O connector (see Figure 1).
An optional meter (M suffix) provides digital indication of voltage or current (switch selectable)
from the front panel. An optional current sense resistor (C suffix) allows external current monitoring within 3% (contact Kepco if greater accuracy is required). RoHS-compliant models indicated
by HSF* (e.g., HSF 24*50M).
+IMON
REF
(NOT USED)
CSB
+PF
ALARM (NC)
ALARM (NO)
-RC
1
2
3
4
5
6
7
8
9
-IMON
-COM
10
11
(NOT USED)
12
RV
13
-PF
14
ALARM (COM)
15
+RC
3042866
FIGURE 1. RA 19-4C RACK ADAPTER I/O CONNECTOR
TABLE 1. REAR CONNECTOR PIN ASSIGNMENTS
Signal
Name
Output +1, 2, 4 DC output (+) applied to load.
Output –3, 5, 6 DC Output (–) applied to load.
IMON+8Current Monitor+ (used on C and M suffix only).
NO10Normally Open contact of alarm relay, referenced to AL COM, pin 14 (see PAR. 3.8.2).
IMON–11Current Monitor– (used on C and M suffix only).
–COM12–Signal Common provides return for REF, pin 15, and RV, pin 18, signals.
NC13Normally Closed contact of alarm relay, referenced to AL COM, pin 14 (see PAR. 3.8.2).
AL COM14Common contact of alarm relay (see PAR. 3.8.2).
REF15Reference voltage. When used with RV, pin 18, allows all output voltages of paralleled slave supplies to be
+PF16+Power Fail of open-collector alarm circuit. Used with –PF, pin 19 (see PAR. 3.8.2).
CSB17Current Share Bus - Used whenever several power supplies are connected in parallel (see PAR. 5.).
HSF 1500W 0226131
PinFunction
controlled by one voltage adjustment of a master power supply. When REF is connected to RV, the front
panel Vadj control determines output voltage. Connections are made via DIP switches (see PAR. 3.1).
RV18Remote Voltage - Used with REF, pin 15, for remotely controlling the output voltage (see PAR. 3.4.2)
–PF19–Power Fail of open-collector alarm circuit. Used with +PF, pin 16 (see PAR. 3.8.2).
+RC20+Remote On-off used with –RC, pin 21, to allow remote turn-on turn-off of the unit (see PAR. 3.6)
–RC21–Remote On-off used with +RC, pin 20, to allow remote turn-on turn-off of the unit (see PAR. 3.6)
GND22AC input ground
N23AC Input neutral
L24AC input line
PinFunction
2.SPECIFICATIONS
Table 2 contains specifications and operating limits of individual HSF 1200W/1500W Series models. Table 3 contains specifications and operating limits common to all HSF 1200W/1500W Series
Models. These specifications are at nominal input voltages at 25°C and apply to all models unless
otherwise specified.
TABLE 2. OUTPUT RATINGS AND SPECIFICATIONS
MODEL HSF 24-50HSF 36-42HSF 48-32
Output Volts d-c (nominal)
Front panel Trimpot (Volts)16.8-30.515.0-48.033.6-54.0
Adjustment Range
5K ohm Trimpot with RV terminal (Volts)16.8-30.56.0-48.033.6-54.0
Using Voltage source (Volts)18 - 306.1-5433.6 - 55.2
Voltage source range (Volts)3.5 - 6.50-5.753.5 - 5.75
Maximum
Output
(1)
Ratings
(A,W)
Overvoltage
Protection Level
Current Limit Set-
ting (Amps)
At power module output terminals (Volts)32-3556-6056-60
(5)
(2)
Efficiency
% typical
Ripple & Noise
(6)
(mV, p-p)
Sense Resistor (I
) values (Ohms)0.0020.0020.005
Mon
(1) See Figure 2 for power derating vs. temperature and input voltage.
(2) Current limit value determined by the combination of input voltage and output voltage setting. For example, if RKE 48-23K is
operated at 120V a-c and output voltage is set at the minimum of output range (33.6V), current limit is closer to the maximum
specified value of 36.8A. For the same input voltage (120Vac) if output voltage is set at maximum (55.0V), then the current limit
value is closer to 20A (the minimum current limit value specified for input voltage range 90-170V a-c).
