Page 1

&
,
* - •
. *':r .
■ • ^ 'jx -
' .....
i,:.
Page 2

/O
Operators
’ Manual
Jones & Lamson 6 x 15" Automatic Thread Grinder
Model TG-615
Index
Foreword
Page 2.
Installation
Initial Lubrication
Page 3.
I
Page 4
0
Coolant Tank and Distributor
Electrical Connections and Wiring
Work Motor & Lead Selector Switch
Lead Screws & Nuts - Adjustments
Grinding Wheel - Installation
Automatic Truing Devices - Installation
Page 5.
Page
5-6.
Page 7.
Page 7,8,9.
Page 10.
Page 11.
Page 12.
General Maintenance:
Lubrication
Coolant
Grinding Wheels
Cleaning
Adjustments:
Work Motor Brake
Wheel Head Slide Gibs
Operation
Setting Up.
Lead Screw
Lead Selector Switch
Headstock & Tailstock (Position of)
Forward & Reverse Dogs (Setting of)
Depth of Feed (Setting for)
Truing Dogs on Wheel Feed Gear (Setting of)
Page 13.
Page
14.
Wheel Head (Adjustment for Helix Angle)
Matching or Locating Threads
Bench Thread Matching Device
Taper (Adjustment of Tailstock Center)
Wheel Balancing
Grinding Wheels
A
Page 3

■
&
Page 15.
Page 16.
Page 16.
Page 17.
Page 18.
Page 19.
Page 20.
Page 21.
Page 22.
Page 23.
Page 24.
Page 25.
Wheel Speeds
Resinoid Wheels
Pre-threaded Work
Depth of Cut
Wheel & Work Speeds
Dressing & Truing the Grinding Wheel
Dressing & Truing the Grinding Wheel
Truing Devices:
60° Truing Device
60° Truing Device General Assembly
Universal Truing Device
Universal Truing Device
Universal Truing Device General Assembly
Pantograph
Pantograph Truing Device
Pantograph Truing Device
Pantograph Truing Device - Adjustments
Pantograph Truing Device General Assembly
Truing Device
Appendix:
Taper Thread Section R.H.
Taper Thread Section L.H.
20" Wheel Spindle - Assembly
20" Wheel Head and Slide - Assembly
Wheel Balancing Stand & Arbor
Diamond Setting Gauge - 60° Truing Device
Diamond Setting Gauge - Adjustable Truing Device
Thread Matching Device
Standard Grinding Wheels
A-5384 - Transmission Case
A-5343 - Transmission Case with Taper Attachment
A-5392 - Wheel Feed & Truing Feed Mechanism
A-5349 - Assembly of Headstock
A-5241 - Assembly of Tailstock
NX-646 - Assembly of Relieving Box and Relieving
Parts in Tailstock
A-5335 - Plan Section through Wheel Feed Shaft
A
-5334 - Section through Feed Shaft
A
-5245 - Plan and Elevations
Elements for Thread Tables
Thread Formulae
tie
Page 4

OPERATOR'S
MANUAL
Jones & Lamson 6 x 15" Automatic Thread Grinder
Model TG-615
Foreword
Jones & Lamson Automatic Thread Grinders are extremely versatile. Twenty years thread grinding
experience is incorporated in their design and they will produce a very wide range of ground thread work
rapidly and economically, if proper care is given to their maintenance and full advantage is taken of their
many outstanding automatic features.
To obtain the best results from any machine, we need to understand it and know what it will do. The
purpose of this manual is to make the operator familiar with the machine's proper care and operation so
that he may run it with maximum efficiency and minimum effort.
All principal components of the machine, referred to in the following pages, can be located by ref
erence to the illustrations of the machine. All references to location or direction are made as if facing
the machine, unless otherwise stated.
i
JONES & LAMSON MACHINE COMPANY, SPRINGFIELD, VERMONT
September, 1941
1
Page 5

INSTALLATION:
In the United States
the machine is ready to run, and, whenever possible, he should be allowed to supervise the initial starting.
However, no difficulty should be experienced if the following instructions are carefully followed.
The machine leaves the factory completely assembled except for the truing device, coolant pump,
coolant tank, coolant hose and coolant distributor assembly, which are shipped separately.
The machine should be at the place where it is to be installed before the skids are removed. It
should be handled carefully, otherwise damage may be caused that might impair its efficiency or cause de
lay in installation. It should be placed on a solid foundation, free from vibration. Perfect levelling is not
required as the machine is mounted on a three-point bearing, but all normal precautions should be taken to
ensure that it is so installed that the accuracy and finish of the work will not be impaired. Providing the
foundation is satisfactory, it is not necessary to cement the machine into the floor.
INITIAL LUBRICATION:
Before the machine is started, it should be properly lubricated, as follows:-
Headstock, Tailstock, Wheel Head Slide
Oil is pumped to all bearings and moving parts of these components from a reservoir in the
base of the machine. Remove the cover plate and fill with a high grade of machine oil, about 280 SUS
at 100°F, until the gauge shows the oil to be at the correct level.
Transmission Housing
and Canada, it is our practice to have a Jones & Lamson field man present when
■
9^
!
Remove cover plate at end and fill with
high grade machine oil, about 280 SUS at 100°F,
until oil gauge shows the oil to be at the correct
level.
Truing
grade machine oil, about 280 SUS at 100°F, until
oil gauge shows the oil to beat the correct level.
Pantograph Truing Device
SUS atl00°F,to a depth of two inches in the bot
tom.
Wheel Spindle
spindle oil, about 150 SUS at 100°F.
Devices (except Pantograph Truing de-
vice)
Remove cover from
Keep a high grade machine oil, about 280
Fill both oil cups with the highest grade
top
and fill with high
< K* -•
2
1
WiM
Page 6

r
COOLANT TANK AND COOLANT DISTRIBUTOR:
Put the coolant tank in place, as shown in the illustration, taking care that the discharge will flow
into the front compartment containing the strainer, and attach the hose to the pump.
Place the coolant distributor in the distributor slide, fasten securely with the screw on top of the
slide, and see that the hose is properly connected.
Fill the tank with oil coolant, a barrel of which is shipped with every machine.
ELECTRICAL CONNECTIONS AND WIRING:
Plug in the truing device and coolant pump motors, as
illustrated, and make main line connection. These connections
are at the rear of the machine.
The machine is completely wired at the factory, wiring
diagrams are shipped with it, and will be found in the control
panel.
WORK MOTOR AND LEAD SELECTOR SWITCH:
The work motor is properly connected at the factory
but, before running the machine, be sure that the Lead Selector
Switch in the control panel is properly set for R.H. or L.H.
COOLANT
DISCHARGE
STRAINER
COOLANT
threading according to the lead screw to be used.
FIG. 2
_
main
CONNECT l<
UN
.
LEAD SCREWS AND NUTS:
To Change Lead Screw
Lead screw, lead screw nut and housing form a com
plete assembly for each pitch.
Unscrew
the lead screw cap and release the binder
lever, remove binder and bevel gear, then remove retain
ing nut and washer of lead screw, withdraw entire lead
screw and nut assembly and replace with an assembly of
the desired pitch.
Adjustment
Adjustment of the lead screw and nut is made by
means of the spanner nut on the smaller end of the assembly
and the locking spanner nut on the larger end.
The lead screw and nut are properly adjusted at the factory (so that they can just be turned
by hand) and this setting should be so maintained.
LEAD SCREW
FIG. 3
3
Page 7

GRINDING WHEEL - INSTALLATION
Place the wheel in the wheel adapter with the manufacturers mark
ings toward the hub, being sure to place the protective washers between
the wheel and the flanges, and fasten securely. Mount the adapter on the
spindle and secure in place with the cap and socket head screw.
AUTOMATIC TRUING DEVICES - INSTALLATION
Before installing the truing device, crank the truing device ratchet
wheel counterclockwise as far as possible, so that when the truing device
is installed it will be as far back in the wheel head as possible. This will
avoid hitting the grinding wheel with the diamonds when the truing device
is put in place.
Before installing a Pantograph Truing Device, make sure that the
diamond holders are in a vertical position; this will prevent possible dam
age to the truing device mechanism.
Pantograph and 60° Type Truing
Devices
Slide the truing device into
place in the wheel head and put the
two spring studs on the wheel head
slide through the holes in the end
bracket and fasten them with the
nuts provided. Bring these springs
under tension by cranking the tru
ing device lock studs on each side
TRUING DEVICE
LOCKING STUD.
ONE EACH SIDE
OF WHEEL HEAD
SLIDE
WHEEL HEAD
SLIDE
of the wheel head slide.
TRUING DEVICE
Universal Truing Device
Follow same procedure as
above, but before the springs are
brought under tension, the stud
and ball that form a bearing be
tween the lower end bracket of the
truing device and the end of the
truing device feed screw, must be
put in place. Assemble the stud
and ball and place in the bushing
TENSION SPRING
AND NUT
TRUING DEVICE
FEED SCREW
LOWER
END
BRACKET
UN VERSAL TRUING DEVICE
as illustrated.
MANUFACTURER’S
MARKS OH WHEEL
SHOULD FACE
OUT
GRI
N DI
N G
WHEEL
adapter
WHEEL
FLANGES
CAP.
SOCKET
HEAD
SCREW
SP
INDLE
"
(W0
j
*w:-> '
B-
When the truing device is
completely installed, plug in the
electric connection as illustrated.
Fig. 2.
U
3
BUSHING
BALL 4 PIN
4
STEEL ROLL
TRUING DEVICE FEED SCREW
LOWER END BRACKET
FIG. 6
^
Page 8

GENERAL MAINTENANCE:
Lubrication
The machine should be kept properly lubricated at all times.
1
Keep all oil reservoirs filled with a high grade machine oil about 280
a.
to the "High" level indicated on the gauge.
Keep the Wheel Spindle oil cups filled with the highest grade spindle oil about 150
b.
SU$ at 100°F, and adjust them so that approximately one drop of oil per minute
flows while the machine is running.
Inspect and oil all motor bearings at least every three months.
c.
Coolant
An adequate supply of proper coolant is absolutely necessary for maximum wheel life and
the best quality of finish.
Keep the tank as full as practicable to ensure a sufficient quantity of coolant at
all times.
Do not let emery or metal chips accumulate in the tank so that the finish of the
work is impaired. Inspect regularly and clean tank and change coolant when nec
essary.
Be sure that the coolant is properly directed to point of contact of wheel and
work; insufficient coolant at this point may cause premature breakdown of the
wheel, particularly when grinding coarse pitch threads or using high wheel speeds.
Often, trouble apparently due to a faulty wheel is due to insufficient coolant.
SUS at 100°F
r*
!
Grinding
drains to the bottom and may throw the wheel out of balance.
Cleaning
ADJUSTMENTS:
Work Motor Brake
to the motor shaft and rotates with it. This disc revolves between two composition friction discs.
• When the switch is opened to stop the motor, coil springs force the friction disc against both sides
of the rotating disc, bringing the rotor or armature to a quick stop. When the switch is closed to
start the motor, these coil springs are compressed by electro magnets, which action relieves the
pressure on the friction discs and allows the motor to start and run freely.
Wheels
Take care not to nick the wheels; even small nicks may throw the wheel out of balance.
Always store the wheels in a horizontal position. If stored in a vertical position, the coolant
Keep the machine clean at all times.
Remove all grit and oil from the ways before moving the headstock or tailstock.
The brake is an integral part of the motor, and consists of a metallic disc which is splined
5
Page 9

ADJUSTMENTS:
Work Motor Brake (continued)
This brake is adjusted at the factory for minimum
braking torque. If this stop is too slow the brake
can be adjusted for a quicker stop by first re
moving the
which will expose 3 compression springs shown at
A
on diagram. The tension of these springs is ad
justed by means of the adjusting nut B. Loosen
the 3 lock nuts C and then tighten the 3 adjusting
nuts B to increase the spring pressure. It is very
important that the adjusting nuts B be each turned
an equal amount, otherwise the armature plate D
with its friction disc E will be thrown out of true.
It is recommended that each of the adjusting nuts
B be turned one full revolution and then try the brake to see if the desired stopping time is se
cured. It is not necessary to replace the steel cover band before trying the adjustment. After the
desired adjustment is secured, then tighten all 3 lock nuts C so that the adjustment will remain
permanent.
ADJUSTMENT FOR QUICKNESS OF STOP:
sheet
steel band around the brake head,
i
an
i
a
CAUTION: It is possible to set the spring pressure up so tight that the coils of the spring
will be compressed solid and prevent the armature plate from making contact with the magnet pole
pieces. This will result in excessive noise and vibration and damage to pole piece surfaces, as
well as excessive heating of magnet coils. Single phase magnets are inherently weaker than three
phase but will operate just as satisfactorily and quietly on normal or light spring pressures. When
spring pressures are increased above normal, it will result in noisy operation.
To make the braking less abrupt, decrease the brake pressure in the same manner as de
scribed for increasing it, by loosening the spring adjusting screws instead of tightening them. After
having tightened the lock nuts C replace the steel cover band.
ADJUSTMENT FOR DISC WEAR: There will be some wear after the brake has been in use,
and unless this wear is taken up the brake will eventually become ineffective. To compensate for
wear, loosen the lock nut F on the adjusting screw G in the lever or quick release handle H. With
motor running, back up or loosen the adjusting screw G which will allow the lever or quick release
handle to go down, taking up the wear on the friction disc E. The most satisfactory adjustment is
secured by moving this handle down until the brakes begin to drag, then raising it by the adjusting
screw until the drag disappears. Tighten the lock nut to maintain adjustment.
CAUTION: If the adjustment is left with the brakes set up so tight that they will drag while
the motor is running, it will result in very rapid wear and disintegration of the friction discs on ac
count of excessive heat. This point can be determined by the sound of the motor while running, as
the drag of the brake disc can be heard.
a
9
9
9
9
After the adjusting screw has been turned up to its extreme limit, further adjustment can
still be made as follows: Loosen the clamp screw J on the lever or quick release handle, raise
lever or handle approximately 1/2", making sure that the aluminum brake hub which protrudes
through the lever does not turn, tighten clamp screw while lever is in raised position. Then pro
ceed as outlined above.
6
%
Page 10

1
ADJUSTMENTS (continued)
Wheel Head Slide Gibs
These gibs are adjusted at the factory; if further adjustment becomes necessary, proceed as
follows:
I
Loosen the four gib binder screws
on the right hand side of the machine,
just below the top of
of the taper gibs can then be made by
means of the adjusting screws in the end
bracket gear housing at the rear of the
machine. To tighten the gibs, the Allen
screw is turned to
head screw to the
little at a time. When properly adjusted,
side play of the wheel head slide should
not exceed .001”
the bed. Adjustment
the left and the square
right; turn only a very
total indicator reading.
OPERATION:
When proper adjustment of the
gibs has been made, tighten the gib bind
er screws.
In their work cycle all Jones & Lamson Thread Grinders are fully automatic. Once the machine is
set up, all feeds, wheel dressing and wheel sizing operations are performed automatically in their proper
sequence, and the operator has merely to place the work in the machine and, at the end of the final cut, to
back the grinding wheel back from the work to the starting position for the next piece. The grinding wheel
must be backed away from the work at the end of the final cut in order to release the stops and have the
wheel in the correct position for starting the next cycle of work. Unless this is done, the machine will not
start when the button is pressed, and a warning buzz will be heard in the control panel.
amount of forward and reverse travel of the work is automatically governed by adjustable dogs
The
on the headstock that actuate the forward and reverse limit switches.
(continued on next page)
7
==
Page 11

OPERATION: (continued)
i
LIGHT SHOWS WHEN
DIAMONDS ARE IN
DRESSING STROKE
WORK START &
STOP BUTTONS
CYCLE START BUTTON
ADJUSTABLE FORWARD
4 REVERSE DOGS i
FORWARD 4 REVERSE
LIMIT SWITCHES
TRUING DEVICE
HAND FEED
’
TRUING DEVICE
SELECTOR SWITCH
WHEEL START 4
STOP BUTTONS
COOLANT DISTRIBUTOR
SLIDE BINDER LEVER
COOLANT FLOW
CONTROL LEVER
. T A ILSTOCK CENTER
CONTROL LEVER
MICROMETER
HAND FEED
ADJUSTMENT
WHEEL
HAND
' FEED
i
n
f
n
The above illustration shows the principle manual controls and the overhead switch box which con
tains the following operating controls:
Truing Selector Switch
When the switch is set at ‘
turning the switch to ‘
When the switch is set at ‘
Off’, as in dressing a new wheel or changing the form of a wheel.
Manual’, the truing device will operate until stopped by the operator
Automatic’, the truing device will operate automatically at intervals pre
determined by the operator when setting up.
When the switch issetat ‘
Off’, the truing device will not operate, and at the same time the automatic
machine stop limit switch is cut out and the automatic stop ceases to function; this is a convenience when
setting up.
The light shows when the diamonds are in the dressing stroke.
Work Start and Stop Buttons
The work start button is used only to jog the work spindle. The work stop button is used to stop the
rotation and travel of the work at any time during the grinding cycle that may be necessary.
Cycle Start Button
*
f
f
*
k.
The cycle start button is pressed to start the machine on a complete operating cycle.
Wheel Start and Stop Buttons
These buttons are to start or stop the grinding wheel motor.
8
Page 12

t
OPERATION (continued)
Wheel & Work Spindle Speed Control
Work spindle speeds and wheel spindle speeds are
controlled by rheostats mounted on the side of the ma
chine, as illustrated. These rheostat controls are grad
uated in terms of spindle revolutions per minute. A scale
on the truing device shows the diameter of the wheel at
all times, and a conversion chart on the side of the ma
chine makes it easy for the operator to select the proper
wheel spindle speed for the desired number of surface
feet per minute at which he wishes to run the wheel. Sur
face feet per minute can be computed simply by the fol
lowing equation: Outside diameter of wheel x .26 x spin
dle speed.
The work speed, wheel speed and depth of cut to
be used are dependent upon various factors, such as the
type of wheel, and the nature of the material. Roughing
cuts may vary from.
from o002n to
speed and depth of cut to use in each specific case, and to tell by the sound when a wheel is cutting
properly. Work surface feet per minute = Outside diameter of work x .26 x work spindle speed.
.005”. A little experience will enable the operator to determine the proper surface
017" to.045M in
depth and finish cuts
9
4
Page 13

SETTING UP:
Two-way & One-way Grinding
equipped with an attachment to allow one-way grinding with rapid return of the work to the starting
position. Machines 130101 to 130123 inclusive are built for two-way grinding only.
returned to the starting position for the next cut.
automatically increased, so as to reduce idle time to a minimum.
fed into depth for the next cut and grinds on the return stroke; this action continues until the final
cut is completed and the correct size attained.
The
standard machine is designed for two-way grinding; however, the machine may be
In one-way grinding, the wheel is relieved from the work at the end of the cut and the work
On the return stroke the work spindle speed is
In two-way grinding the wheel is not relieved at the end of the first cut, but is automatically
%
1
Thread Characteristics
When a thread is to be ground, all of its dimensions and characteristics should be clearly
indicated. Outside diameter, pitch diameter, lead, form, helix angle, length of thread and whether
the thread is straight or taper. Also, as for taps, the amount of back taper and amount of relief, if
any. (See ‘
To set up proceed as follows:
Lead
Screw
under INSTALLATION.
Lead Selector Switch
assembly has been installed, set
the lead selector switch to RIGHT
HAND or
with the lead screw being used. The
lead selector switch will be found
inside the control panel cover as
shown.
Position Headstock and Tailstock
tailstock covers and loosen the two
clamp screws in each unit; also
loosen the tailstock center control
lever binder nut, then adjust the
headstock and tailstock to the most
convenient position to hold the work,
and place the first piece between
centers.
Elements for Thread Tables’
Select the proper lead screw and lead nut assembly and install as directed in the section
When
the proper lead screw
LEFT HAND to correspond
Remove the headstock and
pages 1 through 25, in the Appendix.)
CONTROL
PANEL .
COVER
SHOWING
LOCATION
OF LEAD
SELECTOR
SWITCH
FIG. II
't
't
f
$
€
'I
10
Page 14

1
L
SETTING UP (continued)
Setting of Forward & Reverse Dogs
The position of the forward and reverse dogs on the front of the headstock (see L Fig. 12)
control the length of travel of the work across the wheel. To set these dogs, cause the work to travel
across the wheel, using the work start button and making sure that the wheel is clear of the work,
then adjust the dogs until the required length of stroke is attained.
Setting to Size (Total Depth of Feed)
When the wheel has been properly
trued (see section on Truing), position the
work piece so that the end at which the cut
is to start is almost opposite the wheel and
proceed as follows:
1. Loosen the clamp screws
‘D’,
thus disengaging the hand feed
gear ‘G’ from the feed nut, and by
means of the hand wheel ‘F’ turn the
feed gear until the stop dog behind it
is up against the stop; the feed stop
dog is now in the position it will be
when final size is attained. With the
work revolving, bring the wheel up
to it, by means of the hand
so that it just touches; contact at
this point will be audible.
crank ‘B’,
G H
o
2. Next position the work so
that when the wheel is being adjusted
for depth of feed it will clear the end. By means of the wheel hand crank ;B’,
to the desired depth of cut and re-tighten the screws ‘DL
the feed gear are now in the position they will be when final size is reached. The scale CG’
on the hand feed gear is graduated in thousands of an inch or, if the metric system is used,
hundredths of a millimeter, representing diameter readings. Thus, any desired depth of
thread is easily attainable. Fine final adjustments can be made by means of the micrometer
hand feed ‘C’ which is graduated in .0001".
3. Set the truing dog ‘H’ on the feed gear as required (see section on Truing).
4. Set the wheel return stop dog‘K’ in
wheel will be in proper position for roughing cut.
5. Set the feed dog ‘E’ to the amount of feed desired for each successive cut. Ar
range these feeds so that the final cut is lighter than the others. The machine is now set up
and ready to run and complete each cutting cycle automatically until the final cut is com
pleted. The operator has merely to put in and take out the work and back the grinding wheel
clear of the work after the final cut.
proper relation to the stop latch
FIG. 12
feed the wheel
Both the wheel and the stop dog of
so that the
11
i
Page 15

SETTING UP: Miscellaneous
Setting of Truing Dog on Wheel Feed Gear
TRUING
FEED
ADJUST
MENT
TRUING
WHEEL
FEED GEAR
The Truing Device can be set to true the
grinding wheel before the finish cut or after the
finish cut by adjusting the truing dog on the
wheel feed gear as illustrated.
The wheel is never trued while it is
cutting, and during the truing cycle all other
operations automatically cease.
Fig. 14 shows the truing dog set for truing
before the finish cut. The work cycle has been com
pleted.
Fig. 15 shows the truing dog set for truing
after the finish cut. The work cycle has been com
pleted, but the truing dog is depressing the truing
latch and truing is taking place.
TRUING
DEVICE
HAND
CRANK
TRUING
LATCH
LEVER
SOLENOID PLUNGER OF
AUTOMATIC COUNTER
TRUING DOG
TRUING LATCH
«
WHEEL
RETURN
STOP
DOG
ri
<5
On quantity production grinding of small work
it is often possible to grind several pieces before
wheel truing becomes necessary; in this case the op
erator can turn the truing selector switch from ‘
matic’ to ‘Off’
off the pieces before returning the switch to ‘
matic’ in
However, an Automatic Counter can be in
stalled, if the customer desires, that will automati
cally provide truing of the grinding wheel after com
pletion of any number of pieces from one to sixty.
This device relieves the operator from counting and
ensures positively accurate duplication of each piece.
When this device is used, the truing takes place af
ter the finish cut.
Fig. 16 shows position of the truing latch and
the solenoid plunger of the counting device at the mo
ment of truing, after the finish cut. The truing dog
on the wheel feed gear is not used.
after truing has taken place, and count
order to true the wheel again.
Auto
Auto
FIG. 16
€
€
*
12
Page 16

1
SETTING UP: Miscellaneous
Adjustment of the Wheel Head
for Helix or Lead Angle.
The helix angle of the thread is
determined by the pitch diameter and
the lead. Helix angle adjustment of the
wheel head is made by first loosening
the wheel head clamp £A’ and then set
ting the wheel head at the proper angle
by cranking the worm shaft ‘B’ until
the helix angle vernier scale 'C’ shows
the correct reading. When the wheel
head is properly set, retighten the
clamp ‘A’
than 3°, the truing device should also
be adjusted to correspond with the an
gle of the wheel head,
screws ‘D’
by means of the crank ‘E’ until the
scale iFf shows the correct reading,
then retighten the screws.
Matching or Locating Threads
been, cut are to be ground, it will be
necessary to locate the work piece so
that the thread is in proper relation to
the grinding wheel. For this purpose a
thread matching device is built into the
machine. By turning the shaft ‘A’ Fig.
18, the position of the lead screw is
adjusted laterally to match the thread
to the wheel.
Bench Thread Matching Device
.
When the helix angle is greater
Loosen the
and rotate the truing device
When threads that have already
FIG. 18
When a quantity of pre-threaded
parts is to be ground a Bench Thread
Matching device is available, in which
the work piece is adjusted, in its driv
ing dog. It is held between centers in
this device and each piece is adjusted
to a constant indicator reading, so that
once the first piece is properly located
in the machine as described above, each
succeeding piece will automatically be
properly located without further use of
the thread matching device on the ma
chine. The Bench Thread Matching De
vice is a time saver on quantity produc
tion work as the operator can generally
locate the work piece in its dog while
one piece is being ground.
A
Page 17

SETTING UP: Miscellaneous
Small Amounts of Taper
«
The tailstock center can be ad
justed eccentrically in relation to the
center line of the spindle, to compen
sate for, or generate, small amounts
of
taper. This adjustment is made by
first loosening the two lock screws at
‘A’ and then adjusting the set screws
‘B’
, Fig. 20.
Wheel Balancing Stand and Arbor
FIG. 20
In order to obtain the best grinding action, the wheel should be as perfectly balanced as pos
sible. An unbalanced wheel may cause chatter and spoil the finish of the thread.
As the manufacturer cannot produce wheels in
perfect balance, it is necessary to adjust the static bal
ance of the wheel by means of the balancing buttons,
supplied with the wheel spindle adapter, which are ad
justable in a dovetail groove round the wheel flange.
For this purpose we recommend the use of our Wheel
Balancing Stand and Arbor (Fig. 21). The stand is
placed on a firm foundation and levelled by means of
levelling screws in its base. The wheel is mounted on
the arbor, as shown, and placed upon the stand. If it is
not in balance it will rotate back and forth until it fi
nally comes to rest with the lightest part on top; mark
WHEEL
BALANCING
STAND
AND
ARBOR
this point and insert one or more balancing buttons in
the wheel flange groove and adjust them until the wheel
is in perfect balance. The number of buttons used de
pends upon how much the wheel is out of balance. (See
Drawing CH-5116 in the Appendix.)
Grinding Wheels
4
J
*■
I
I
<1
a
FIG. 21
€
Choice of the proper grinding wheel is of utmost importance. No matter how efficient the
machine, the quality of the work and the rate of production depend finally upon the wheel employed.
The rapid and constant development of grinding wheels prevents us from giving exact wheel specifi
cations for specific types of work; however, we recommend that you consult representatives of the
manufacturers and have them keep you posted on these developments. The principal manufacturers
of
thread grinding wheels at this time are The Norton Company, Worcester, Mass., and the Carbo
rundum Company, Niagara Falls, New York.
We ship with each machine two grinding wheels that we select as being satisfactory to per
form the work according to the specifications given us. Some general rules on thread grinding
wheels follow, but they must be observed with proper consideration of varying conditions, incidental
to each particular job:
Grain: Use the coarsest grained wheel that the job will allow. Too coarse a wheel will re
sult in a poor finish; also, it will be difficult to dress and keep a perfect form on the
wheel crest if it is too coarse for the pitch of the thread. Generally, the finer the
pitch, the finer the grain of the wheel.
14
€
€
&
e
Page 18

SETTING UP: Miscellaneous
Grinding Wheels (continued)
1
Wheel Speeds: Use the highest wheel speed possible, but do not exceed that recommended by
the wheel manufacturer; this would cause danger of breakage. At present,
most vitrified wheels are not made to run faster than 7500 surface feet per
minute. However, these safe speed limits are subject to change and the
Safety Code for the use, care and protection of abrasive wheels, approved by
the American Standards Association, states that the surface feet per minute
of wheels may exceed their Safety Code maximum limits upon the distinct
recommendations of the wheel manufacturer.
Resinoid Wheels: As a general rule resinoid wheels can be run at higher speeds and will
take heavier cuts than will vitrified wheels. Resinoid wheels are generally
used for quantity production work. Vitrified wheels are used for grinding
extremely accurate threaded work such as lead screws, gauges, etc.
Pre-threaded Work: Resinoid wheels are not recommended for grinding pre-threaded work
which may be off lead as they are apt to flex and not correct the error. Vit
rified wheels on the other hand are much stiffer and have less tendency to
flex, even if the pre-threaded work is off lead.
Depth of Cut: Too heavy a cut will cause the wheel form of either resinoid or vitrified
wheels to break down. Extremely accurate work requires lighter cuts, and
hence more cuts.
r
Take heavier roughing cuts, lighter finishing cuts for production and accuracy.
Slender pieces may require more cuts to eliminate springing.
Wheel & Work Speeds: Although the material and hardness of the work being ground is a
factor in choosing the wheel to be used, it is
suitable combination of work and wheel speeds.
Work speeds range from 2 to 15 surface feet per minute, depending upon the
material, hardness, and the grade and grain of the wheel. At the time of this
writing most external work is ground at surface speeds between 2 and 5 sur
face feet per minute. At higher work speeds it is necessary to take lighter
cuts in order to avoid excessive wheel breakdown and burning of the work.
With experience the operator will soon learn to determine the most satis
factory work speed for any given type of work.
Dressing & Truing the Grinding Wheel
Always use coolant when truing the wheel.
Diamonds must always be sharp. Dull diamonds may result in a poor finish and may even
deflect the wheel and cause error in the thread form. When form diamonds become dull they should
be replaced or relapped.
also important to select the most
When it is necessary to remove comparatively large amounts from the wheel, as with Whit
worth or fine pitch 60° forms, much diamond wear can be avoided by first thinning the wheel with a
Jones & Lamson Hand Wheel Thinning Attachment.
15
Page 19

SETTING UP: Miscellaneous
Dressing & Truing the Grinding Wheel (continued)
For the first wheel dressing, proceed as follows:
h
diamonds to advance until they reach a point about half way down the flanks of the wheel, then
turn the Truing Device Selector Switch to ‘
of the Truing Device Hand Crank until they are heard to contact the wheel, turn the Truing
Device Selector Switch to ‘
truing cut may be necessary before the wheel is properly dressed.
is properly dressed, set the Truing Device Feed Regulator for the desired amount of feed.
TRUING DEVICES:
60° Truing Device
Changing Diamonds:
Fig. 22 and remove the diamonds. Place the new diamonds loosely in their holders and set
them so that they touch the bevelled faces of the gauge when they have been advanced half way
through their path of motion. See Fig. 23. Then secure the diamonds in place by tightening
the clamp screws ‘A’
Set the Truing Device Selector Switch to ‘
Off ’ and gradually advance the diamonds by means
Manual’
After the first thread has been inspected, and it has been ascertained that the wheel
Withdraw the truing device from the wheel head; then loosen the clamp screws ‘A’
.
and allow the truing cycle to be completed. More than one
Manual’
and start the wheel; allow the
S
i
i
m
<3
&-.S 14-07
P,- 732.
3- 50573
30 7 33
' GAUGE
Adjustment of Thread Angle:
If the thread angle is not satisfactory, adjustment can be made by means of the two
(one for the L.H. and one for the R.H. diamond) adjusting screws ‘B’ Fig. 22. Turning these
screws to the right will close the angle and to the left will open the angle. It should be noted
that the thread form produced by the truing device will vary according to the helix angle of
the thread to be ground. Do not change the setting of the two lower screws ‘C’
.
n
€
16
r"
6
Page 20

____
1-51^
.5065 7-
5Q&55
5QM1
1
S^-
11>64.~\^N4
\^oo
Z
- 5Q86.Q>
@
/
r
v
-■
/
/
l
@
in
^•505
V5050fe
^-505^
ir5060i
502.56
50^iV>>
50)5^ou
tO«5Q
6 CP
07-
5V5
4Z-G,
N
m
in
VlQ71?>
4-6Z
J.- 5l^mS
Z]
o~s Se
© ©
ws
©
J
bA-Z-t
z~ \omtz>
5
o
©
:
!
I
1
1-6Z.7.4
507 63
A-SO
Sc-ITVON-C C
G,
0° Twywt,
J *
UTWv*v-*»>
IL
. btvic.t
CaOfc,
\Ht>r.'R
&
SECTION
SI 161
3- 505 76
Hi*
iiS.0ft52._
2.-5064
-~Z- 505 2
• Z- 5
5-506v(o
O60>L
6
50*506 Sp^v^d,.
/ 5Q3T6_Co^b_
5
( / 4-O50b 5cw.
f
rQ
/ / 5 2.615 'Z>vj«»vA\wc
50664
lltib 50665
L
Dwii. 7-t-i.-40.
66*
56 ’V-J
5QT54
t
v»v*uv.»
**
31600
50*54*1 VfoTcwVjv^ccc-V.-^S^Tr'Y^ \ w_
53304
1 •
[ 5Z06^-6>4&
. 5Z476
52*5\*5-lZMZ
50*546 VJo-RfV l-S6V
t
50602bu&Hm6>
Z^1>_TL
51343
?QMr.S A
/
r
- <\y
^
4-551G
_ 5062.5
51155- 1-Z0)6l
31156 Z-ZOZV4J
/
7 5»P6I
V' /
/
V-~ ■
v^Qj4
7
2.- ZOl 453
L\t^\T Sw
50^lc5K^
Z-z«66
/-Z-5061U
/ ^4-6V*A
7^3667 WKVHtTt.
s
391>3Q.
5061
L-hL—C.—~^Q.
\w
noje^ /
VHOT SHOVJVa
'3311 N
L.5Qft(.QV
w
»oo ^.v>/
3.3I.Cr
Z
ut
50667
viV. L_ . >
—
S C.CT\o T-J
u
j®
<32.0
3 Sew
.
''Woo is'Vuv r Kn i
501 S‘S'* OLV. I
50*51
'iV it* ,
I0T506 ioTt* v
^J5p3-L%
X
■
i
!
i
!
Page 21

TRUING DEVICES:
Universal Truing Device
The Universal Automatic Wheel Truing Device, with suitable formers, will grind straight
sided threads, either symmetrical or buttress, of any included angle from 15 to 90 degrees inclu
sive. (See below, and Drawing NX-574.) The Truing Device has all of the features of the other
Truing Devices, such as automatically slowing down the wheel for dressing, and provision is made
for backing off the diamonds when they are on the return stroke. These functions are all automatic
and require no attention on the part of the operator.
?)0~+3ol
\
7
FIG. I
*
THREAD FORMS OBTAINABLE WITH UNIVERSAL TRUING DEVICE
AA
FIG. 6
Fig. I - 2-30° Formers required for any 60° thread Form not
using the hack diamond.
Fig. 2 - 2-30° Formers using back diamond for root Form.
Fig. 3 - 2-30° Formers using back diamond adjustment for
sloping root Forms.
(Thread Forms shown in
with the same set of 30
Fig. 4-1 set of Standard
29° thread Form, 2 pitch or finer.
Fig. 5 - Special Formers are required for each different
pitch or chamfer specification.
Figs. 1, 2 4 3 can all beground
0 standard Formers.)
lUjo Formers will grind any
FIG. 24
The Universal Automatic Wheel Truing Device is equipped with three dressing diamonds,
one for each flank angle, and one for dressing the flat. An adjustment of 5° either way is provided
on the latter for threads with sloping roots.
When dressing, the two outside diamonds move forward and outward, down the flanks of the
wheel.
This outward movement is controlled by formers corresponding to the thread form to be
ground.
The back diamond is
used
when thread forms with flat or sloping roots or sloping crests are
to be ground. The diamond tool should be placed and secured in the holder so that it projects 1/4"
beyond the diamond holding block. It is not necessary to remove this holder when the back diamond
is to be adjusted. (See Fig. 26.)
TRAVEL OF DIAMONDS ON UNIVERSAL WHEEL TRUING DEVICE
FIG. 8
Fig. 6-1 Set of 7J° Formers will grind any 15° included
angle thread Form with depth not exceeding 1/2*.
Fig. 7-1 Set of 45° Formers will grind any 90° thread Form,
2 p itch or f i ner.
Fig. 8-1 Set of (l) 7J° and (
any 71° x 450 Buttress thread, 2 pitch or finer.
Fig. 9 - with suitable Formers it is possible to g
straight sided threads either symmetrical or butt
of any included angle from 15 to 90 degrees inclusive.
l) 45° Formers will grind
FIG. 9
r i nd
ress
18
Inactive
C_—_-v-
I
I
Page 22