(3) Winker (intermittent) Operation; after cause is removed, output voltage restored automatically, however for some combinations
of input voltage and output voltage and current limit characteristics may be square type: see note (4) below.
(4) Square type. Unit first enters Current Limit; output voltage starts to drop (nearly square curve). If cause is removed while in Cur-
rent Limit, output voltage restores automatically. If current continues to increase, Overcurrent is triggered. If Overcurrent is combined with an output voltage drop below 60% of rated output voltage (below 5V for 36V model), the unit shuts OFF. Recovery is
by removing, then reapplying input power after more than 30 seconds or by opening and (without waiting) reclosing the RC ter-
minals using either the front panel RESET button or an external remote switch.
(5) When overvoltage is detected, output is shut OFF.
(6) Ripple and noise levels above are satisfied when conditions are 0 to 100% load, 0 to 65°C (load is derated from 50 to 65°C, see
Electrical fast transient burst:EN61000-4-4 level 3normal operation
Surge withstand:EN61000-4-5, level 4No damage
Power Frequency Magnetic Field:EN61000-4-8, level 4normal operation
Voltage dips interruptions and
variations
Dimensions: 5.22 in. (132.5 mm) x 4.288 in. (108.9 mm) x 16.86 in. (428.2 mm) (See Figure 3)
Mounting: Plug-in
Cooling: Forced air flow - fan
Frame Material/Cover Material:Steel
Weight9 lbs, 4.1Kgs. maximum
3.7.1.
overcurrent is triggered, the output is cut OFF. See PAR. 3.7.4.
Must be enabled by DIP switch positions 3
“High”, 2.4V to 24V (or open), unit OFF- Fan Off;
and 4 (see PAR. 3.6).
“Low”, 0.0V to 0.4V (or closed), unit ON.
Source current: 1.6mA maximum at low level
Sink current: 1.0 mA maximum at high level.
Voltmeter Accuracy: ±3%
Ammeter Accuracy: ±5% for loads between 10%100%
Voltmeter reads voltage at test points (will
differ from voltage at load depending on
load cable length).
Ammeter accuracy degrades significantly
for loads less than 10%
2000Va-c for 1 minute. Cutout current is 20mABetween input and ground
500Va-c for 1 minute. Cutout current is 100mABetween output and ground
3000Va-c for 1 minute. Cutout current is 20mABetween input and output terminal
100 Megohms minimum (500Vdc)Between output and ground, input and
ground, and input and output,
Wet Bulb temperature <35°C
tion 64.3ft./s
2
(19.6M/s2) (2g)
2
(196.1M/s2 ) (20g),
Pulse Duration: 11ms ± 5 msec
operating and non-operating
non-operating 1 hr. on each of 3 axes,
sweep time 10 minutes
(non-operating, 1/2 sine pulse, three
shocks on each axis, Power Supply is
fixed on its bottom side)
EN 60950.
Designed to meet EN61000-3-2
EN61000-4-11normal operation
4HSF 1500W 022613
Page 7
0.690 [17.5]
14.667 [372.5]
]
0
.
8
2
1
[
0
4
0
.
5
1.500
[38.1]
0.093 [2.4]
0.943 [23.9]
0.085 [2.2]
0.438 [11.1]
0.337 [8.5]
3.353
[85.2]
2.065
0.093
[52.5]
[2.4]
SEE DETAIL "A"
3043140
FIGURE 3. MECHANICAL OUTLINE DRAWING OF HSF 1200W/1500W POWER SUPPLY
3. FEATURES
REAR VIEW
0.090 [2.3]
2.408 [61.2]
0.430 [10.9]
0.093 [2.4]
0.188 [4.8]
3.216 [81.7]
0.127
[3.2]
0.204 [5.2]
0.394
[10.0]
DETAIL "A"
KEYING
24V 36V
= PIN PRESENT
= PIN MISSING
]
5
.
2
3
1
[
8
1
2
.
5
48V
0.606 [15.4]
FRONT VIEW
4.288 [108.9]
NOTES:
1. MATERIAL:
A) BACKPLATE 0.064" THK. ALUM. 5052-H32
B) PCB 0.063" THK FR-4
C) FRONT PANEL 0.090 THK. ALUM. 6061-T6
2. FINISH:
FRONT PANEL -KEPCO DUAL TONE GRAY
3. MODULE IS KEYED AS SHOWN IN DETAIL
4. DIMENSIONS ARE IN INCHES, [DIMENSIONS IN
BRACKETS ARE IN MILLIMETERS].