TRUING DEVICES.
Universal Truing Device (continued)
The Universal Automatic Wheel Truing Device is delivered tested for proper operation and
set up for 60° angle thread forms. All 60° thread forms are obtained with the same set of formers.
0IAM0ND
ADJUSTING
SCREW
FORMER
BINDER SCREW
FLANK ANGLE
ADJUSTMENT /
DIAMOND HOLDERS
FORMER
BINDER SCREW
ANGLE
UNIVERSAL
AUTOMATIC WHEEL TRUING DEVICE
BACK DIAMOND
ADJUSTING SCREW
DIAMOND
ADJUSTMENT FOR
ROOT SLOPE
Changing and Setting Diamonds:
First set the two outside diamonds. A gauge is provided to ensure that they will be set cor
rectly in relation to the wheel, so that an equal amount is dressed off each side.
A surface plate, together with blocks, etc., can be used to set these diamonds properly in
their holders. But by far the easiest method is by means of a Jones & Lamson Comparator. In this
case, the gauge is laid horizontally in a V-block, on the Comparator table, locating against a square
end of the V-block. The Comparator table is then adjusted horizontally and vertically until the
shadow of the tip of the gauge, representing the diamond, is at the intersection of the horizontal and
vertical
lines on the Comparator screen. Remove the gauge and place one of the diamond holders in
the V-block (locating as for the gauge); then adjust the diamond in its block so that the shadow of the
tip of the diamond will be at the intersection of the horizontal and vertical lines on the Comparator
screen.
Follow the same procedure with the other diamond holder and thus both diamonds will be
adjusted to the same height.
The formers are pivoted on pins and, should it be necessary to adjust the formers, to correct
flank angles, loosen the former binding screws and adjust the formers by means of the graduated
screws shown above in Fig. 26.
Adjustment of Back Diamond:
The back diamond is adjusted by means of an adjusting screw, see Fig. 26. Turn this screw
counter-clockwise to advance the diamond toward the grinding wheel, to make the root form wider.
This screw is secured by a set screw.
For sloping roots loosen the screw shown above in Fig. 26 so that the bushing can be turned
to the right or to the left, to obtain the correct setting of the diamond for the slope desired.
19
i
Page 23

Jc&£££
&Z&1JSA
*9
&
icaai
SV-
id
:9
Z£B2i£
@
3144b
J5O^C0
f
Z76.f -
®“k
50
1@
"
Sec~T\oK>
2-6161
vZ.-J5lC.l_
h-Tbl Qvu
Vjwatsovi
^ \ V4 fv*> »*
*"■* OT SwOV«W
btC,T\OM E
4-^5J>(o
fU
,. -5>5
L-51407
.-E.
in
*ti
'
'
/
/
i:
&
Id
\^5) 2- V
h
x-
5
1&- G Fou>-ovjit».
Z- Fo'.'.owcn vxoi-tat-u
2- ®
.^o
-Q
■5141?.
St,c-T\ovu c- C
eta
Am.
®K
Cp___o
W7
/
/
4;
<SS04
/
\ 1
.
>701
'
/
■
i©
fi?H
1
I
|fr^&oj>VQ; ai&jj 1 | ~g=^
:■ "
- -J-TiVT;'!
_,
(°S 7 o> ,«T
/ /
1
rfmffPT#
7
LzSSlS
T7
r
I n
a
-O-Q
J
k^a~
Q'r r^-r--r aTQ-
h
5u.yo
V 314 30
Z77
rfH
I
; 0E&
,© /
r
WU.v
-Q766
ft
-StS 4-3
^
V*T tAoTo.
nm»w
rT\wvACi*s'T
—
tx
o'
r-
PirSd
/
_ J
- -i
±z&kL>.
@(p©@
\
er.v
<r.7.~;
U
,-5ZQ_
qo
_l~ 10775 S
---------
hz&xszM.
■L.&&LS.
b‘650b
b-fiz.1 !S
__
_
7T-
£
g^ In^«hWm
L
-- (3
cvjv
ksnsLbv.j^H
_5^4i-_5in
l:'Q7 7
—
^1)6029 3Cw5
t2)6Z0Z
(2)384 Pin.-
j_ !
-Jg_»4y_G_
Z--e.e>4.~p.^s
52620 LinirJwirtii
iC-ti
__
>f-4<\
" tvi C.S.
<§)
'•V
KiC. _
LQPX>_ST>vt vwc^
JP4^Lv^cv1^>x_ ^gQs^
; J&fe
a* T^i-r.ow
^^.£lSJLui^_
?.oo3
-k*5P_
-~° • I °
<£::h1
r~
~
b»>»AOW>t» ^CTTlNG,
□
Z.-t
1
506 Kta
xvrx*
_____
«■ w.
-----
Mu.Ti
y
va
Z-
mi
\_- e>e.i
5 I4.(»0>
buTioN
^Joc^^Corvt^ Wl^
AJ-PC*3.5. _••
ZeJ51 3ivH.XS,> _
A-^ojs _s
^ 7 £—kftyjiv»
S>x- 574-7S
• N«*-574.-*94-
.
&1C,
r-r
4C-5>
NX-© ~7 4
I
S CCT ' o Ki tv>- K,
5»iiK5_t5Cb. NX-574
or V 21-3 7
5704R7)
o
r
T~W
vj
\vq Ck Xb^-VVC-e__
I
15 I O \
\5 t. ■ T
KX» C VA \e>- 4-0
«
r—t-_l
soai^
f
..
I
1
___
«
Page 24

TRUING DEVICES:
Pantograph Truing Device
The
roots and crests, symmetrical or buttress, of any included angle from 15° to 90°, such as 55°
Whitworth, 60° A. P. I. Standard Drill Pipe, or any other round top and bottom thread forms (see
below).
Pantograph Truing Device is used to dress the wheel for grinding threads with round
Although this truing device operates upon a different principle than do the other truing de
vices, its controls are essentially the same and it has the same automatic features, such as auto
matic slowing down of the grinding wheel for dressing and automatic relief of the diamonds on the
return stroke.
thread forms obtainable with pantograph truing device
FIG. 3
- 6°
FIG. 4
FIG. 5
47£l
AiA
FIG. 6
Fig. I
FIG. 8
FIG. 10
Fig. I - Whitworth Form.
Fig. 2 - Flat top and round bottom.
Fig. 3 - Special Form.
Fig. 4 - Special Form.
Fig. 5 - Buttress round top and bottom.
Fig. 6 -
a
. P. I. thread straight.
Fig. 7 - A.P.I. Tapered,
taps.
Fig. 8 - A.P.I. Tapered. For grinding Pipe and Gauges.
Fig. 9 - worm threads with radii on corners.
Fig. 10- British Association Standard.
For taps and chasers, for collapsible
FIG. 27
The diamonds used for dressing the wheel to obtain these thread forms must be lapped to a
radius of very exact dimensions; these diamonds are accurately centered in a square shank.
Different kinds of diamond tools are available for different thread forms and our Engineer
ing Department will supply the most suitable for the thread form required.
Two diamonds are used, each dressing one-half
of the complete thread, from the center of the crest
down over the flank and across one-half of the root. It
is not necessary to grind the crest of the thread in a
subsequent operation.
The path of the diamonds is controlled by two
formers, one for each diamond, that conform to the
thread form to be ground. A set of formers is required
for each different pitch or thread form to be ground.
T
he two pressing diamonds
TRAVEL,
R.H. o-
as
shown
.
5TART
LJtL
START E
28
FIG.
♦ L.H.
FINISH
R.H.
FINISH
aP
21
Page 25

TRUING DEVICES;
Pantograph Truing Device (continued)
Setting Up;
First select the appropriate formers for the particular type of thread form to be
ground. The size of the diamond to be used is stamped or etched on these formers. Place
and secure the formers in their holders.
The next step is to set the diamonds. With each Truing Device is shipped a diamond
setting gauge A
found on the rear end bracket. When this device is set on a Jones & Lamson Comparator,
the exact location for the diamond setting in the block can be made. *
To make this setting it is necessary to remove from the front of the Truing Device
crank the diamond holding block, #51627. Mount this setting block on Comparator table in
some suitable Vee, both vertically and horizontally. Locate exact position of cutting edge.
Insert diamond in the diamond holder and place in the V-Block so as to register cutting
edge in the location previously determined upon by the setting block. When using the Com
parator it is possible to set these two diamonds to the same height within .0005" or closer.
Set screws will be found on these diamond holding blocks which allow the diamond
holder to be moved lengthwise relative to the Vee. The point height of this diamond is very
important and it must always be .250" from the top of the crank which supports the diamond
holder. This is all taken care of in the making of the original diamond setting block. Any
change in the height of this diamond will change the included angle of the thread ground.
After both diamonds have been carefully clamped in place in the holders, these
holders are returned to the diamond cranks on the Truing Device and clamped securely in
place.
-5120. This is marked with the serial number of the Truing Device which is
m
These diamond tools must maintain their form, in order to function properly and
produce accurate threads. It is always best to save wear on these diamonds as much as
possible. When they go into action on the face of the wheel, a bead is raised which will be
the form of the thread which it is desired to grind. Everything outside of the form that is
actually used in the grinding represents extra work for the diamonds. We recommend that
the purchaser of a Pantograph Truing Device also equip himself with one of our Wheel
Thinning Devices, which makes it possible to dress off the sides of the wheel in such a way
that only that portion of the wheel that is to be used is left for the diamond to work upon.
By careful dressing on this restricted part of the wheel it will soon become evident
from observation that the diamond has brought the face of the wheel to the desired form.
Great care should be taken in dressing to make sure that the diamonds are not required to
cut off more than. 0005" at any one time. This will be three to four notches on the ratchet of
the diamond feed mechanism.
Next, grind a trial thread with the wheel as it is, in order to check the form as pro
duced on the wheel. Because of the close tolerance to which we work, it is practically im
possible to make the setting exact on the first try. It will, however, be very close to the
form which we wish to get if all of the instructions previously given have been carefully
followed. In order to see more clearly what form may be produced if the diamonds are not
set in exactly the right position, we have included with these instructions a chart, CH-5090,
which shows the various types of form which are likely to be produced with diamonds out of
22
Page 26

TRUING DEVICES:
Pantograph Truing Device
Setting Up: (continued)
1
place. As a matter of convenience we call the diamond which is on the right side of the
operator as he faces the machine in the operating position, the right hand diamond, and
the opposite diamond, the left hand diamond. Whatever adjustments are necessary will be
made through screws, #51086, behind block #51084, and the same screw which acts as a stop
for the formers on the former block. The adjustment necessary will be very slight.
Adjustments for angle have been made at the factory before the Truing Device is
shipped. Should it be necessary to make some slight changes, it will be noted that the
formers are mounted on former blocks, #51502 and #51503. These former blocks in turn
swivel about a center stud, #51157. These former blocks can be adjusted by set screws so
that the angle can be
angle as determined by the former.
changed by very small amounts either greater or less than the standard
i
23
Page 27

ADJU^TliFMTS
2-
F B^NIO^BAPh TRUING pEVir.F
^
C
lockwisf
N
THREAD
iiaM
The
TRAVEL
R.H. O-
START
L±L £>—
!
■START E
root on the
attL ■
10 QREN ANGLE, SCREW y^.
TWO
dressin
as
shown
W
2Sntoi
g diamonds
. ‘
l
\
%
A
heel
Binder
.H.
finish
-O fiH.
5 FINISH
nuts
h
m
-[■JL
/C
O
ne graduation changes
WIDTH OF TH
FORM .001 INCH ( 02.54 M/tT
(4) FORMER ADJUSTING A
SCRE>N5 FOR THREAD \
angle
.
f 7
■5:
lockwise
E
xample
IQ CLOSE AHGlE,
5CRENN \N.
_ WHEEL THREAD
______
2
CV>
THE
A
ll movements
^
made only after correct
M
gde of threa
obtained
screws
F
boll stop
///// ,
ote
_______ QF
.
DO NOT CHANGE T
. T
ormer
E
xample
STOP
A&B
d form is
hey hold the r.h
and bji diamond
IN
w\\\
4
------------
HFAF
PLACE
’
set
W W
C
T
ROOTS £' AND D ON THE FORMED
WHEEL ARE THE SAME DEPTH
ork
E
xample
orrect form of whitworth
hread
. N
ote the thread
.1
d
.
C H-50^)0
d
‘
v///w
\y
E
xample
First
DEPTH.
SHOULD AE TURNED CLOCKWISE
In
ter-clockwise
f
make
D£D
In
EXAMPLE 2, (A)
EXAMPLE 3, TURN (A)
f
3
the same
.
__
coun
o
v
E
xample
The
FINAL ADJUSTMENT IS FOR
CORRECT WIDTH OF THREAD FORM.
In
EXAMPLE 4. (s) SHOULD RE
turned clockwise
5 TURN IB) COUNTERCLOCKWISE.
5
I
n example
fill
Page 28

I
4
I
i
I
4
I
£>11A(V)
,&ie>z.(V)
\0 55£>(4)
5ic.z&(n
313 A CD
■£>51 5fc)
^5
1 6*2. T(2.
5W.I6.)
SZilZZtt)
5 \Aes 5(1)
-•> <3
5\(* 44
516.45-
68d.^(l)
5H64(U
5)Q&4to j
S'o&nto
5iia^ iz.)
1
13
A,
zz/r^g
Ife
^ Q
-QlZ-lCZ.)
)
S E. CT ) O Ni fV
t
>g.T
tvc
:
l
J
va
n
1,2-50
515 oHZ'i
'T^vj'^c.
S54 5&1H
-51 5'Q (Z'l
5ZZ\*(Z)
/5i 50^0
/" iQ'soam
iZ3
a>5&(^)
5' S\AjZ')
& 1 1(2.)
5i4?>tfc) OEE-TTv^j ^
\
$!
»>;
Ul
i
)
<dM
5\Q<b6
CdD
±J-
5505(1^
A
/
^5 lO^>rl Sruta
~e>e»
&1\ Cl',
lo
^oafc)
5>4-«5 6.
Vp
-*.
5JPJ^
6 *
S) 0. 15~^S^(2.>)
514.
5i4^e>te)
6Si4^
~
&naz(^
(2.) l5io\~V<i.
/
(l) 554
51
(2.3_5U5TScW.
a»
nu
t
\
mi
St.TT\w
U (a^^’L
^>t,
c~r\oot 6.- O
~Vu^\-v 6
5
-\e>6>4
Wb*S>
S' 500 (Z\
-
-5I05&
51502. J
■51504 /
_5lIA^T. /
5 >407(4-’) .
5106.^(2.1
5\OTOCL')
[
Tn^a Cn
| «b&2. (2.) >****.
\
ti -11 G> 5 ft.')
£>fi> fi>
5i^n
-iJ * .» •
55QZ.-Z.
'0^>C*0-1
&Jp£>'5-C> 5&
-5)007-2.
S 1Q*S) \- Z. os^A\ o,^
[~
5>4-04 V7
1 5\_41o_^
5)507
5> Y. u.-, v-. v_'t_
g
.
1
o
*vfr
_\
qk
^
> W o1^ T^\ (^af AP-0-'5a4-PiN
\
»j£
-----
v\.~
Hi5X£n.
' P>-]A?
-
57.1Q6
• 1 &&1Z
4-51'
4-- 32.0
3n&-±
52.500
\o n °s iz.-) scvo
v.- p> e--^>
-
3
Uv-6.'~b-\V
\_-,ari4
5(oe>
HvO'ViZ.
a
tk
*W
K- (j> ) 5 - 1
.4
j-
3?rril
1
o
V).
7Zbl
1500 S>C>-
VJ HE ~5 \_\t^V\T Sv''
50^ 5 \ C. ft
4-
5 5
5
1 I56»
2.-
„2.,0i
3L
p^>-
I
p\sstnit>ut
' '
- 5SSA-Z.-C
Z- ZOl^>Z.
g.ZO'b
Nww
NK C-
1 ~b-\
/ Z-3507>
'&
T C-V-Vt, V
Svj>-^cv<
Q G'CtVn
50^ St-vj.
.
'
n
x-6 2.a
Tux>^fe
U t J\TT (50 V-\ 14 -T.
3* ^ U Th3?- £
Or>^TO^K>H_ Tsvt
--^AV
' C e>J »xaaJdJr>A>.
V VA ta
■SlAfejfe
■
-----
5\0^>S
505)44
A-—r
\
575 5
O*
in
5J5^
5_0&L5-Z.
6
7Q& ^
6?V5-5
2
.-2-^
'j
' /
-
V
»yC.\-\ to
gTQn
»5^4p._
5ojb\n
S1Q&5
To t-i e<, ■» V. PnX-A S QW
Page 29

APPENDIX
i
?•
!
!
c
I
'
I
1
1
I
1
;
|
>
|
Page 30
Page 31

PS
ASSEMBLY
NUMBER USED
I
i
FIRST USED ON MCH NUMBER
LAST
USED
ON
MCH.
NUMBER
-f
_
___
Ditv.-! e? ! C if
SUPERSCOC5
SUPERSEDED 3Y
DATE
______
#
’
ART
I
*
MATERI/j
CH-5043
OF
OF
NUMBER
i
SCALE
■
Page 32

■5 I I Q?4-
-
505^5-
^-652.5
506M
•506^)0
506b(o
&54fe
fibSE.M'b.LN OF 2.0" VJ
T
TvHT»t_Ps.~Ca G~R\V4t>L^
hce.l
S
P'N tiLE.
Page 33

I
-514- 4-
514 for-
Z-SlKa
2.-e»s-k3>_-
-------
■SI4TO
--------
-
-----------
g,_
-------
&z£eisitSi
±zjSQUoA._r^'
&ZJ5\5Y9j:
5j-_
Z±9 9
r
-.5poe>:'
ATI VI o
_
SfiL
J15G&
50.397
606VJ rtVT - -
4 11
Q.
ft5tf
l
i
I
I
I
i
I
-----
I
1
:
i-4.7 55
2-(.7 53
-------------
------------------------------------------------------
-
---------
5J>9.U>
-5n<be>_
Qoj o w
-Tm
J&TjCLL^fevS-
iL.5n74jbi.cTi
— Z.-15-tM.l
■
s 14-
n
4--509 09
2.- JOftSt
(o-30&57 T
>» - < H33
vWt
—
j/or.
20750
—^-50702)
- 5 2.&0O
ins
vjm
. 3
lotio n r» > ■
St^oorv •»• i\.» ci'-.«
f\ bozes Dv,
^bontL.sr
----
- ci-v-.
r-Afc .•»
s
r« -JJShfs
SJ33*-
5_'0
7 7
V**i.
K-SSsL
UC.J
4 - .om;j
511.92.
3-J.4<pO.
IV 5 \3?.
f\ikknjc*vf
$ V.v3ws.»>v» Ci
. ?*o* Vj»<u-‘. Wt.Kjj <( bv.101.
v
-
b.M't Oc.r- 50>9
C-
^
Page 34
Page 35
Page 36

6517(2.)
l
h-V
r
r
i
1 :
I i
l: i
.
L J
(0
1
I
~To
e>ei
U
sed
D
iamond
T
i
i
i ^-pi
h^t
-------
I
I
w
I1 11,
NX-574-
H
A
W
ith
older
ssembly
.
D
raw
I NJ G
I-IH
f/X
n
-533
i
,
DIAMOND SETTING GAUGE - ADJUSTABLE TRUING DEVICE
i
I
M
__
1
I
Page 37

V
%
%
^
—
I
g
l S
’ I
%
W
e
[
atching
n
T
aps
5TQ9.
<25.3-
W
okk
^P/NHLf: /)
.
.
SOH&'
iyw/7r////
SOU
U
5n*cujr 5QOO<.y
DAPT_££j5«**
JtfjTFACp On T
WfT&ftS 'OQQ&
“JT
✓T70/
5-01^0
—
-Q9S
n
ls
1E®-Li
[» L
T
.1
.
:
s
'J-Ko9
S
Qcl
-/
££220
\
\
'
t'A"
S);fi ■
fet-'
JHZZ
,££2£Z
___
\
i J4
—
'Z3
9 ,^2—
3 / .££7/0
/
•jOiU
sms. 1' (
-Q.
—
>
: .r i :
-
M
A?ZQ
TT6.74A
c,oi7
-
Tfuss Our SlviT.-pf
. U-ltiG
Pq\nT€R F
—
T
hreads
«SJZ
or
M
O
Q
1 r
^-~ ~
sons
api
6
SOI.
a
;
!
rcH,-N
-------
SO 71C.
BO&7I
zb
-as*.s
€
FC: *13
1
.
1
i.
.Mz. T
A-3033
hread
G
rander
\
\
\Tfe2ii
£>(>25
---
J-/-1C*
.
I
7-
Lon 1
?-L0f7>
\
faA/e-£, cT LAM&ON AfcMCfo
Page 38

STANDARD GRINDING WHEELS
FOR
JONES & LAMSON THREAD GRINDERS
-
WHEEL WHEEL
WIDTH NUMBER
W
3/8
1/2
5/8
3/4
1
”
1-1/8
1-1/4
1-1/2
± .005
.490
+ .005
.4375
51164
51234
53896
53895
54104
54107
54108
C0-7101-7
CO-7102-5
WHEEL
ADAPTER
A-5106
A-5034
IT
IT IT
NX-701
IT IT IT
IT IT
IT
O.D.
20
It
II
TT
IT IT
IT
11
I.D.
10
it
It
IT
IT
IT
IT
IT
R
No
No No
1/16
1/8
No
1/16
1/8
1/4
R*
No
13
13
No
13
13
13
TYPE
60°
60°
Flat
Flat
Flat
Flat
Flat
Flat
Flat
Flat
E
l/4
l/4
G
14-1/2
14-1/2
Obsolete
Special
1
I
i
6-12-41
w
FLAT
i
V
ID R
u
‘ OD
i
I
i
i
m
JONES & LAMSON MACHINE CO., SPRINGFIELD, VERMONT.
i
I
i
I
i
I
1
If
1
r
E
G
I
i
*
CH-5157
Page 39

H
■
53526 Sc.«tu*
53650 D
54027 S
54064 PouBt-e
!
ouble
eptuple
54066
54065
lc
W0»1K1 GCAK --__/
/7ZZZZZZz22$
-
5U39
i 53891
54 056
5 36 19-------
304.-^-
Hi
—
54244
53517
(*1373 ;r?r
(2)3525
(2)53518
(2)5626
-----
-^-0^1
53524
-^4-20230
50252
:
20025 N.
20026
W
i
’
54014
8525(4) N
ot
S
hows
^
20026
53997
023 N.
--------
53548
(4)8201
(3)8501
P
arts t
W
hen
o be
: A
Rclicving A
is U
dpcp
sed
(NX~685)
ttachment
^
W
54004
8805
54015
Cov(
<3ASJlH-5432-Q-
(5)8227
-----
s\\\\W
-
i ~v7
SrrrmM A-B
‘
-C-P-E-F-G-H
r
:
)
}
}
I KAIttiM I &SI0N CaSL
6x15 ThMAO (SniNPUP, • P - |
~~55M±
-
14)8
523.
D
ate
r
-6^^-41
^(4)6203
A-732
__
53666
-—(4)8203
J
ones
&
L
awson
M
ch
Co
*yr. J
A-5384
Page 40

'
19'14 ui
2SXW
5 5 5 2
^0^3exTO>lt */oa„
3 3 574. Waur+i (Sena
34QC>AiQn
POLE TwgCHirc
5^C^QV/OB,^ <raa
3402.2
.
a.4Cty
5402ft .
j
-Sa>ogfo
54010
20020
UU22JX-
)
. ^
----
aoa&fr}-
V
\
5 5 040
B2oa<4)
:
?
LOO
i h Mr 6S7i
fi
5112.1
aaA
---
llfil.
----
-
5*000
St. 2 (.42) —
515i§
si:n
075_?r
5 2 51?''
"7^
20025
S
ZOOZ4W y J-&2L I
71 X
S215.®
iaii’V
ZlL
t*9-41
N
7.;
5AQ\5
— 5.5421
/ r
0201 fAl
aa4A
C-3
7^?<S/V J.v> /SS‘C~J C*-t5C
T/jPet; £)T7perl
T
V
/_
hpcp>o
-Wf/v7-
.-'P.S'OCP.
»v/
I
c
__
I
■On re /q. gj rfr
I
J
----
li
f
<416525
(5) £tL?iL-
I
A-
i
\
\
V
(5
.. &
•V
UyV .•J' . (Tji
$
r±j=.
•0-
' -f J J l '/•',WC-
§)
f
■A?-732
Men Co
CXfjt
«
Page 41

I
l
III
1
I
I
$
Page 42

A
■i
i I
\
V
1
Page 43

1
1
m
m
m
m
m
w
m
r
rv
f
1
o
5‘b\A5~^>v»svA'^(^
/]
^•
V&332
f
— K
-----
FV
SO.OTZ.
)
>
J
^ ot>-
Shi&i
L-S46, Ktv
£>e>c>Co
ottn
5^156
5^kl& bow
S>t.
\0>.&Q
■ 5^Ul
SS 033
■
33S>l VXv^.
L-*=> ^ I
! o
jsr
c
5VVTA
Vlfr&g
jn
0
----
u
--
::s
EI
.£3^,0- ,
£o — —
. 'g.O'O
f#
4
5Vb±^'
HZ**—
I
!
i
5t>oe>i
4--e>5\Z'
5^.oa
EL
Y,
o
<x
N
1
- g>5 1
ot
,5 2.^»A<g> Ft.c
4 Siv.
^v«e>v«»»t
;e>
/
r
J>—\
S
pss ssss^Ssssssssss
LyUv x
5\sj_S> /
3P_i?>7.
e»g»6
7
2.- g»T JO
l-&>e>\_
iiVbTA
A^'jS
■1- C.UQS
r
UC
fcV^iiiSkVi oyT^yrpfr.^
jSiKig
jS>,\.T^tTKtt> ^aasaJ^.
A-
52.-4-
A
\
y
'
fift.TL Fboc
. *2- k * AQ
._
o±A
y / //
tA
_3E^ASa>.?^.
^ t,
~
f|pN
^AWt-VA ■- O
/
Tb-r-J
*T~v-tTtvj
XVvXV^VvXXVT
51350.^^
_^_
7
/
/
r~7
V
/
'
/
•
T" /
///
z
"AiJ
,o-
\
'
\
\
^XS
XggSSL
Il.
I
Page 44

si
hit
2-e-^io
.£> SOi.\
8S£n\
-JLkOAo
fm
Or
i
CjS
l
O
a
r
[tlSlJZ'z -
5 2 • oe> ^
5 z. I OT.^
5£&fe^
5^\e-2.v.
4in^ X
H
X
o
4 <5_Xk«si
4..-k
3&bT»m
©
Tl
o
35 2.1
E
/
2,- *r.
jicv
\
—
5
35V
2.
-33Z,'ii SoTt
- Z‘SH + 1
-££iiT*J5_Scw>i.
:~~-5^H5 Z
e><*i
km
k
,
X
s-e>3 03
5395€,
5~bll i
54242
' i-M i 2.
3
5>9J£ /
21S& H.
-M.
M&L-Sy
AZ-ooa -
Sou.? -
XxWwX
\\
<5&4A~?,
n
>67S My
5S>"1A Q
•
a
-V-SS24.
NV
StCTiONl_AA
5V53A-
5Vb54.
3~bl>5^
7
o
'
I -I
53353
-
4-&W5
J5J>JC.\
3&67v
5^57^
;
i55\io
5~Me>s
Wx-S.
■^wwxmx.'l
\VSl\X
/
s
5^>\<o4-
^\V
54-lQ l
333
5~5N3P
\J
0
o
7 A
£- 3SOV
SVlCeO-^
nrFFix;
\\X \ \ V
7//
■S-j>\5"l
A
V \
k
rM
5>J2ft
XiS1-
/
/
\o\-n
3X
OnThXuT^ L
*- ^-
V t. \ > »vl Cx tl l»st~\
"\~\ \ \
3kVPw
zl
k\
Bn-'
STOC-K."^
3--,
o
\ \ \ \
3ie.-s
Brn
1
ST~ . £2>£s>
A
w
XnNNX
nr
x\~yX<-
NX-64 6
I
^S^.C\.\t.N'N(»~VK^Tb \<-^ TwU.STDi.K
'
S T*\- \ -r\\t.
£,-ye
v
II
T
^ky^ V\uU 'iiO
SOZ^6> 1-Tun
SO
2.3A Vjyi
T
5056®) Zoitxx
-40
I
__
t
f
> _ * A-3nx
__
>p.*> ’p ^
J
-Cq.: ^>7t\sur' tuti. NcawnwT \J. SEs
-
i
s
s
i
Page 45

t0
L
3P|
\li
n
*o|
*r»
to]
ro
cO
■0
r-J
H*n
2
<P
*
^
o
8$
S
SI
32
r>
<o
q
i\4
!
i
%
;
r
:
'&
®r
m
if
J
SK
\
W|
in
•*.
n
®nmrr
nil
fO
Is
\
A
v\
*j
r
!
tijSS
k\\
\
J
j~^^rs
s
r^Jl
u
$
I
\
®TT7
A
;n
3-i
\-
I
r
.
•tex.
WS&iJ
I):,
®
H
tggi
I
1
I
i
1
!srl
j
_«
9
r*
'
!
O
ii
T
)
!i
i
Cȣ
f
-
I
I
*0^
■
I
r
I
rJ
f}J
;'
s,|
\
’
I
I
I
Pi
rJ
i
'ii
iT
I
i
n
r|«0
X3^-V\C/
I
I
I
I
JR*-
I;
I
h
i
0
«b
9
A
J
^
?
VI
/)
rJ
i4
t
4-
{
|
O
'
m
x
(
A
O
(0
0
'/i
O
o
0
/
j
J
0
h
v
x
x
/
X
/
■
/
/
/
y
/
/
A.
M
r'*~}
■N
||!
<1
10
fO
(O
J
5
*!
in
•*!
\
1
r
I
>
I
l
■A
H
*
x
v?
;x.<
t
J
sii
l
/
Page 46

3W'V|
VI
/)
in
9
!
;
■!
jr
_-*■
i
'
?l
<1
SMr
§p
SB
1
'Fk
<\
>o
tj
«S|«iy<Q
«n
^
~\
X
si
?!
0
1
III
L
/
\
"i
i
/
k
mt
L
^
Q
t
]
j
ri
lO
VI
r-
^
fj
-2
fi
<
t
rJ
>0
t)
if
l
v
-i
n
*n
'n
*o
<o
w
•'
/)'
,o
’
xi
-0
✓>
<0
vv
«o;
rrrrur
'C2
T
;n
•
i
w
«n
CU:
fiSS 10
*°
w
\
-
^T
’
I
/-,
?
C
__
L
r,
4l
*:■
.
N
■
■
n
L
-f
:1
i
i
n
O
cj
k
I
—
M
Fi
;
!
h
G
9
jV
in
;
IT,
<
rO
vH
N
u-
i'
5
w'
*i
!>»:
Z
J\
/i
*Ui
J
1
n
tf\
?
>
i
:
I
T
a
h
H
*1
Page 47

in
<\l
in
i
Page 48

CHT- ZA-Z- I
ELEMENTS
FOR THREAD
TABLES
I
THREADS PER INCH-DECIMAL PITCH-BEST WIRE SIZE-V DEPTH
AMERICAN
PITCH DIAMETERS-HELIX
TH'OS
PER DECIMAL
NCH
PITCH
0.25000
4
4'z 0.22222
5 0.20000
5*
2 0.18 182
6 i O.l 6667
0.14286
O.l 2500
8
O.l I I II
9
10
12 1 0 08 3 33
0.10000
0.0909
13 0.07692
14 0.07 143
16
18
20
22
24
26
28
30
32
36
40
44
48
50
56
64
72
80
P
I
0.06250
0. 05556
0. 05000
0.04545
0.04167
0.03846 0.02221 0.03608
0.03571
0.03333
0.03125
0.02778 0.01604
0-02500 0.01443
0. 02273
0.02083
0.02000
0.01786
0.01562
0.01389
0.01250
P
Z
NATIONAL
BEST
WIRE
SIZE
FORM
MAXIMUM
G MIN.
0.14-434
0.12830
0.1 l 547
0.10497
0.09622
0.08248
0.07217
0.
0.14434
0.14434
0.14434 0.14434 0.10825 0.28866
0-128
0.10497 0.10825 0.08119
0.06415 0.09622
0.05774
I
0.0 5 249
O. 048 I I
0.04441
0.04 I 24
0.03608 0.05774
0.03207
0.02887
0.02624
0.0 2406
0.02062 0.03207
0.0 1924 0.03039
0.01804 0.02887
0.09622
0.0 8 248
0.072
0.06415
0.06415
0.05020
0.04441
0.04 I 24
0.03608
0.02624
0.02406
0.0 13 12
0.01203
0,01155
0.01031
0.00902
0.00802
0.00722
G
y
0.02221
0.0 2 062
0.01804
0.01604
0.01443
0.01312
0.01155
MAX.
DEPTH-3
ANGLES-WIRE
DO NOT
EXCEED
MAX.
14434
30 0.12 372 0.09279 0.24744
17
A
60° V
DEPTH
0. 2165 I
0. I 9245
0.
17320
0.1 5746
0.09622
0.08660
0. 07837
0.072
0. 06662
0.06186
0.05413
0.0481 I
0.04330
0.03936
0.03608
0.0333 I
0.03093
0.02887
0.02706
0. 0 2406
0.02165
0.01968
0.01804
0.01732
0.01546
0.01353
0.01203
0.01083
0. 86603
P
5
WIRE
AMERICAN
NATIONAL
0.07218
0.06495
0.05904
17
0.05413
0.04996
0.04640
0. 04060
0.03608
0.03248
0.02952
0.02706
0.02498
0.02319
0.02161
0.02030
0.01804
0.01624
001476
0.01353
0.01293
0.0 I I 60
0.01014
0. 00902
0.0081
064,351
DIMENSION
R
E
FORM
DEPTH
0.16238
0.14434
0.12990
0.1 1805
P
5
ADI N GS-FORM ULA
3 WIRE
DIMENSION
0.43302
0.38490|
0.3464
0.3 1491
0.2l65l
0. I 3 245
O. 17322
O.l 5747
0.
14433
0.1 3323
0.12372
0.10824
0.0962 I
0.08661
0.07872
0.07218
006663
0.
06186
0.05772
0.05412
0. 04812
0.04329
0.03936
0.03609
0.0 3465
0.03093
0.02706
0.02406
2
0. 02166
3 G
HO
O
z
OJ ^ Q “
1 gty*
</> -? f
‘
U_ > ^ -=>
- < H £
I
uJ
o
2
O
CD
+ UJ
1 U J
i- s: o
u <vS^
Q Q
>
l p
5
“ t
n A-
< ^ ^
uJ
QL
^ Zcq
- II II
^ s: o
cr
o
t
— < CQ
— F
< Ld _1
u
CL
o
CO
Li-
o
rc
u_j
nj
— —
CD
uJ
p-
<
c
n
UJ
l
U
5
SE-
n
:
JONES
&.
LAMSON
MACHINE CO.. THREAD TOOL DIV.- SPRINGFIELD VT
u
.
’s.a:
’
\
Page 49

32
36
40
44
46
56
64
72
80
.06211
.05168
4° 23
.01639
.06286
4*3»
.01601
.06398
3 °51
.0151
.66488
3° 30
.08933
.01586
.08901
. 01
.08811
.01188
3° 46'
698
3°n
2°56*
.10 239
.088 86
.10 20 1
.08998
/
.10 111
.09088
3
°
2 °49
Z° 30
12*
.11533
.1 0 1 86
.11501
.10298
’
. 1141 1
.10388
‘
Z°A8
2°21
2° 12'
.U839
. I 1486
‘
.128 0 1
.1 1 598
.12111
.11 686
2°29
2° 1 l
l* 51'
.12186
‘
.1410 1
.12898
'
.1401 l
. 12988
2* 14
1° 58'
1 °45*
.16139
.15386
1610 1
.15498
1661 1
.15588
i° 5 r
1
0 38'
1° 28
.1138b
.1930 1
.18098
.19211
.18188
1° 35 *
1° 24'
1* 15*
.20586
i°2 y
.21901
.20698
I6
.21811
.20186
!• 6*
13'
Page 50