FRONT VIEW (M SUFFIX ONLY)
4.288 [108.9]
]
5
.
2
3
1
[
8
1
2
.
5
2.144
[54.46]
3.1DIP SWITCH CONFIGURATION
The power supply incorporates two DIP switches, SW1 and SW2 (see Figure 4), which must be
configured before the unit is installed in the rack adapter. The DIP switches control the following
parameters:
•Positions 1, 2, and 7 allow the output to be controlled either by the front panel Vadj control (see PAR. 3.4.1) or by remote control using either an external trimpot or voltage
source (see PAR. 3.4.2). These positions can also be configured to allow a master/slave
combination to be controlled either by the front panel Vadj control or by remote control
using either an external trimpot or voltage source (see PAR 3.4)
•Positions 3 and 4 either allow the front panel reset button to be used to reset the unit
after a fault or allow Remote on-off via mechanical switch or logic level (see PAR. 3.6) -
•Positions 5 and 6 allows alarm signals to be produced from either internal relay, Form C
contacts (one NO, one NC) or open-collector logical alarm signals (see PAR. 3.8.2).
HSF 1500W 0226135
Page 8
•Position 8 of SW1 either disables (default) or enables the visual alarm indication (see
PAR. 3.8.1).
FACTORY DEFAULT SETTING:
- FRONT PANEL VADJ CONTROL
- RELAY ALARM SELECTED
- VISUAL ALARM DISABLED
- REMOTE ON-OFF DISABLED
REF
RV
+RC 3
-RC
+PF
-PF
-COM
N/A
OFF
ON
1
2
4
5
6
7
8
SW2
OFF
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
SW1
ON
1
3
4
7
8
REF
RV
2
+RC
-RC
+PF
5
-PF
6
-COM
ALARM LED DISABLE
SW1SW2
3042858
TAB
NOTE: NOT ALL COMPONENTS SHOWN.
SEE DETAIL VIEW
DETAIL VIEW
FIGURE 4. DIP SWITCH CONFIGURATION
3.2FRONT PANEL ACCESS.
The front panel provides a power ON/OFF switch controlling input power and a "VDC ON" indicator which lights green when the unit is operating. If the unit is connected in a parallel configuration,
the indicator lights red if the unit shuts off automatically, or the POWER switch is set to OFF.
CAUTION: DO NOT repeatedly toggle the power ON/OFF switch as this may cause unit to
fault.
NOTE: The ON/OFF switch must be set to OFF before removing unit from rack adapter.
If remote on-off is not enabled (see PAR. 3.6), the OUTPUT RESET button restores output power
in the event that overcurrent or overvoltage protection has tripped, or thermal overload or fan malfunction has occurred.
If remote voltage control (see PAR. 3.4.2) is not enabled, the front panel Vadj trimmer (see PAR.
3.4.1) provides adjustment of the output voltage within the limits specified in Table 1; test points
are available at the front panel for monitoring the DC output.
Figure 5 shows the location of all operating controls, indicators and test points followed by an
explanation of each.
3.3KEYING
Keying of the power supply is established at the factory. The output voltage determines which key
pins are installed (see Figure 3, Detail A). When the proper holes in the rack adapter are blocked
by keying screws installed by the user, only a power supply of the correct voltage can be inserted
in the rack adapter slot. Refer to the RA 19-4C Manual for rack adapter keying instructions.
•VDC ON/ALARM indicator. Lights green when unit is operating. When enabled by DIP switch configuration, lights red to indicate loss of output voltage in parallel configuration only (see PAR. 3.8.1).
• V.ADJ Output voltage adjustment trimmer: Adjusts output voltage within limits specified in Table 2
(see PAR. 3.4.1). Not functional if remote voltage control is enabled (see PAR. 3.4.2).
•DC output test points (+, –): Connect to voltmeter to monitor output voltage.