PITCH %z
!
/a
5/32 3
/is
1/4
Vd Z S/16
^/«32
*
12
13
14
16
/8
20
22
24
Z6
28
_________4°56
DO
3Z
36
40
. . .01867 .12412
44
.07811 .1/024
5°15'
/fa .01821 J 2152
-<40 -08022 III |41
—
r-n I
DU .08016 .
__
r
r-7
&D .082/5
__1
£/i I
d
4 .08361 , 1
.01801 ;
4C30
.01162
3*58'
| 3*2
4°43
4.'
J3224 .163~41
.10 3 31 | .134-64
• 13116
.10410
.13/02
.1 0616
4 °46
.(3040
.I0Q 16
4*12'
3*46'
3* 24'
(2134
I I 201
3*16
.I
2881
.(1340
253'
-lasW
1486
5°53'
5° 26'
.16451
.13 121
. I 6318
.(3306
4° 32'
.1630 /
.13 513
4° 1
.16221
.1382 /
30
.161 65
.14001
5° 20'
‘
2'
40'
3° 15'
7/TTrT
.14-/41
2°56
2° 40'
2°33'
‘
.112 02.
.11184
.(7451
•‘*(087 .22214
. 177 3 6 .2086/
'
.16011
.14212
16051
.14326
•I6G(£ .11137
•14465 .17510
2*15*
15164
(46/ I
)°57
.11833 -2 2156'
.15502
.1113+
.13118
.116 541 .22111
.16044 .11 169
4*43'
.11 584] .2 2101
. 1
4°2 3
.11524
. 16431
3° 5
.11414
.16581
3°40#
.11426
.16120
3°24/
.(1352
.16146
3°
.11210
■111*6 .'20 2 5^
__
2°40'
TT2^2
5°53'
5“I5'
6252
.18621
4“
.22851
.18123
4*24'
3° 58'
.11311
3°3r
-22641
. 11556
8'
3* 2
.22511 .25124
. 11 1 14 . 22831
_3°
^22557) ,2 5616'
*17845 .22110
2°53'
.22477
.20011
2*31'
2*/5'
.
2T3fel|T2T492
2»ab i??.
‘
.22321
.20522
.22301
.20576
.22262
.20715
1*23'
i°5
l°46
1*34
.17311
2*11'
2° 5'
l05(
I 37'
.2G35I
. 20140 .24065 . E1
.£6202
.£1392
.26083
.21152
53'
.2518+
.22048
.*5104
. 2 5634
.22 502
.25714-
.22681
7*
2° 53'
6"
■ 25602
.23 116
26
26
2* II'
.2554°
.23316 .2650/
l°5V
1 23 524
l° 46
.25452
.23641
r
T2T434:
.23101
‘
10 3
1° 3 3'
.25387
.2 3840
1° 22'
.25331
-2 3 786
l°/2'
5*26'
4* 43'
4° I2
3*46'
3° 1'
40'
21'
7'
.33053 .36118
. 2.5031 .28162
s'ag-
.32115 .36040
■26254 .21319
9*20'
. 3 21! b 35 12
.2.6610 .29155
.21416 .32601
4*43'
.21321
.24511
4*r
72120/T
.24611
‘
3#40
.21101
.25113
.21024
■
Z54"’
.28151
.25621
.28811
.2
.28841 .31 114 I .35011
.25164 .21081 .32214
.28801 .31126
•26)015 .21220
3° 11'
5°
2*44'
5806
2°3I'
2*21'
2* ir
.28121
.2632 I
.28665
.286/1
• 26641
.2831 1
. 26112
728551 "
.26826
.28512
.26165
HZ'
.28464
.271/1
I °3'
10
/°43'
I °34
1°
25'
l°22'
56'
TJmi
.21811
•3/6T4 .34804
.3/637
.30010 .332/5
_)°5'
.31581
.30236
4*53' 4° 26
ISO
4° 1
.32452
.21642
3M0'
.32333
.28002
‘
3*15'
.32234
.28218
2* 56'
.32(54
.28544
2°40'
.32004
.28152
2*21'
.32 024
.28131
2° 15'
2V51
1*51
.31852
.21446
l°43'
.31110
.21626
1° 33
.31142
.21114
£715/ .33016
1° 24
r i6'
nr
0*57'
2'
.31617
.35(41
.32056
.3505/
.32345
4
.3 4111
• 3 2511
.34115
.32151
-34861
* 32 811
.34821
.33022
1° 6'
.34762
o°sr
.34714
.33361
0°5I'
g°i5'
4°46'
.35 126
.30315
3°46'
.35511
.30161
3°17'
.35458
.31127
2°5I'
.35351
.31423
2°
38'
.35219
.31661
2°24'
35201
2 6 I 2'
2° I 2'
|o
5V
l°46'
r 34
1° 24'
1° 15'
i°r
j"~
’
1
Page 51

ss
PITCH
3/8
Khz
1/16
15/31 VZ
17/32. 9/it» wyi
s/a
m
m
10
.31410
.31516
5*15'
.31303
.3
\z
13
I4
16
18
n A
cSj
n rp
CL
P /-{. . ^ 47 14
26
28
50
32
%
40
44
4&
50
5b
20 81
___
4°4T
.31165
.32504
4*20'
.31046
.32860
3*58'
.3885 I
.33440
3°24
.38102
. 33872
21
| .36533
.34252
2*47
T
.
38484
.
34548
2° 24'
.38404
£31 i
.38334
.35002
.38214
.35181
1
.38224
.35331
1°43
.38176
3547 0
1° 31'
.38102
. 35616
1*25'
.38040
.35876
1° 16'
.3799*
.36024
.3 7952
.36 141
.3 1934
.36 2.0 I
r r
31881
.36340
0° 54'
0 51*
r i •
1° 3
. 42515
3 412
.42428
. 35212
.42210
. 35621
.42111
.3 5185
.41176
.36565
‘
.41821
.31017
.41 708
.3 7 317
. 4
.31673
.41521
. 311 11
'
,4 1451
.
.41311
.38306
.41341
. 3 8464
.4130
. 38515
.41227
.38821
.41165
. 34001
.41117
. 31149
‘
1
4° 46'
4°26'
3°4T
3° 31'
3°7
2°44
2 0 2 7'
1 601
2° 12
2°
3BI27
r 5o*
1*4?
l°35
l° 21'
ri8'
1° 10'
r4
. 41 011
. 39212
0®53
.41059
.39326
0
6 5 6*
,41012
.39465
Ofl50
.45120
. 31 846
745553
.36331
. 4S415
. 38154
.45216
,31110
.45 101
.31610
. 44152
‘
‘
|
‘
‘
‘
4-° 2.4'
3°SV
3° 31 ‘
3° 2 O'
2°53'
.40142
2°3l'
.44833
.40
502
2615'
. 44134
.40118
2 '
. 44654
.41 044
1° 5T
.44584
.41 252
1* 42'
44524
.41431
1°
34'
. 44474
.41581
rsr
. 44426
.41120
.44352
.4 1146
r i2
.44210
.42 l
l° 5 1
. 44242
.42 274
0*59
.44202
. 4
*397
0* 54'
.44184
. 42451
0*52'
.44131
.42590
0M6
.41200
‘
26
.
39651
5° 6'
.43042
40380
4*36*
.48845
.4011
4° 3'
.48618
.4
1462
. 3°40
.48540
. 41811
3°2
484 21
. 42235
3° 6'
.48226
. 42815
2°40*
. 4 8071
.43 261
Z°20'
.41158
.43627
2° 5'
.41857
.43123
1
0 53'
.47771
. 44161
l°43'
,4 7701
.4 4 377
1° 35'
.4-1641
44556
1*27'
. 41511
. 447 14
r 22
4155 l
.44845
1» IT
. 41411
.45071
r s'
.47415
.45251
i°r
.47367
.45379
‘
0° 55
.47321
. 4S52?
0° 50'
. 41309
.45516
.47252
.45115
‘
I
‘
r
0®4*
0°43
.52405
.42182
4*43'
.52161
.43505
.
5\310
.44016
.51803
.44581
.51665
.45004
.51546
.45360
.51351
.45140
.51202
.46312
.51083
.46752
.50184
.41046
.50104
.41214
.50834
.41502
.50774
.41681
.50724
.47837
.50616
.47910
‘
4° 12
3*46'
3° 24'
3° 1 1
2° 53*
2*21'
2tt
ir
I® 5T
1°4T
l® 31*
l° 21'
1*22*
rib'
t° 1 2'
.50602
.4819-6
1° 3'
.50540
.48376
0°57
.50492
.48 524.
0° 52
.50452
.48641
0°47'
.50434
.48701
0*45'
.50381
.48840
OMO
.55530
.45901
.55232
.46830
.55015
.41221
.54128
.41312
.54110
.48121
‘
4° 2 4-'
3° 51'
3° 31'
3° \ 2'
2*55'
. 54611
.48485
2°4l
.54 476
.41065
2°Z0*
54321
.415 17
2* 3'
. 54208
.41871
1°50
. 54107
.50113
1° 37 1
.54021
.50411
r 3o*
*.53151
.50627
1° 24'
.53811
.50806
nr
.53841
. 50*164
nr
.53^0 1
.51 035
T 7'
.5 3727
.51321
0° 57'
.5366 5
.51501
0° 53'
.53611
.51619
0*48
.53511
51112
0° 44
.53554
.51826
0°42'
512
.53
.51165
0°38
.58655
'
.4903*
4°r
.58411
.41155
3*40'
.58220
.50346
3M1'
.58053
.50831
3°
.51115
.5 1 254
2d44*
.51116
.5 I UO
2°3I*
.51601
.52110
2° ir
.5 7452
.52642
1° 55'
.51333
.5 3 002.
1°43'
.57234
.5 3218
1*34'
.57154
.53514
1
.57084
.53752
ris'
.5 7024
.53731
1° l*'
.56114
. 54081
1° 8'
.56726
.54220
I
.56852
.54446
0°56
.
56190
.54 626
CT56*
.56142
.54114
0M5'
.56702
.54897
Qq42*
.56684
.5995 I
.56631
.55010
‘
0°3b*
61180
.52151
3° 54'
.61542
52880
3
d 21'
. 61345
.53411
3°6'
.61118
.53162
*°49
.61040
54311
263S'
.60121
.54135
Z'lV
.
6012b
. 55315
2° 4
.60577 .63 702
55767 .58812
l M9
.60458 .63583
.56127 .51 252
l°
60357 .63484-
.56423 .51548
i°26'
.602
.56661 .51714
0 25*
I* 20
60201 .63334
.56871 .6
.60141
.57056
idi
.60071
.57 2 14
.60051
. 57345
s 3
‘
.57177 .63 l
.51571 .60 696
‘
.51415
57 151
.59861
.51819
.51821
.5 8022
.54809
.58016
0*40'
.59162
.58215
.64105
.55282
3° 4 O'
.64 661
.56005
3° 15'
.64410
.5651b
,64303
.51081
.64165
.51504
.64046
.
51860
.6385
.58440
1
38'
71 .63404
l
i* 1
4
.63214
.60151
.63224
. 60331
|° 4
‘
.63116
i
0*53'
0*47'
QM3'
0*39'
.60410
«
. 63040
.60816
.62 992
.61024
.62952
.61141
.62934
0°58'
.62887
0*34'
2° 5 6
’
2°40' 1
Z° 2T
2*15'
1
l° 57
1*43
l°33'
ray
l0H
0002
no
r 5'
0*57*
02
0° 50'
0°4T
AM r
0'31*
.61*01
0* 3 6'
.61340
0* 32
‘
“
1
Page 52

5
PITCH 21/38
5
5!
s
.61232
.61428
.60212
.61210
.6 1101
.60485
. 66016
.61565
.66821
.6 2011
__
. 6 6106
.6
**>6604
.62613
.6 6521
.621 10
.66450
.63121
. 6 6314
.63306
,6b340
.63464
.6630 I
. (,3515
.66221
.63821
*6,<>S
.£>400 /
0°43'
.54800
.68118
.56346
.68332
.51506
.60030
,5 84 01
,61112
.51130
.61515
.50121
.60620
0*58'
0° 54'
0*48'
6
1
8
0
10
\z
13
14
16
18
20
OO
CL
_________
24
26
28
00
OG
AC\
40
s*3y
4*31'
3°58'
3°ZQ'
3 0 6'
2 *41'
2*31'
a* iv
2*6'
I•
1*38'
2311
1 * 21‘
1*10'
1*12'
i*n
i* z*
51*
.12351
.51125
.11843
.51411
.11451
.60631
.11155
.61532
.10111
. 62255
.10120
.62846
.10553
.63331
.H04 15
.63154
. 1 0 20 6
.64110
.1 0 1 01
.6 4600
.60952
.6 5 142
.60833
,65502
.60134
.65118
.61654
.66044
.60584
.66252
.60524
.66431
0* 51'
.60414
.66580
0*55'
. 60426
,66120
O- 51
. 60352
.6 6146
0*46'
.64210
,61/26
0*41'
M/16
5° 1
4*24
3
*46'
3° 11 ‘
2°5 6
2*3S
2* 24'
2° 12'
Z° 2'
1*46'
1*34'
1*24'
1° 15'
,0 v
1°4'
5'
.13618
.13540
.66810
.13421
.61235
.1 3 226
.61815
.13011
.6 8261
.1
. 68621
.12850
. 68123
.12110
.61160
.12100
.60311
.12640
.64556
.12504
.601 14
___
.12551
.61845
1
,12411
.10011
.12415
. 10251
23/32
.16206
.58885
6® 11'
.15815
.60010
5*33'
,15482
.61050
4*58'
.14168
.62516
4d|0
, 14582
. 63156
3*35
.14280
.64 651
3*8'
.14042
.6 5386
2°48'
.13845
.65111
2°3I
.66462
Z* 18*
2° 6
1*56'
1° 4/'
1*21
205S
1*20'
1° I2
1° 6'
l* l
1
0 0 5 b
0*52'
0*44'
0*43'
0*31'
/
.12048
‘
.15004
,15104
.15124
.15616
.12010
.15602
.13 lib
.15540
.13316
3/4
.11331
.62010
5C5
.18140
.63115
5*t5
.18601
.64115
4*43'
.16013
.65121
3*58'
.11101
.6 608
3*24
.11405
,61182
3°
. 11161
.6 8505
2-40'
. 1
6
0 TO
.60016
2*24'
.16803
.61 587
2°ir
.16665
.10004
2°
.16546
.10360
i° 5 r
635 1
.1
.10040
l°3V
. 1 6 262.
. 1(302
1*25'
.1 6083
.11152
1*16'
.15084
1° 0'
.12 204
i°y
.15 834
. 12502
0*58'
.12681
0°54'
.12 831
O°50
0*41'
0*42'
0* 31'
?
‘
. 1580b
‘
,18801
.16015
.18121
,18665
25/32
.82456
.65 135
5° 36
.82065
.66320
5° I
.0 1132
.61300
4* 30
.8
l2I8
. 6 8846
3° 41
.00832
.10006
3° 15
. 80530
.10101
2° 52
. 80202
.1 1630
2*33'
.80045
.12221
2° 18'
. 1 0026
.12112
2° 5
.10100
. 1 3 I 20
1°55
.10601
.13485
l°4b'
.10406
.14065
1*33'
.0 0321
.14511
1° 2 2'
.11208
. 14811
.11100
,15113
1*6'
10 020
15410
i* i
.18150
.15621
0*56'
.18810
0°52
.18840
.15064
0°48'
0*45'
.16321
0*40'
. 16501
6°3 6'
13'
'
‘
.85581
1
. 04343
.83151
.83655
. 14032
.8 3411
.14155
.83 220
, 15346
.83053
. 15837
‘
.820 15
. 1 6 2 54
.82146
.16610
.8 2 601
,11100
.82452
. 11 642
, 8 2333
. 18002
.82234
.78208
.8 2 154
.18544
.82084
.18152
. 8
.1803 I
. 81014
. 11 0 80
.81126
.11220
.
8\852
.1044b
•81110
,01626
13/16
.68260
5° 2.0'
.85 110
.61445
4°46'
.84831
.10425
4*20
.11111
3° 31
.13131
3® V
2*44'
2°21'
2° 12'
z°
10
50'
1M-2'
r 20'
ria*
1*10
1*4*
0*58'
0*5V
2
024
0*50'
0*4 6'
0*4 3 '
0*38'
0*35'
2-V3Z
. 88106
.1 1385
,883 15
.1Z516
.81182
.13550
5° 6
4*55
4° V
.81082
. 16256
. 81468
.15016
3° 28'
3°
.86180
.11151
.8 6542
. 11880
.86345
.18411
.8 6 118
.78062
.8
.10 310
.8 50 21
. 1 0 035
. 8 5 026
. 80 31S
.85511
. 8 01b1
.85456
. 81121
. 8 5 350
.81425
1° 1'
85 2 10
. 81 660
0*5*6'
.85200
,81811
0*5 1'
.85140
.8
.85011
. 8 2 2 1
OV44'
.85051
.82345
0*4-2
. 84111
.82511
0°31'
, 84115 . 86040
.8 2151 . 85816
0*33'
2*38
2*20
2° 1
I* 56'
b
040
l°46
1*38'
1° 2 5'
)° 15
1° 8
2056
OMft'
‘
1
4
.81661
. 8 1410
.81516
. 8 1303
. 8 2 087
.80165
.82504
.80046
.88851
.83440
.8 8102
.8 3812
.88583
. 8 4 252
. 88484-
.84548
.88404
. 84114
.88334
.85002
.88214
.85181
.88224
.85 33 0
.88116
.85410
,9 61 02
.85646
1/8
.1183!
,l4sro
4*53'
.11440
.15615
4° 24'
.11 101
.16615
3*5 8
.10513
.18221
3° 20
.00201
.11381
2°S3
.81105
.80282
2° 32'
.81005
2° 15'
2*2
i6 5
1 °42
.82860
1*34'
1 ° 22'
1* 12'
1° 5 '
0*51'
0*54
0° 50'
0*46'
0*43
0*40'
0*36'
0*32'
’
r
‘
‘
.1116 5
23/3 £
.04-056
.11655
4°41'
.44-565
.18620
4° 12'
. 14232
.11800
3°41'
.13118
. 8 1346
3*12.
.13332
.02506
2°46'
.130 30
. 83401
2®2 6'
. 12112
. 84 130
2° 10 ‘
12505
. 8412)
\°5T
.12428
. 8521 2
l°4T
.02200
.85620
1° 38'
,0211 I
.85105
l° 3I'
.01016
, 86565
1° 10'
.11821
.81011
1° 10'
.1 1108
,81311
1° 2
. 0 I 601
.81613
0°5 1'
.01520
. 81010
0*52'
.41451
.88121
Oj48
. 013 0 0
.88306
‘ 0°44'
.0 1340
. 88464
0°41
.01301
. 88505
0*34'
.11221
.83821
0*34'
.
g400|
6*3 1'
‘
'
Page 53

»
iVb
PITCH
15/16
3l/3£
ikz
I3^
Ifc
9
$
ir
i
§
9
»
9
5
5i>
6
7
8
10
IE
!3
14 |
16
16
£0
it
24
26
28
30
32
36
40
1
!
48081
.867 60
4*30'
47670
.8445
4° 3'
47357
.82725
3°4o
4 6843
.8447 1
___
3* 6
46457
.85631
2*40'
46155
.86532
2°2 0
457 17
.87 255
2° 5'
45 120
. 8 1 84b
1° 54
.78553
. 88331
l°4 3'
45415
. 83754
1° 3 5'
.35276
. 8 3
\ \ 0
l° 21'
.75101
. 87 670
1° I6
. 34332
.30 142
1° 8 1
44853
4 0502
1° r
.34134
.3 0178
0° 55'
44654
. 1 I 044
0*50'
. 7 4 584
.31252
0#4 6
. 34 524
4 143 I
0*43'
44414
4 1583
0*4
74486
41120
0*37*
.34352
.3 1146
0*33*
. 14230
4 2 I
26
0°30'
<
‘
0
*
1.01106
.83885
1.00815
.85070
1.00482
.86050
477
.87516
.77592
.08756
47280
‘
.77041
.70380
.707 1 I
.78678
4 1462
.38540
.31813
.38421
.7 2255
.38226
.32815
‘
48Q7T
.73267
.31358
>3 3627
.31853
.33723
___
41117
44 1 6 7
,31103
.14371
.31643
.34556
.3
.74714
41551
.14845
41471
.77415
4*22'
3°S4
3°32
68
2°57
2*35'
.87657
2° lb'
2° I*
38845
1° 43'
l°40
ld3t'
1° 25
1° 14'
1 ° 5'
0°
67
0^5 3*
0° 48'
0°4S'
o°4 r
1533
0*33'
0*36
.150 1 I
0*32
75251
0*21
I* 0-4331
.87010
I. 03740
«88 175
‘
1.03607
.87 175
/
1.03073
4 0721
‘
1.02767
l 02405
1 .02167
1 .01370
1 -01803
1.0 I 665
. 35004-
1.01546
4 5 360
1.01551
1.0 1202
1 .01
’
1.00384
1.00704
1.
.3150 C
1.00114
I .00724
.71833
I .00
1.00602
l .0
4*12'
3°46'
3° 24
2* 53'
.71881
2*2 7'
.<*2782
2° ir
43505
l °57
44036
1Mb'
44581
l°3T
1° 27'
1° 22'
45340
r 1 2*
46372
1° 3'
083
46152
0° 5 Y
47048
0*51'
41214
O'H-T
00634
0°43
.71681
0°40*
0*31
616
.11110
0*35
.38116
0° 31 *
0540
.78316
0°28*
1.0*1456
.1 0 l 35
4° V
1.07065
4! 320
3° 37'
1.06732
42300
1-0 6H8
4 3846
1.05932
45006
1.05530
75707
1.05272
46630
'
1.05035
.77221
l 04328
.7 1112
1.04130
48 I 23
1.04671
48485
1 .04416
.33065
1 .64527
43511
1.04208
47811
l
.04103
l 60113
I .04027
l .00413
1.03151
1.00621
‘
1.03837
l .00806
1 03843
1.00364
1-03801
101035
I 03721
1.01321
l .03665
I . 0I50I
3* 18*
2M7
2°24*
2° 7'
4 54'
1°42
1*34'
1 ° 26'
1M3
l ° 7'
1° I'
0° 55'
0°50'
0*45*
0 °42
0*37 '
0*36'
0° 34'
0*30'
0*271
1.10 5 9 1
.33260
3° 55
1.1040
44445
1.07857
45425
1-07 343
.7677 I
‘
1.68357
48131
1 .08655
47 032
1 0 8417
47755
1.08220
1 .0 0346
1-0 8053
1.00837
I .01315
1.0 1 254
1.07 736
l .0 I 610
‘
I .01601
I . 02130
1.01452
1 02642
\ .01333
1.03002
I *01234
1.03238
I .07 154
1.03544
l .0 7 084
1.03152
1.0 7024
1.0
1.06314
I
.04083
1.0632b
1.04220
06852
l .04446
l .06130
1.04624
3°3T
3* 12
2 °41
1°20 *
2° 3*
I 0 50'
i»yr
1
0 3 I
1*24'
1° IT
i°r
0°57
0*5*
0°48'
0*44'
0*40'
313 I
0°38'
0*35'
o°3r
0*27
0*26'
1.13706
46395
’
1.13315
47570
1.12781
48550
1
1 .12468
1 .000 9b
1
l.l 2081
1 . ol
1 .11 780
1 .0 2 157
l . 11542
l .02880
1 .1 1345
1 .0347 1
1.11178
l .03362
I. I 1040
1.04313
110321
1.04 735
1.107 2b
1 .05515
I .10571
1.05167
‘
l .10458
I .06121
1 -10353
1-06423
l I 0 213
I .06 6 63
I 10 203
1.06811
1 - 10 143
l .01056
I .1 0 033
1. 07 214
1-10 05 1
I .07345
l 01771
l .0757 1
3°47
3° 24'
3° 6*
2* 36'
156
2° 15 '
1° 57*
1° 4 5
1° 36*
I 6 27'
I
6 21'
1° 15'
1° 5'
0°58'
0° 52'
0°41*
0° 43'
0 *37'
0* 31'
6° 34'
0*32'
0*28
l.l 683!
1.16440
1.00645
___
1.16107
1.
1.0322 I
1.15207
.115 10
3°40
3*17'
\ .01675
•5°
15573
2° 32*
1.04381
2
0,|/
l • 14305
1.05282
1° 56'
1. 14-667
1.06005
1*43'
1.14410
1.6657b
1*34*
1.14303
1
.01081
1°25
I .14165
1-01504
1*18'
l
.14046
1 -67860
1° 15'
1. 1 3851
I . 08440
i* v
1 .1 5102
1.08872
0° 56
1.13595
1.03252
0*50'
l . 1 3 484
1 -03548
0*46'
I -13404
t .01774
0°42
l .1 3 334
l.l 0002
0* 38*
1.
13274
1.10181
0° 36'
I. 13 224
1 .10333
0*33'
1.13 116
I -10410
o°3r
\ •
’
‘
1.
‘
1.01635
1.17565
I .03810
1.17131
1.
1 .18718
1.06346
1.18332
1
3° 33'
3° 11*
04800
2° 54'
2*27'
07506
2°7
l I 8030
1.08407
l°52
1.17132
I .07130
l°40
l -11535
1 .03721
1° 3 r
1.11428
1.»<>2 12
1BW
l l
7 230
l.l 0623
l° l 6
1.17 171
l.l 0785
1° \r
l .16316
l .1 l 565
1 6 r
1.16827
1 12011
0*54'
1.16708
1 .12371
0*41"
1-16607
1.12673
0*44'
[ .16527
1.12713
0*40'
I . I 6457
1.13121
0*31'
l 16371
l .13306
0*35'
l .16343
1 13464
0°32*
1 16301
1-1 3535
0°30l
1.13081
\.0576
*3° 17*
I. 11670
1.06745
1.22357
1.07725
1.21843
I '0747 1
____
1 .21457
I .10631
1.21155
1 .11532
‘
1 20711
1 . 1 2255
‘
1 .20720
1.12846
1 .2 0553
1. 13331
1.20415
I .13154
’
1.20 236
1.14 1
1.20101
1.14630
I. 13352
1.15 142
1.4835
1.15502
1.13134
l.l 5778
I -11654
l. I 6 044
l 13584
l. 16252
I .17524
l 16431
l -11474
1.16581
1.11426
l .16720
3
d
6
2°47*
2°2V
2°4'
1°47'
1° 38'
\
6 28'
1° *1
l° M'
10
1° 3
1°
0°53'
0*47'
0 *43'
0*31
0*36'
0*34'
0*31'
0° 21
b
‘
Page 54

PITCH I &
VA
I %z
\s/e
\%t
I 3
/e
I
\7L
l'%i
\'A
24
26
28
50
__
J2
__
10
II
\Z
13
1
4
16
18
20
22
4
5
5^
G
7
8
1
1.27288
1.058*37
I .26686
1.07441
(.26206
1.08885
1 25815
M 0 070
1.25482
1.(1 050
1.24368
I .
.24582
I
. 13756
I
.24280
.14657
I
.24642
»
.15380
I
.23845
.151 7 I
I
I
2 3678
. I 6462
l
1.23540
1-16 871
1.23421
l. I 7235
.23226
. (76(5
0° 58'
.23077
. I & 267
0°5
. 22158
. I 8627
0°46'
.22851
. I 8123
0°42
-22111
.11161
0438
.22101
.11317
0°35
. 2 2 641
. 11556
0° 3 3
.22511
.117 I4
0°30°
I.22551
1.11845
0°Z
A° 20'
3*46'
3°2I
3° r
2*44'
I 2516
2° (1*
Z*
l°46'
1*35'
1° 26'
I °)8
1° 12'
r 7-
1'
4
*
l.
I. (4(75
1.28013
1.15721
I .27707
I . I 6881
I .27405
(.(7 782
1
.27 l 67
I. (8505
1.26170
l . I 1016
1.26803
1.11 587
) .26665
I
.20004
1.26546
l. 20360
(.26 351
1.20140
1.26 202
1.2 I 312
1.
26083
I.
2 I 752
1.25184
I -22048
‘
I. 25104
l. 22 214
'
I
.25834
1.22502
#
1.25 174
(.22681
‘
I. 25 124
1.22831
0*30
1.
25616
1.22110
1.30413
1.08762
4* i r
1.2481 (
I. I 0566
3°40
1.24 331
1.12010
3°15/i
1.28440
1.13 145
2*55'
28607
2o40
2 *! 5'
1° 57
1°4
3
l°33'
l°24'
I ° I 6'
1° 10'
l
a 5'
0°5 7'
0° 50
‘
0°45'
0°4I'
0°31'
0*35'
0*32*
0o26l
I. 3 3 538
I. I I 887
4° 5'
I. 32366
1. 1 3 64 I
‘
1.32456
1.(5135
1.3 2 065
I
. I 6 320
1.3I732
I. (7300
‘
l .3(218
1 .18846
l .50 832
1 .20 006
f.
30530
I. 20107
I
l .30212
(.2 1630
1° 30
1.30 015
I .22221
1° 22'
1.21128
1.22712
I ° 14'
1.21710
1.23121
l°T
1.21671
1.23485
i* 3'
1.21476
I. 24065
0*55'
1.213 27
I. 245» 7
0°4T
i .Z1
1
.24817
0*44'
(.21(01
1.25113
0°40'
1.2.1021
1.25411
0°36
l.
28151
1.25621
0*34*
I. 28871
1.25866
0°M*
1.2 8843
1.25164
0*29'
1.28801
1.26015
0* 21 *
3°35'
3° ir
2°51'
2°35
2° 12
1° 5 4'
°40'
208
/
1.36863
I. 150(2
3° 58'
I .36061
I (6816
1.35581
I. 18260
1.35(10
M1445
I. 34857
l .20425
3°21
3°6'
g°47'
2*31'
l .34 343
(.2117!
l .33157
1.23(31
r.
33655 1.36780
I. 24032 [ . 27157
1.33417
1.24755
2*6
1
0 5 I
1
0 38'
'
l°27'
1.33220
I. 25346
1.
33053
I .25837
1.521 l 5
l.
26254
l .32716
1.266 10
l .32661
1.2 1 110
I .3245a
I .21642
i°ir
i°ie
l° 7
'
1° 2'
0* 54*
0*48'
‘
1.32333
) .28 002
l. 32 234
I. 28218
I. 3 2154
I. 26544
1.32084
1
.28152
l.
32024
l. 28131
1.31114
1.21801
1.31126
I. 21220
0*43'
0° 3V,
0*36'
0°3V
O°30
Oa£B'
0°ZV
(.31127
1 .35141
1.32656
/
1.35011
I. 32214
I .35051
1.32345
1.31788
t. 18 137
3°52
1.34 186
1 . 14441
3° 23'
‘
1.38706
1.21385
3 ° 1 ‘
l. 3d 3 15
(.22570
2°42'
1.37182
l. 23550
a°g8'
1 -37468
1-25016
2*5'
1.37082
1.26256
l°48
l° 3 b'
1.36542
1.27880
___
T25
l .36345
I .2
8471
(01 7'
l .36178
1
,28162
I* IT
\
- 36040
l. 21371
1*5'
1.35121
l
.21135
i°
r
1.35126
l .30315
0° 53'
l. 35577
1.30767
064T
I. 35458
0*42'
1-35351
I .3(423
0*38'
1.35211
I .3(661
0°35'
1.35201
1.3 1811
0° 32'
0° 30'
0*28'
0*26*
1.421 13
1.2 I 262
f
I .42311
( . 2
l .4 183(
l .245(0
1.41440
I. 25615
(.4-1107
1.26675
I.40513
1.28221
1 .40207
I .21381
‘
(. 31105
(. 3 0282
1.31667
1-31005
1
l.
(.3 1516
l .31303
I
.32087
I .31165
l .3 2504
l- 31046
l 32860
1. 38851
1.33440
1.38702
1.33812
1.3
1.34252
l .38484
(.34548
I.
38404
I.
34114
1.36 334
1.35002
1.36214
1.35 181
1.38224
1.35331
1.3811b
1.35410
V46'
3066
3°
2°56'
2638
2* 24'
2° 2*
1*46'
1° 34'
l°24'
31470
I* IS'
l#V
I °4
0° 51*
o°5 r
0 °45
8583
0*41'
0°3Y
0*34"
0*61'
O 0 21'
0*27
0*25'
17'
‘
I .44232
1
1 .43718
[ .43532
I 32506
1 .43030
(.33407
l .42712
l . 34 1
1 -42515
1.34121
l .42428
l . 352I2
l .42210
l .35621
l .42171
1.35185
l 4 1
1-36565
I .418 27
l -37017
1.4! 708
1-37377
1-4(601
I
1.41521
I . 311 II
1 -41451
I . 38(21
1.41311
l .38306
1.
I 38464
‘
14 1301
1.38515
1 .46038
I
.24367
3 °40'
1.45436
I .2615
3° 13
f .44966
( .27635
2°50'
I
.44565
l .28820
2°35
.21 aoo
2° 20'
I 3 I 346
l°5T
1*43 ‘
1° 31'
30
l°22.'
! ° 14
l° 8'
r 2
0*58'
176
0° 50'
0*44'
0°4O
.31613
0*36'
0° 33'
0*30'
0*28
41
341
0 °26'
0 25'
1.45163
I. 27512
l.52t&&
l."5 0£>37
3°3 5'
l .4856 I
l . 24316
1.4808!
( .30760
l .4 7 610
l . 31C145
‘
1.47357
1. 32125
\
.46843
1. 34471
1.46457
1.35631
1
.46 15 5
I. 36532
1.45117
l . 3 7 255
1.45720
l ,3?846
‘
I
.45553
I . 38337
1.45415
1.38754
‘
1.45 216
(.31(10
1.4510 1
l. 3 1610
1.4415a
l .40 142
1.44833
1.40502
I .44134
l .40118
I .44 654
I .4 | 044
1.44584
1.41 252
l .44 524
1.41431
0° 31'
0° 35'
0*30'
3°
2°47*
g°5 r
Z° 17'
r 56
I °4 r
1° 21'
J°20
1° 12'
l° 6
1° I
0° 56'
6°41
0°43'
0°32'
1.51 666
l .32441
6'
1.5 1206
1.33885
I.50815
l.
1.50482
1.36 050
1.41166
1.37516
l .41582
l .38756
1
l
l .41042
( .40380
‘
1.48845
l .40111
l .48678
). 4 1
l .48 540
! .41 811
l 48 4 2 l
l.
(.48226
1.42815
‘
I .48011
( .4 3 2 67
1.41158
I .43627
1.41851
1.43123
1.41111
I .44161
l .411 01
l 44 311
1.41611
I .44556
0*28'
1
.4 4414
l .41 581
1. 44426 I. 4155 I
1.41120 1.44845
0°26
0°24'
I -41519
l .44114
‘
3°
3°4'
£°44
35070
2° 28'
2° 14‘
(°54
1*38'
.41 280
.31657
I
0 27
1° 18'
1° II'
4 6 2
l°4 ‘
o
42235
0° 55'
0*48'
0*4-2'
Q°38'
0* 35'
0° 32'
0° 21
0*27'
0°25
0* 24
1.55413
I.337G2
1.548 l 1
l .35566
1.5432)1
13 70(6
/
153440
1.38115
l.
53607
l- 31 l 75
1.5 3013
1 .40721
‘
1.5 2707
1 .41881
(.5 2405
1.42782
1.5 2 167
(.43 505
l 51110
1.44016
l . 5 l 8 03
l .44587
1.51665
1.45004
1.5I546
l.
45360
1.51351
1. 45140
1.5(202
1.46312
1.51083
1.46152
l .60184
l .41048
I.
50104
1.41214
(.50834
I .41502
‘
1.50 7 74
1.41681
1.5 0124
1.41 831
‘
l .50616
1.47 no
3° 24'
3°
2°46'
2*24'
2° ir
i° 5 r
1°36
1° 25'
l°lb'
1°1'
l° 3'
0“
58'
0°54'
0*47'
0*42
0*31'
0*34'
0° 3I'
0° 21'
0*27'
0*2 5*
o°zr
iis?
*0
’
1
Page 55