6HSF 1500W 022613
Page 9
Voltage/Current Meter
(M Suffix only)
Meter Mode switch
(M Suffix only)
V (Voltage) indicator
(M Suffix only)
A (Amperes) indicator
(M Suffix only)
3043129
VDC ON/ALARM Indicator
V. ADJ Output Voltage Adjustment Trimmer
TEST POINT (+)
OUTPUT RESET switch
TEST POINT (-)
POWER ON/OFF switch
Retaining Latches
•OUTPUT RESET switch. Used to recycle power in the event of an alarm condition (see PAR. 3.7).
Not functional when remote on/off control is enabled (see PAR. 3.6).
•POWER ON/OFF switch. Applies power to the unit. CAUTION: Power must be OFF before unit is
removed from the rack adapter.
• Retaining Latches (2). Prevents inadvertent removal of unit from rack adapter (see PAR. 3.9)
•(M Suffix only) Voltage/Current meter: Monitors output voltage or current according to setting of
Meter Mode switch. NOTE: Voltage displayed may differ from voltage at the load depending on lead
length.
•(M Suffix only) Meter Mode slide switch: Set to V for display to show output voltage, set to A to show
output current.
•(M Suffix only) V indicator: Lights green to indicate meter is showing Volts.
•(M Suffix only) A indicator: Lights amber to indicate meter is showing Amperes.
FIGURE 5. FRONT PANEL CONTROLS, INDICATORS AND TEST POINTS
3.4OUTPUT VOLTAGE CONTROL
Output Voltage can be controlled from either the front panel (PAR. 3.4.1) or externally using a
trimpot or voltage source (PAR. 3.4.2).
3.4.1 FRONT PANEL VOLTAGE CONTROL
Output voltage can be manually adjusted with the voltage adjustment control, Vadj (see Figure 5
for location) when DIP switches SW1 and SW2 (see Figure 4 for location) are configured as
shown in Figure 6A (factory default) To adjust voltage, first place the unit under an operating load.
Then monitor the (+) and (–) test points on the front panel with a precision voltmeter and turn the
voltage control to the desired operating value. Refer to Table 1 for the recommended Adjustment
Range.
3.4.2 REMOTE VOLTAGE CONTROL
For remote voltage control, set positions 1, 2 and 7 as shown in Figure 6B. This removes control
from the front panel Vadj control and allows the output voltage to be adjusted by either an external
trimmer pot (resistance) or by an external variable voltage source connected across the rack
adapter I/O connector pin 12 (RV, Remote Voltage) and pin 10 (–COM, Common) as shown in
Figure 7. At the rack adapter I/O connector use a shielded wire 6.6 feet (2M) maximum in length,
HSF 1500W 0226137
Page 10
for connection of REF (pin 2), RV (pin 12), and –COM (pin 10) to the trimmer control or external
voltage source.
NOTE: If remote voltage control is not implemented, the factory default for positions 1, 2 and 7
of DIP switches SW1 and SW2 must be restored (Figure 6A).
It is possible that the overvoltage protection may be triggered if the output voltage is decreased to a
low level very quickly when the power supply is at a low load condition.
RESISTANCE: Connect the external trimmer as shown in Figure 7A. Suggested value for the trimmer control is 5K ohms. Referring to Figure 7 (A), R = 7.5K Ohms (M suffix: R = 5.6K Ohms) provides an output voltage adjustment range of from 70 to 130%. for the 24V model. R = 560 Ohms
provides an output voltage adjustment range of from 17 to 150%. for the 36V model. R = 10K
Ohms (M suffix: R = 7.5K Ohms) provides an output voltage adjustment range of from 70 to 115%
for the 48V model.
VOLTAGE. By adjusting an external 3.5 to 6.5V voltage source, the 24V model can be adjusted
from 70 to 130% of the nominal output. By adjusting an external 0 to 5.75V voltage source, the 36V
model can be adjusted from 17 to 150% of the nominal output. By adjusting an external 3.5 to 5.75V
voltage source, the 48V model can be adjusted from 70 to 115% of the nominal output. To ensure
proper operation of the alarm relay, meter (M suffix only) and LED indicators, do not adjust external voltage below minimum listed in Table 4. Connect the voltage source across the RV and –COM
pins as shown in Figure 7B.