%
PITCH l'%* l
q/,b
I 'Vb2
I %
I ai
/32 I n
/»6
I z3
Az P/
a
6
I'Vib
m
sm
5#
4
A\
5
5l*
6
7
o
3?
14
16
16
20
24
26
28
30
32
1.58538
1.36887
3° BO'
1.5 19 36
1.38691
2*56'
1.51456
1.40 135
2*36'
1.51065
1.41320
|.6
2° z r
1.56732
1.42300
1.56218
1.43846
1.55832
1.45006
t.
55530
1.45901
1.55292
1.46 630
l"i.
55095
1.41221
i
0.554928
1
.4
1.54790
1.48 129
1
.54671
1.48485
1.54476
1.49065
1.54321
1.4 95(1
1.54208
1.49811
1.54109
1.50113
1.54029
1.50419
1.5 3 959
1.50621
1.53899
1.50 806
1.53849
1.50964
(.53801
(.
2°
8
'
1° 4 9'
1*34'
1 ° 24'
1° 15'
1® 6'
7 7 1 2
1° V
0* 57‘
0° 53*
0°46'
0°4
1'
0°37'
0° 33*
0° 30'
0° 28*
0°26*
0° 24'
SI 095 1.54226
0° 23'
l°46'
\* 33
1°22'
n
1° 13'
220
1° 7'
,0
0°S6'
0° 52*
Oa45
64Z
0*40
0°36'
0°32'
0° 30'
0*21'
0° 25'
0° 24
6° 22'
1-64788
1
1.64186
1.44941
1.63106
141570
#
‘
1.46385
1.62982
.43137
3° 12'
2°41
Z°ZS
2* 15 '
1.48550
1.62468
1.50096
1. 62082
1.51 256
1.61 780
1.52157
1.61542
1.52860
1.61345
1.53471
1-61178
1.53962
1.61 040
1.54379
l .60921
1.54735
\ .60726
1-55315
1.60 571
(.5 5 761
1.60458
1.56 127
1 60359
1. 56423
1.60279
1.56669
1.60209
1.56811
1.6 0 149
1.51056
1.6 0
1.51 214
1.60051
1.57345
1663
1.40012
3° 15'
1.
61061
1.41816
2°52'
1.60581
l .43260'
2°33‘i
1.60190! 1.63315
1.44445
2° 18'
1-59851
1.45425
2°5'
1.59343
1.46911
1.58957
1.48 131
1.58655
1.4-9032
1.584
1.4 9155
1.50
1.50346
1.56053
1.50837
1.57915
1 .51254
1 .51196
1.5 1610
1.57601
1.52 190
1.5 7452
1.5 2
1.51333
1.53062
1.57234
1. *53298
1.57 154
1.53 544
1.57084
1.53152
I .51024
1.53931
1.56914
1.54089
1.56926
2°2'
1°44 ‘
l°3l
l°20'
1*12.
1 ° 5'
0*59
0°55*
0°51'
0°44'
0*39'
0*35'
0° 32'
0*29'
0*2 T
0*25'
099
0*23'
0° 22'
l .61913
l . 4 6 2 62
.61311
.4 8066
‘
1.66831
1.49510
‘
1.66440
1.50695
1.66 107
1.5 1675
1.65593
1.53221
1.65207
1.54381
'
1.64905
1.55282
1-64667
l .56005
\
. 6 4 410
1.56 596
1.64303
1.57081
<
1 .64165
1.57504
(.64046
1.51860
1.6395!
1
.58446
1.63702
1.58892
1.63583
1.59232
1.63484
1.59548
(.63404
1.59 794
I .63334
l
.60002
1. 63274
1.60181
1.63224
1.60339
1.63 176
1.60410
3° 7'
2°44'
2*26'
2° 12
2°
1 °42'
l® 29
1° 18
1° 10'
1*4*
0°S8'
0°S3
0°50
0*43'
0*36'
0°34
0° 31'
0° 29'
0° 26*
0° 24
0*23'
0° 21'
1.71038
1.45 3
1.10436
1.51 191
1.69956
1.52635
1.69565
1.53820
‘
1.69232
‘
‘
87
3° 4 '
2° 41*
2*23'
2° 9
1.54800
1 6 58'
1.681(8
1.56346
1°40'
1.68332
1.51506
1® 21
1.68030
1-58407
1° 17'
1.6
1192
1.59130
1°
9
1.61595
1.59721
1° 2 *
l.
67428
I.
60212
0*57*
1.67290
l .60629
0*52'
1.61111
1-60935
0*49'
l .66976
1.6 1565
0°-42'
1.66827
(. 62017
0* 37'
1.6 67 08
1.62311
0°34'
1.66609
1.62613
0° 30'
l .66529
l .6 2919
0°2 8'
1.66459
1 .63121
0° 26
1-66399
l .63306
0°24'
1.66 349
1.63464
0° 22'
1.66301
1.63595
0*21*
1.14163
i.
52512
3°
1.13561
1.54316
1.73081
1.55760
1.7 2690 1.75815
1.56945
1.12357
1.51925
.71843
1
.5947 I
11451
1.6063 1
‘
1.1 1155
1.61532
1.70911
1.62255
1.701 20
1.62846
1.70563
l .63337
l .70415
1.63754
1.10296
1.641 10
(.70101
t. 64690
1.69952
1- 65142
1 .69633
1.65502
1.69134
1.65798
l .69 654
l .66044
l .69584
1.66252
l. 69524
1.6643!
1.69414
1.66583
\.
1.66720
2° 38'
2*20
2° 7
1° 56*
P38'
1°
25'
1° 16
i°e
1° l*
0° 5 6'
0*51'
0°48'
0*42'
063T
0°33'
0°30'
0*28'
0*25
0*23'
0° 2 2*
69426
0*20'
’
‘
‘
2°
|M9
1*34'
1*2 I'
^ll
1° 4'
0°58*
0°53*
Q®49
0°45
0°39'
0°35
208
0°3»'
Q*28
0°26
0° 24*|
0° 22*
0®21
0*19'
1.86663
1.6501a
2°46'
‘
1.86061
1.668 16
1.85581
1.68260
1.85190
1.69445
1.84 85 7
1.70425
‘
1,84343
1.11971
1.83957
1.13131
1.83655
1.14032
4
834 l 7
1.74755
1.83220
1.75346
1.83053
1.75837j
1.82915
1.76254
‘
1.62196
1.16610
‘
1.82601
1.77 190
1.82452
1.71642
1.82333
1.75062
1-82234
1.18248
‘
1.82IS4
1.18544
<1 Q°25'
1.8 2 054
1.18152
1-78931
\.8l914
1.79689
‘
1.81926
1°52'
1*34'
1° 5 1
0*
59'
0 °54'
O°50*
0*46'
O°40
0°36'
0°3 2'
0° 29'
0°22*i
0°Z1
0° 20
1.83538
1.61881
2°49
1
.82.936
1.63691
2*2 9'
1.82456
2® IV
1.82065
1.66320
1 .81732
1-67300
1.81 218
1.68846
1.80832
l
.7 0 00 6
1.80530
l. 10907
1
1.80292 11.
1.11630
1.8 0095
1.1 2221
l.n 9328
1.72712
1.79790
1.73129
1.79671
1.73485
1.19476
1.74065
‘
1.79
1.14877
1.79109
1-15113
1.79029
1.15621
1.78849
1.18801
1.16095
1.77288
1.5 5687
2° 56'
1.16686
1.51441
2°35'
1.76206
1.58885
2®i8*
1.60070
2° 5'
115482
1.61050
1.74968
1-62596
1.14582
1.63156
1.14280
1.64657
1.14042
1.65380
1.13845
1.65911
1.73618
1.66462
__________
l .73540
1.66819
1.13421
1.67235
(-73226
(.67815
1.73077
l .68267
1.72958
1 .69 621
1.72859
(68923
1.12119
1.69169
1.7 2109 1.75 834 1.18959
1.69371
1 .72649, 1. 75174 1.18899 i 1.8 20 24
1 69556
1.12599
1.69114
1.72551 ; 1.75676
1.69845, 1.12910
1.80413
1.5876a
2*53
1.7981 1
1.60566
2^3T
1.19331
l. 62010 165135
1.78940
1.63195
1.18607
l°54'
1° 36'
1° 24'
1° 14*
1° V
1°
0°
0*50'
l -64115
1.18093
1.65721
1.71701
1.6 6881
1.17405
1.67782
1.77 \ 61
1.
b3S05
1.16910
1.69096
1.16803
1.69581
5
5*
1.16665
1.70004
1.16546
0*47 *
0°4l
Q* 36'
0°32'
0*29'
Q°27
0°23'
0° 21';
1.10 360
1 .76351
1.10940
'
1.7 6202 1.79 327
1 7 1392 1.14517
1.76083
1.71152
1.75984
1.72048
1.15904
1.72294,1.15419
‘ 0*2 7'
0o25'| 0*24*
1.12502
1 l .12681 1 1.15806
175124
1,72839' l .75964
0°20,|
2° 15'
2° 2'
1*22'
1° 12
2°26
2° 10'
P5T
1*41'
1° 32'
1°19'
I°10
1*3
0-51
0°52'1
0*48*
0°A4'
0*39
0*34'
0°31'
0*28
0*24'
0*22'
0*20'
1.19220
0°19'
<
‘
Page 56

9
PITCH I zl
4
5
5^
_ f.
G 1.73550
7
8
9
10
, , 186345
I
1
1
13
1.85921
14
1.85726
1.80315
16
1.85577
1.80767
18
1.85458
1.81 127
20
1.85959
1.8 1423
22
1-85 279
24
26
28
30
1.81 669
1.85 209
1.81877
1.85 149
1.82 056
1.85 099
1.82 214-
1.83788
1.68 13 7
2°43*
1.89186
1.69941
2° 23
1.88706
1.71 385
g°8*
1.88315
1.72570
l°55
87982
l°45
1.87468
1.75096
l°30
I. 87082
1
.76256
1° 18'
1.86780
1.71 157
1° 9'
1.86542
I. 77860
1*2*
1.7 8471
065$*
i.
86 na
l.
78962
065l*
(.86040
I. 7 9379
0°47'
1.79 735
0°43'
0°38'
0° 34'
0° 30'
0* 27*
0°25
0° 23'
6*^1'
0*20*
Ai I Va
32. 1.82345
6*19',
1.92913
1.71 262
1.92311
1
1.91831
1.74510
I .91440
1.75695
i
1.91107
1. 7 6675
'
1.90593'
1.78221
‘
1.90207
1.79 381
1.89905
1.80 282
1. 89 U7
1. 8 I 005
I. 89470
1.8 1596
l.
l.
.89 165
.8 2 504
I
.89046
1
.82860
.8885 I
.8
88702.
1
I
-83892
.88583
.84252
l
1.88484
1.84548
1.88404
1.84794
/
1.883 34
1.85002
1.88274
1.85101
1.88 224
1. 85339
1.88116
1.85470
2*40'
.7
3066
2C20'
2° 5'
1*53
T43
l
6 28'
I* 17'
1° 8
l* 1 *
0°55*
89303
8 2087
0*50*
0°46'
0°43
3440
0° 37'
0*33*
0*30'
0° 27*
0*25'
0*
23
0° 2 \*
0° 2 0'
0° 18'
1.95436
1.76 191
1.94956
1.77635
l. 94565
1.78 8
1.94232
1.79800
1.93718
1.8 l 346
1.9 3332
1.8 2506
1.93030
1.83407
1.9 2
1.84130
1.92595
1.84721
1.92428
1.85 212
1.
l. 05629
1.9 2 171
1.85 985
1.01976
1.86565
1.9 l 8 27
1.8701 7
1.9 1708
1.87 37 7
1.91609
1.87673
1-515 29
1.81 919
1.91459
1 .88
‘
1.91 399
1.88306
1.91 349
1-88464
1.91 301
l .66535
I z9
1.96038
1.74387
2°37'
2° 18*
2
0 3 '
1° 5
1*41'
l°26'
IMS'
l°b'
792
0d54'
0°49
9 2 290
0*45'
0*42'
0637
0*33*
0° 29*
0*27'
0°24'
127
0° 22'
0*2 I '
0* 19'
0*18*
Ai
20
1
'
I. 95415
I. 8 87S4
(.95 296
1,80690
‘
1.94 952
1.9 0 142
1.04833
I.
1.94734
1.90 798
1.94654
l .9 l 044
1.94534
l. 91 2 52
1.94524
1.9 1431
1
1.91 589
1.94426
1.9 1720
I 'Vie
1.99163
1.77512
2°34'
1.98561
1.70316
Z° 16'
1.98081
1.80760
2°r
197490
1. 8 1 945
1°49
1.97 357
1 82925
1*39'
1.96843
1.84471
l°2V
1.96457
1.85631
I* 14'
1.96155
1.86532
I
6 5
1.95917
1.87 255
0o5<?
1.95
720
1. 8 7846
6*53*
1.95553
1.88337
0°48
0°4-5
1.89 I I 0
0°4l'
1.95 |Ol
0*36'
0*32*
90502
0*29*
0°2 6'
0*24'
0*22.'
0*20*
.94414
0M9*
0° 18
I 3
2.0
I. 80637
2.01686
1.82441
2.01266
l. 83885
2.00815
1. 85070
'
2 .00482
\. 86050
1.09968
1. 87596
1.9 9582
1.88756
1.
99
l. 89657
1.09042
1.90380
l. 98845
1. 90971
1.98618
I.9I462
‘
l . 9 6540
l
. 9 1079
1 .98421
I. 92235
I. 98226
1.92815
1.98077
1.90267
1 97958
1.93627
l
97809
1.9
1.97779
1.94166
1.91709
1.94317
1.97649
1. 94556
1.97599
1.94714
1.9755 I
1.94845
‘
/si
2286
2° 31'
2*13'
1° 59'
|°47
1® 38*
1° 24
r 12'
280
1° 4 '
0°58'
0*52'
0*48'
0°44'
0°4l'
0*3 6'
0*31'
0° 28*
3
923
0*26'
0*24'
0*22'
0*26*
0°)9'
0*18 '
2.05413
1.83762
2.048U
I. 85566
2.04331
1 87010
2.03940
1. 88195
'
2.0 3 607
1.89175
2.03 693
1.9 0 7 21
2 .0 2707
I
.01881
2.02405
1.92782
2 02 167
l
.93505
2.01970
1.94096
2.01003
1.94581
2.0 I665
1.95004
2.0 1546
|.
95
2.01351
1 .9 5
2.0 I 202
1. 96392
2.0 1063
I 06152
2.00 984
1.97 04Q
2.00904
1.9 7 294
2.00834
1.97502
2-00174
1.9 7681
2.00724
1-37839
2.00676
I. 9 7976
2°29
2° ir
l°57
|°46'
I
6 07'
1° 22'
1° 11'
1° 3 '
0*57'
0*5 I'
0°47
0 °43
360
0°4 O'
040
0*35'
0°31
0* 28
0*25'
0° 2 3'
0*21'
0*20'
0°l 8*
0 MV
2.08538
l. 868 81
2*27'
‘
2 07936
l . 88691
2.67456
1 .90 135
i°55'
‘
2 07 065
1 .91320
l°44
2.06732
1.92300
1° 35'
206218
1.99846
i° 2 r
2 05832
1.95006
l
2.05530 2 08655
1.95907 [ .99 032
a 05292
1.96630
0°56'
2.05095
|. 97221
2.04928
l. 977 12
0°46'
‘
2.0 4 790
1.98129
'
0°42
2.04671
1.96485
0°39'
2.04476
1.99065
0° 34'
2 04327
l. 99517
'
2. 04208
1.00877
0*2T
‘
2.04109
2.00173
0°
2.04029
2. 004 19
0*2 3*
2.03959
2.00627
0
2.03899
200806
0° 1
2 03849
2.00964
0° 18 1
2.0 3801
2.01095
0*17'
2° 9
6 10
\°
2* I
0650'
0° 30'
25'
6 21*
9'
2.HCG3
1
2.11061
1.91816
2.10581
I .03260
2.10100
1.94445
'
209857
I. 95425
2-09 343
1.96971
2 0 8957
1.98131
‘
2 08417
1. 9 9755
2-08220
2.00346
2.08053
2 00031
2.079 IS
2.0 I 254
‘
2.07796
2.6 1 610
2.07601
2.02190
2-07452
2.02642
2.07 3 33
2.0300 2
2.07 234
2 0 3298
2 07154
2 03544
2-07084
2 00752
2 .07024
2.03931
2.06 314
2.040Q9
2 -0 6926
2.04220
v/*
.90012
2° 24'
2° 7
1°53*
1*42'
!63V
1° 19'
1° 9 '
i° i *
0° 55'
0° 50'
_
0°46'
0°A2'
O°09'
0*34
O°30
0
4 27'
0*25'
0° 22'
o°
2
0° \9'
0*18'
0*17
zy^
2.14188
l 9 3l
2.14 186
l .94941
?.13706
l 06385
213315
1.07
212982
1 .98550
2.12468
2.00096
2. 12082
2.01256
2.11180
2 02157
2. I 1542
2. 02880
2.1134S
2.63471
2.II178
2 03962
2. 1104-0
2.0437 9
2.10 9 2 1
2
.04735
2 .(0726
2.05015
2.105 71
2.05 767
‘
2.10458
2 06121
2 .10359
2.06423
2.10 279
2-06669
2.10209
2.06877
r
2.10 149
2.07056
2.10 099
2.01 214
2.10051
2.07345
37
2°22
2* 5'
rsr
570
1*41'
|°32
I ° I 0*
I
6 8'
1*
0*54'
0*4 9'
0°45'
0°4 I
0*38'
0
° 33'
0°30'
0°
2
0° 24'
0*22'
0° 20'
0°1 9'
0* 18'
0* IT
2.17013
l
.96262
‘
2.11
1.38066
2.16891
1.99510
2.16440
2.00695
2.16107
2.01675
‘
2.15593
2.0322 I
2 10 207
2 043 81
2 14905
2.05282
2.14^61
2.06 005
2.14470
2.06996
2.14303
2.07OG7
2 I4I65
2.07504
'
2.14046
2 07860
2.13851
2. 08440
2.13702
2.08892
2 13 5
2 09252
T
21 3484
2.09548
2.13404
2 09794
2.1 3 3 34
2 1 000 2
2.13 2 74
2.10181
213 224
2 .10 3 39
2.13 176
2.10470
Vfc
2*20'
3 1
2
6 3'
l°50'
IMP'
1
° 3
1* IT
1° 7 '
0° 5 9'
0° 5 3'
0°44
0 °40 *
O°08
0*33*
0* Z 9'
8
0-26'
0*2 4
0° 2
0*20'
0 ° 1 9 ‘
o°ir
0*16'
m
l
0'
‘
3
2'
.
Page 57