TABLE 4. MINIMUM CONDITIONS FOR RELAY, METER AND LED OPERATION
MODEL HSF 24-27HSF 36-42HSF 48-32
Minimum HSF output voltage required for relay, meter and LED
functioning (Volts d-c)
Minimum resistance of Limit resistor R (Figure 7A) in series with
5K ohm Trimpot to ensure proper operation of LEDs, meter and
relay (Ohms)
Minimum external voltage (Figure 7B) to ensure proper operation
of LEDs, meter and relay. (Volts d-c)
1 - If operating below minimums listed, see PAR. 3.8.2.2 to implement ±PF alarm signals to monitor power supply status.
1
1
1
171135
7.5K56010K
3.70.683.8
3042875
A
FRONT PANEL VOLTAGE CONTROL
TAB
REF 1
RV 2
COM 7
USING Vadj CONTROL
(FACTORY DEFAULT)
OFF
ON
1
2
7
REMOTE VOLTAGE CONTROL
USING EXTERNAL TRIMPOT
OR VOLTAGE SOURCE
OFF
ON
1
2
7
1 REF
2 RV
7 COM
SW1SW2
OFF
REF 1
RV 2
COM 7
SW2
ON
B
OFF
ON
1
1
2
2
7
7
1 REF
2 RV
7 COM
SW1
FIGURE 6. DIP SWITCH SETTINGS FOR CONTROL OF OUTPUT VOLTAGE
3.5CURRENT MONITOR (C AND M SUFFIX ONLY)
Current monitor is via ±IMON assigned to pins of the RA 19-4C I/O connector (see Figure 1).
Monitored Output Current (Amps) = Voltage drop across Rs (Volts) x Rs (Ohms), where voltage
drop across Rs (see Table 2) is measured across ± IMON pins (requires millivoltmeter, range 0 to
200mV). Accuracy is ±3%; contact Kepco if greater accuracy is required. There is no isolation
between ±IMON, alarm circuit and d-c output.
8HSF 1500W 022613
Page 11
RA 19-4C
RV REF
-COM
J2
I/O 1
1012 2
VOLTAGE
SOURCE
(SEE NOTE)
REMOTE VOLTAGE
CONTROL USING
EXTERNAL VOLTAGE
NOTE: SEE TABLE 4 FOR
MINIMUM VALUE.
LOAD
REMOTE VOLTAGE
CONTROL USING
EXTERNAL RESISTANCE
RA 19-4C
RV REF
HSF SLOT 1
-COM
J2
I/O 1
10212
(SEE TABLE 4
FOR VALUES)
-+-+
R
LOAD
FIGURE 7. CONNECTIONS FOR REMOTE VOLTAGE CONTROL
3.6REMOTE ON-OFF
When power is ON at the source, the output may be turned ON or OFF using the ±RC signals if
the remote ON-OFF feature is enabled. Note that when remote ON-OFF is enabled, the RESET
OUTPUT switch does not function. Remote ON-OFF is enabled by setting DIP switch positions 3
and 4 as shown in Figure 8B. The +RC and –RC signals (at the rack adapter I/O connector, pins
15 and 8, respectively) then turn the unit on or off. These pins accept a logic level (2.4V to 24V
“high” and 0.0 to 0.4V “low”), or a contact closure. When the ±RC pins are open, using either a
mechanical switch or a high level logic signal, the power supply output is cut OFF. When the ±RC
pins are shorted, the output returns to within specifications. At low level logic, the maximum
source current is 1.6mA and at high level the sink current is 1.0mA. Positions 3 and 4 of both DIP
switches must be restored to the factory default setting (Figure 8A) if remote ON-OFF is not used.
The ±RC pins are isolated from DC output pins.
B
ONOFF
ON
TAB
A
USE FRONT PANEL
RESET BUTTON
(FACTORY DEFAULT)
OFF
ON
OFF
ON
USE REMOTE ON-OFF
(LOGICAL LEVEL OR
MECHANICAL SWITCH)
OFF
+RC 3
-RC 4
3042877
3
3
4
4
SW2SW1
3 +RC
4 -RC
+RC 3
-RC 4
SW2
3
3
4
4
3 +RC
4 -RC
SW1
FIGURE 8. DIP SWITCH SETTINGS FOR USING RESET BUTTON OR REMOTE ON-OFF
3.7PROTECTION CIRCUITS
The following protection features are implemented in the power supplies: overvoltage and overtemperature (PAR. 3.7.1), overcurrent (PAR. 3.7.2), fan failure (PAR. 3.7.3), and undervoltage
(PAR. 3.7.4). The power supply provides a configurable visual alarm (see PAR. 3.8.1) as well as
an option to use either relay contacts or logic levels for alarm signals (see PAR. 3.8.2)
3.7.1 OVERVOLTAGE AND OVERTEMPERATURE PROTECTION
When the output voltage of the power supply increases beyond the specified values (see Table 2),
the output is cut OFF and the fan turns OFF. To restart (reset) the unit, press and release the
OUTPUT RESET switch on the front panel or, if the remote on/off feature is in use (see PAR. 3.6),
open connection between the RC pins and then reconnect the pins. The unit may also be
restarted by turning the POWER ON/OFF switch to OFF, waiting 30 seconds, then setting the
POWER switch to ON.
HSF 1500W 0226139
Page 12
When the internal temperature of the power supply increases beyond safe values, the output is
cut OFF and the fans turn OFF. The restart cycle (Power ON) should not begin until the temperature returns to within specifications. To restart (reset) the unit, set the POWER ON/OFF switch to
OFF, wait 30 seconds, then set the POWER switch to ON. The power supply cannot be reset
using the remote ON-OFF feature unless the power supply remains shut down for at least 30 seconds.
3.7.2 OVERCURRENT/CURRENT LIMIT SETTING AND PROTECTION
From 170 to 265V a-c input, the output characteristic of the power supply is a square type, and the
unit is set to produce an alarm (see PAR. 3.8.2) and shut down if output current exceeds specifications (see Table 2) for more than 30 seconds and undervoltage detection is present (see PAR.
3.7.4). From 85 to 170V a-c input, operation (including alarm signals) is intermittent when current
limit condition occurs. To restart (reset) the unit, remove AC input power, wait 30 seconds, then
reconnect AC input power, or open the RC terminals and then reclose the terminals.
3.7.3 FAN FAILURE
A cutoff of the fan supply voltage causes the output to shut down and the fans to turn OFF. Fan failure and all the other protection circuit operations produce an alarm (see PAR. 3.8.2). To restart
(reset) the unit, press and release the OUTPUT RESET switch on the front panel or, if the remote
on/off feature is in use (see PAR. 3.6), open the connection between the ±RC pins and then
reconnect the pins. The unit may also be restarted by turning the POWER ON/OFF switch to OFF,
waiting 30 seconds, then setting the POWER switch to ON. If fan rotation is out of specification
the power supply will not recover.
3.7.4 UNDERVOLTAGE
If the output voltage of the power supply falls below 60 percent of the rated voltage for 30 seconds (5V
for the 36V model) while overcurrent is detected,
the unit turns off and an alarm occurs (either from
the internal relay or optically-coupled alarm circuit, see PAR. 3.8.2). To restart (reset) the unit,
press and release the OUTPUT RESET switch on the front panel or, if the remote on/off feature is
in use (see PAR. 3.6), open the connection between the RC pins and then reconnect the pins. The
unit may also be restarted by turning the POWER ON/OFF switch to OFF, waiting 30 seconds,
then setting the POWER switch to ON.
3.8ALARM SETTINGS
3.8.1 VISUAL ALARM.
When the unit is connected in a parallel configuration, the front panel VDC ON/ALARM indicator
can be configured to light red if the respective power supply output voltage is lost or if the POWER
switch is set to OFF. This is enabled when DIP switch 1, position 8 set to ON. This can be useful
to indicate the loss of output voltage from one parallel-connected power supply that may not be
readily apparent. The visual alarm is normally disabled: DIP switch SW1, position 8 set to OFF
(factory default).
3.8.2 ALARM SIGNALS.
Either of two options are available for signalling alarms: isolated relay contacts (factory default,
PAR. 3.8.2.1) or logic level alarm signals ±PF (PAR. 3.8.2.2).
3.8.2.1 INTERNAL ISOLATED RELAY ALARM
The first option, the factory default setting, uses an isolated internal relay offering normally closed
(NC) and normally open (NO) contacts referenced to an isolated common (AL COM). These contacts may be used to configure “close on failure” or “open on failure” alarm circuits. (Refer to the
Series RA 19-4C Manual for alarm configurations for multiple HSF power supplies.) Setting positions 5 and 6 of the DIP switches as shown in Figure 9A selects this option. The NC (pin 6 of the
rack adapter I/O connector) and NO (pin 7) signals are referenced to Alarm common (pin 14).
10HSF 1500W 022613
Page 13
3.8.2.2 OPTICALLY-COUPLED LOGICAL ALARM
The second option uses optically-coupled logic level alarm signals (see PAR. 3.8.2.2), +PF (pin 5
of the rack adapter I/O connector) and -PF (pin 13), provided directly from the Kepco RKE power
supply that is the heart of the HSF power supply. This option is selected by setting positions 5 and
6 of the DIP switches as shown in Figure 9B. Use this option if the power supply will operate
below the minimum voltages specified in Table 4.
3042878
TAB
+PF 5
-PF 6
A
USE N.O. AND N.C CONTACTS
OF INTERNAL RELAY
(FACTORY DEFAULT)
OFF
SW2
ON
OFF
5
5
6
6
ON
SW1
5 +PF
6 -PF
USE OPTICALLY-COUPLED
OFF
+PF 5
-PF 6
SW2
B
LOGICAL ALARM
(+PF AND -PF)
ONOFF
5
5
6
6
ON
5 +PF
6 -PF
SW1
FIGURE 9. DIP SWITCH SETTINGS FOR OPTICALLY COUPLED LOGICAL ALARM
The logic alarm circuit is a diode transistor optical coupler (see Figure 10). The transistor is normally conducting. When the alarm is activated upon detection of power loss, overvoltage, fan
fault, overtemperature or overcurrent condition, the transistor cuts off and the collector emitter circuit is open. Figure 11 is a timing diagram of the power fail signal.
The default state of the alarm is logic low. The sink current for the optocoupler is 50mA maximum,
the maximum collector to emitter saturation voltage is 0.40 Volts, and the collector to emitter voltage is 40 volts maximum. The PF signals are isolated from the AC input and DC output.
FIGURE 11. ±PF POWER FAILURE OPTOCOUPLER TIMING DIAGRAM
HSF 1500W 02261311
Page 14
3.9RETAINING LATCHES
HSF 1200W/1500W series power supplies are provided with (2) retention latches located at each
side of the bottom edge of the front panel (see Figure 5). These latches work in conjunction with
the RA 19-4C rack adapters to prevent unauthorized or inadvertent module extraction from an
operating power system. The latch is engaged by loosening the cap-head screw approximately 1/
2 turn CCW (use 5/32” hex key) and sliding the latch down to the bottom of the slot, then retightening the cap-head screw CW until snug. DO NOT OVERTIGHTEN! To release, follow the same
procedure, except lift the latch to the top of the slot. Be sure to move the latch completely up or
down to ensure full engagement and disengagement of the latching mechanism. When the HSP
power supply is not installed in its plug-in rack adapter, it is recommended that the latch be
secured in the open (up) position to prevent damage.
NOTE: Retaining latches must not be used to secure the HSF power supply in the rack
adapter for shipping purposes.
4.LOAD CONNECTION
Connect the load to (+) and (–) terminals at the rear panel of the Rack Adapter. See Figure 12 for
the proper way to connect multiple loads.
FIGURE 12. CORRECT AND INCORRECT METHODS OF LOAD CONNECTION
5.CONNECTING MULTIPLE POWER SUPPLIES
All connections to multiple HSF power supplies must be made via the I/O mating connectors at
rear of the Rack Adapter or by the Rack Adapter DIP switches. These connections, including the
configuration of the two internal HSF DIP switches, are described in the Rack Adapter Instruction
manual, and include:
•Using one power supply to control the output of multiple supplies.
•Using parallel master/slave configurations (for increased current or redundancy) where
the user either predetermines the master or allows the load to determine which is the
master. These configurations also cover the use of the Current Balancing feature of the
power supply. NOTE: Requires minimum of 10% load to operate properly.
•Using series configurations (for increased voltage).
•Using open-on-fail or close-on-fail alarm schemes with multiple power supplies.
12HSF 1500W 022613
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.