10
PITCH
2.21038
1,99 381
4
2. 2
2.0 1 l 91
4%
2.29956
2.02635
5
2.19565
2.03820
5*
2.19232
2.04800
6
218118
2. 06346
7
8
C.
:
SO 2.
’ . 2
\i ! .<-097 21
. 12.11428
c \IA*2\Z
<
j.j 2.
14
16
16
20
zz
2.4
Z6
28
30
3£
Z %z. Z V\6 2. 7
l°59'
1*4 T
690
I
6 3
6'
P2T
1*15*
1° 5'
0° 58*
0° 5 1'
0°41
0° 43
0*39'
0°37
0*32
0*28'
0° 25
0*23'
0*21*
QQIV
0* 1 8 ‘
0*17'
0* 16'
2.21288
2.05637
2.26686
2.01441
2.26206
2 08885
2.25815
?.l
226462
2.
2 2 4968
2.
2.2458?
2.13156
2.24280
2.14631
2-24042
2.1 5380
2 23845
2.15911
2.23618
2.16462
2.23540
2.16813
2.23421
2.11235
'
2.23226
2.11815
2.2 3011
2. 18261
2.2 2958
2.18621
2.22859
2.18923
2.22119
2.1 9 169
2.22108
2.19311
2.2 2 649
2.19556
2.22549
2.19714
2.22551
2.19845
11 050
2° IT
0
4 36
go {
1°48
1*38*
1*29'
1°16'
218 332
2.01506
1° 6
218030
2.08401
0° 59'
2.11192
os no
0o
.11595
6*48
__6°43'
2.112 90
10629
0°40'
2.11111
2 10985
0°31 *
2.16916
2.1 1565
0° 32*
2.16821
2.12011
0*28
2.16108
2.12311
0°26'
2.1 6609
2.12613
0° 24'
2.16529
2.12919
'0*21'
2.16459
2.13 121
0*20'
216399
2.13306
0*16
2.16349
2.13464
0* 17'
2.16301
2.13535
0* if
2. 24163
2. 025 12
2.29561
2. 04316
>
2. 2 3081
2. 05 160
2.22
2.06945
2.22357
2.01925
2 2 I 843
2 09411
2 21451
2.10631
221155
2.11532
2.20911
2. 12255
5 2
‘
2 ,20120
‘
2.20553
2° 15'
2. 12846
2.13331
2.20415
2. 13154
2 20 296
2.14110
2-26101
2. 14690
2.19952
2.15 142
2.19833
2.15502
2.19134
2.15798
2.19 654
2.16044
2.19584
2.18252
2.19524
2.1643 1
2.19414
2.16589
2.19426
2.16720
/3?
2°\3
1*51'
l°45'
0 010
l
6 35
1*2 6'
1 2 596
1° 14'
1*4'
0° 51*
0*51'
0*46'
0*42'
0°39'
0° 36'
0*31'
0*2 8'
0*25'
0*23'
0*21'
0* 19'
0° 18'
0* IV
0*16*
tV4
2MT
l
c 56*
1*43'
1*34'
l
6 2
1* 12
1*3'
0°56'
0*50*
0*4 6'
1 9581
0°42'
0°38'
0*36'
0*31*
0*21'
0*25*
0* 22
0*20'
0*19'
0*18'
0*16'
0* I5
2.33538
2.
2. 3 29 36
2.1 369!
2.52065
5
2.
304\3
2.08162
‘
2. 29811
2.1056t
2 .29331 2.32456
2. 12010 2.15135
2.28940
2.13 195
2.28601
2.14115
2.28093
2.15121
2.21101
2.16881
2.21405
2. 11182
2.21 161
2.18505
2.26910
2.19096
2.26803
2,26665
2.20004
2.26546
2,20360
226351
2.20940
2 26202
2.21392
2 .26083
2.21152
2.25984
2.22048
2.25904
2.2 2294
2.25834
2.22302
2.25174
2 22681
2.25124
2.22839
2.25676
2.22970
£5/ic
2 .3^663
1 ° 54'
l
6 32*
1° 24
1° 11'
I* g.
0° 55'
O°50'
0*45'
0*41'
0*38'
0*35'
0* 31'
0*21'
0*24
0°22
0*20'
0° 19 ‘
0°IV
0*16'
0* 15
2. \50
.
2.36061
2.16816
2.35581
•2. 18260
2.35190
2.19445
20
2 34851 2-31982
2.20425 2.23550
2.34343
2.21911
233951
2.231 3 1
2.33655
2-24632
2.33411
2.24155
233220
2.25346
2.33053
2.25831
2.32915
2.26254
2.32796
2.26610
2 32601
2.21 190
2 .32452
2.21642
2,32333
2.28002
’
2.32234
2.28298
‘
2.32 154
2.28544
2.32084
2.28152
2.3 2024
2.28931
2.31914
2.29089
1 I 887
zog
1*4 2'
2.163
a 31132
a .11300
2-31218
2- 18846
230832
2. 20006
2.30530
2 .20901
2.30292
221630
2.30095
2.22221
2.29928
2.2211 2
2.29190
2.23129
2.29671
2.23485
2.29416
2.24065
2.29321
2 24511
2.29208
2.24611
2.29109
2.25113
‘
2.29029
2.25419
2.28959
225621
2.28893
2 .25806
2.28849
2.25964
2.28801 2.31926
2.260951 2.29220
4
2* V
l
- 52'
1*40'
1*31 '
r 23*
1° IT
l* »'
0°54*
0°49'
0*44'
0° 40
0*38'
0°35
0*30'
0*26'
0° 24
0* 22'
0* 26
0* 18'
0* 11'
0*16'
0* 15'
l U
/31
2.39785
2.181 3 7
1
2
a
# 5'
2.39186
2.1994-1
1° 50'
2.38106
2.21 385
1*39'
2.38315
2.22 510
1° 30'
1°22
2.3146812 .40593
2 25096| 2 .28221
l
6 10'
2 .31062 2 40201
2-26256 2.29381
»• r
2. 36180 2.39905
2.21 1 51
0*54'
2.36542 2.39661
2 2188 0 I 2.31005
0*48
2.36345 2.39410
2 28411 |2.3 1596
0°43'
2.36118 2.39303
2 .28962 | 2 .32081
0*40'
‘
2.36040 2.39165
2.293191 2.32504
0*31'
2 35921 2.39046
2.231351 2.32860
0°34'
/
2.351261 2.38851
2.30315 I 2.33440
0° 30'
2.355111 2.38102
2.30161 I 2.33892
0*26'
2.35458 2.38553
2.31 121 I 2.34252
0*241
2.35359 2.38484
2.31423
0*21'
2 .35279 2-38404
2 31669 2.34794
‘ 0*20*
’
2.35209 12.38334
2.31871 2.35002
Q* 18' I 0*18*
2.36149
2.32056 | 2.35181
0* 11'
2 3509912.38224
2.
3 22
0* If
t .35051 2.3817b
2.3234512.35470
0*15'
2.42913
2.21262
2° 4 *
2.4231 1
2.23066
2.41831
2.24510
2.41440
2 25695
2.4 1101
2.26615
‘
1 2.30282
1
2.34548
2.38274
I4| 2.35339
1°4 9
1®38
1° 28'
r 2i'
1*9'
i°
0d53
0*41'
0°43'
6*39'
0*36'
0*34
0° 29'
0°26'
0*23'
0*21'
0*19'
0° 17
O* 15*
0* WV
2.n/b
2°2
1°4T
I* 36'
1° 21'
1° 19
1°8'
0*59
0*52
0<MT
0*42'
0®39
0*36'
0*39'
0°29
0*23*
‘
6°
2
0*21'
0*19
0*16'
0*16
6* I5
0°14
£.49163
2.21512
2.48561
2.29316
2.48081
2.30160
2 .41690
2.31945
2.41351
2.32925
2.46843
234411
2.46451
2-35631
2.45911
2.
2.455 53
‘
‘
6'
’
‘
2.46038
2 24381
2.45436
2.26191
‘
2.44956
2. 21435
‘
2.44565
2 .28820
2.44232
2.29800
2.43118
2 11346
2.43332
2.32506
2-43030 2.46155
1.33401 2.36532
‘
2.42192
2. 34130
2.42595
2.34121
2.42428
2.35212
2.42290
2.35629
2.42111
2.35985
’
2.41916
2-36565
2.41821
2.31011
241108
231311
2.41C09
2 31613
2.41529
2.37919
2 .41459
2.38121
2.41399
2-38306
2 41349
2-38464
2.41361 2.44426
2-38595
go
1*46*
1* 35'
1°
26'
1° 18'
i°r
0*58'
0*51
3125 a
0*46'!
2.45120
2.31846
0*42'
2.38331
0 38'1
2.45415]
2.38154
0*35'
2.45 2961
2.39110
0*33'
2.45101
1. 39690
0*2T
2.44952
2.4 0 142|
0*
25'
2.44833
2.40502]
0*2 3*'
2.44134
2.4019
0*21'
2.44654
2 ,4 1 044
0* 19'
2.44584
2-412521
Q*IT
2.44524
2.41431
6* 16
2.44414
2.415891
0* 15'
2.41720
‘
0* 14*
8
Page 58

PITCH Z'*A
2.5 2288
4
5
5^
6
7
8
9
10
12
13
14
16
18
20
22
24
26
28
30
32
2.30631
1° 5 9'
2.51686
2.32441
I °45
251206
2.33885
1°34
2.508 15
2.35010
1* 25'
2.50482
2 .36050
1° 11'
2 .49968
2.31596
\* 6 7
2.49582
2.38156
0° 51'
2.49 280
2.39651
0°5I'
2.49 042
2.403 8 0
0°4 6'
2.48845
2.40911
0°41
2 .48618
2,41462
0*38'
2.48540
2 .41819
0°35'
248421
2.42235
0* 32'
2 48 226
2.42815
0° 28 ‘
2.48011
2.43261
0°25
2.41958
2.43621
0° 23'
2.41895
2.43923
0°20'
2 .41119
2.44169
0°(9
2.41109
2.44311
0*11*
2.41649
2.44556
0° 16'
2.41599
2.44114
0M5
2.47551
2 .44845
0°14
ZVz ZnAz
l
2.55413
2.33162
1*
'
‘
‘
2.51803
251546
2.51351
2.5 1202
2.46392
#
2 5) 083
57'
2.548! I
2.35566
1*43'
2.54331
2.310 10
l°33
2.53940
2.38 195
I °24
2.53601
2.39115
1° 16*
2.9 3093
2.40721
1° 5 '
2 .52101
2.41 881
0°57
2
.52.405
2.42182
0*50'
2.52161
2.43565
0*4 5*
2 .5 1 910
2.44096
0°4l'
2.44581
0 °3 T
2.51 665
2 45004
0° 34'
2.4 5 360
0° 32'
2 .45940
0°28'
0°25
246152
‘
‘
'
/
0° 22'
2.50984
2.47048
2.50904
2.41294
'
2.50834
2.41502
0° 20
0° 18'
‘
o°ir
2.50714
2.41681
0*16'
2.501 24
241839
‘
2.90616
2.41970
‘
0° I5'l
0*14'
2.58538
2.36881
1° 56
2.519 3 6
2.58691
l°42
2.51456
2.40135
i°3 r
2.51065
2.41 320
1° 22*
2-56732
2 .42300
1° 15'
2.56216
2.43846
l°4*
2.55832
2.45006
0°56'
2.55530
2.45901
0° 50
2.55292
2.46630
0*44'
2.55095
24122 1
0<’40l
2.5 4928
241112
0*3T
2.54190
2.481
0°34
2.5461 1
2.48485
0°3I
2.54416
Z .49 0 65
0°28*
2 .54321
Z.
49511
0° 24'
2.54-208
2 49811
0*2.2
l .54109
2.50113
0 ° 20*
2.54029
2.50419
0°18'
2.53959
2.50621
0° )7
2.53899
2.50806
0° 16
2.53849
2.50964
0° I 5
2.53801
2.51095
0° 1
‘
‘
‘
29
‘
2 .51196
'
*2.51452
’
2.51084
‘
2.57 024
"2.5 3931
7
1
4'
Z9A*
2.61663
2.40012
1
*54-
2.61061
2.41816
1*41'
2.60581
2 432-60
1°30
2.40190
244445
l°22
2.59851
2.45425
1° 14'
2.5 9 343
2.46911
1*3'
2 58951
2.48131
0°5 5
2.58655
2.49032
0°49
2 .58411
2.49155
0*44
2.5 8
220
2.50 346
0°40'
2.58053
2.50831
0° 3 6'
2.519 15
2.5 1254
0°34'
2-5
1 (o l O
003 l
2.51 60 1
2.52 190
0*21'
2.52642
0°24'
2 .51333
2.53002
0*21'
2.51234
2.53298
0*20'
2.51 154
2.53544
0° 18'
2.53152
0* IT
QMS'
2.56914
2.54089
0° 14*
2.56926
2.5422 0
0*13
Z '*Al
2.64188
2.43131
2.64186
2 44941
2.63106
2.46385
’
2.63315
2.41510
#
2.62982
2 48550
2.
2.50096
2.6 2082
2. 5 I 2.56
’
2.61180
2.5<M51
7
2.61542
2.52880
2 61345
2.53411
2 6 1H8
2.53962
2 -61040
2. 54319
2.60921
2.54135
'
2.60126
2.55315
2.60511
?. 55161
2.60458
2.56 121
2.6 0359
2.56423
2.60219
2.56669
2.60209
2.56811
2.60149
2.51056
2 6 0 099
2.57214
2.60051
2.51345
l
° 53'
1°40
1*29*
1*21'
1°I3'
62468
1° z
0°54
0°48
0°43'
Q*39
0
°3 6
0°33'
0*31'
0°2V
0*24'
o*2 r
0*|9
0° 18'
0° 1 6'
0 ° 15‘
0*14'
0° 13‘
z%
2.67 913
246262
2.61 311
2.48066
‘
2. 66831
Z 49510
2.6 6440
2.50695
2.66101
2.51615
2 65593
2.5 3 221
2.65201
2.54381
‘
2 64905
2 .55 282
’
2.64661
2.56005
2 .64410
2 .56596
7
2 64303
2.51 081
’
2.64 165
2 51504
Z
.64046
2.51860
2.63851
2. 58440
2.63102
2.5 8892
2.63583
Z. 59252
2.63484
2.59548
‘
2 .63404
2.59194
2 63334
2 .60002
2.63114
2.601 81
2.63224
2.60339
2.63 116
2.6 0470
1*52'
l°38
l°2l
P19'
1° 13'
1° 2'
0°
54*
0°48'
0*43'
0°39
0° 3 6'
0°33
0o30
0 ° 27 '
0*23*
0° Z\'
0* 19'
0*18'
0° 16'
0° 15
0° 14'
a*\y
ZZ%1
2 .11038
2 49 381
1° 5 0'
2 .10436
2.51 191
1° 31'
‘
2.69956
2.52635
i°ar
‘
2.69565 24*690
2.53820 2 56945
1° 1 8
2.692 32 2,12351
2.54800 2.51925
'
1° 12' 1
2 68118 [2 11 849
2.56346 2 5941 1
1° I '
2.68332 2.11541
2.5 1 506 2.60631
0*53
2.68030 2.1
2.584011 2.61532
o°4r
2 .611^2 2.909
2.591301 2.62255
0°42'
261595,2 10120
2.59121 I 2.62846
0°38'
/
2.61428 i 2.10553
2.6 02
0%35
2 612901 2.10415
2
.60629' 2.63154
0°3 2'
2 6 1 t 1 1 2.1 029 6
2.60985 2 64110
0*30'
‘
2.66916 2-70 101
2 61565 2.64690
o°26'
2 .6 6821
2.6* 0\1
0° 23'
2.66108
2.62311
0°2 1'
2 .6 6609
Z. 62673
0° 19'
2 66529
2.62919
0° IT
2.66439
2 63127
0*1 6'
2.66399
2.63309
1
Oe 15’
2.66349 2.69414
2.63464 2.66589
0° 14*
2.6630 I
2.63595
6° 13‘
l"/e
2.14 163
2.52512
2.13561
2.543)6
2.13081
2.55160
’
’
l 2
! 2 63331
‘
2 69952
2.69833
2.69134
2.65198
2.69654
2. 66044
2.69584
“
2 .69524
2.66431
2.65142
2. 65502
2.66252
2.69426
2 .66720
l°48*
1*36'
1° 2 6
i°ir
1° II
i* r
0° 53'
l 155
0°4 1'
19
0°42'
0° 38'
0*35
0°32
0 0
30'
0° 2.6'
0*2 3'
o°*r
0*19'
0° 11'
O* 16'
0° 15'
0° 14'
0*t3
Zz%i
2.11288
2.55637
2.16686
2.51441
2.16206
2 .58885
‘
2.15815
2 60010
l°4T
l°35'
1*25'
z
2.604 \ 3
2.58762
2 .19811
2.60566
2 19331
2.620 10
218940
2.63195
1° 16*
0* 34'j
0°29'
0°26'
1'
0*20'
0*18'
0°lT
0*16'
0° \4
0*14'
0°
13*
218601
2.64115
1 2.66381
’
1 2.69581
2
Z.
?11152
275984
2.12048
2 .15834
2.12502
2.15114
2.12681
‘
2.15124
2.12839
2.1561 6
212910
2.15482
2.61050
7
1°I0'
2.149 68 2.1809 3
2.62 596 2.65121
l°
2.94582 2.11 101
2 63156
0° 52
2 .142801 2.11406
2.64651 2.61
0°46'j
2.14042! 2.111 61
2 65380'2-63505
o°4 r
2.13845 2 16990
2 .65911 2 690S6
0° 31'
2.13618) 2.16 803
2 66462
2.13540 ) 2-10665
2.66919 2.10004
________
0°3 2
1
2.13421 | 2.16546
2.61235 Z.10360
2.13226 2.7635 I
2 61815! 2-70940
2 .1 3 01
2.68261 2.11392
6° 23'
2.12958
2
.68611
2.12859
2.68923
2 .12119 2.15604
2.69169 2.72294
2.12109
2.69371
2 .7 2649
2.69556
2.12599
2.69114
2.12551
2.69845
‘
l°46'
\° 34*
1 0 2.4'
l ° 1 5'
1
D 9
o°59'
0° 5 1'
182
0°45
o°4r
0° 31'
0°
34'
0 ° 3
0° 29'
0*25'
-162 02
0*21'
16083
0° 20'
0° 1
0617'
0° 15'
0* 14'
0° »3
0*13'
1'
8 ’
‘
‘
(i
Page 59

I
&
I
»
)
5>
9
9
9
9
m
PITCH £zs/k
2.83538
2.6 1881
A
A\
5
5^
6
7
8
9
10 2.11630
I
< I
jj
14
16
18
20
22
24
26
26
30
32
1®44'
2.82936
2.6369!
1*3 3'
2.82456
2.65135
\®2V
2.8 2 065
2.66320
1° 15*
2.81132
2.61300
169'
2.812 18
2.68846
0° 5 8
2.80832
2 .10006
'0°5»'
2.80530
2,10901
2.
8 0 292"
0*40'
T
.2.30095
! 2,12 22 1
\_ 0 ° 37'
2.19928
2.12112
0° 3 3
2.79180
2.13129
2.1961 I
2.13485
2.19416
2 .14065
2.19 321
2.14511
2. 19208
2.14811
2.19169
2.15 113
2.19629
2-154 19
2.18959
2.15621
2.18899
2.75806
2.18849
2.15964
2.1880 l
2.1 6 035
0°45*
0° 3 1 *
0° 29*
0°25'
0*22'
‘
‘
0*26*
0° 18'
0® 17*
0* 15
0*14'
0* 13*
0* l 2'
2 '7,
2.8 8663
2.650 12
l°A3'
286061
2.668 lb
1° 3 1 ’
2.85581
2.68260
1° 22'
2.8
5 ISO
2.63445
1* 14*
2.84857
2.10425
1° 8
2.84343
211911
0°5V
2.83951
2.13131
0°50
2.83855
2.14032
0° 44'
2.83411
2 14155
0°40'
2.83220
2.15346
6°36'
2.83053
2.15831
0°33
2.82915
2.1 6 254
0° 36'
2.82196
2. 1 66 I 0
0° 28*
2.8 2 601
2.11 190
0°25
2.82452
2.11642
0°22'
2. 82333
2.18002
0° 20
2.82 234
2.18298
0® I 8'
2.82154
2.1 8544
2. 82084
2.18152
0*15'
2.82024
2.1893)
2.81914
2.19089
0® 13'
2.81926
2.19220
O* 12'
2*%e 2%
fe
2 .89 188
2.68131
2.89 186
2,69941
2.88106
2.1 l 385
2 88315
2.1 2510
2.8
2.13550
‘
2.81468
2.15096
2.81082
2 .16256
‘
2.861 80
2.1*1151
2.86542
2.11800
2.86345
2.18411
2.86118
2.18962
‘
2 .86 040
2.19
2.85921
2.19735
2.85126
2.80315
‘
2.85511
2 86161
2.85458
2.81121
2.85 359
2.81423
2-85219
2.81669
0° lb'
2.85209
2-81811
2.85149
2.82656
0® 14*
2.85099
2.82214
2.85051
2.8 2345
l°42'
»• 30
1° 2 r
1* 13'
1982
I* 1'
0*5 T
0*50'
0°44
0*39'
0*36'
0*33
3
1 9
0® 30*
0® 28'
0*24'
0*22*
0* 19*
0® 18
0 ° 16*
6* 14*
0*14'
0° 13'
0®l2*
2.92913
2.1 1262
l°41'
2.92311
2.1*5066 2.16191
1° 29*
4
2.9 1831 2.94954
2.14510
1*20'
2.91440
2.15695
1*12'
2.9 1 1 01
2.16615
2.90593
2.18221
6* 5C'
2.90201
2.19381
2.89905
2.80282
0°43
2.89661
2 8I005
0*39'
2.89410
2.81596
2.89303
2.82081
i
2.89165
2.82504
2.8 9 046
2.82860
2.88851
2.83440
2.881 02
2.83892
2.88583
2.84252
2.88484
2.84548
‘
2.08404
2.04194
2.88334
2.85002
2.88214'
2.85181
2.08224
2,85339
2.80116
2.85410
1*6
0*49
0° 35*
0*32'
0°30'
0° 28
0® 24'
0* 2 I'
0° 19'
0°H'
0° 16'
0° 14'
0*13*
0° 13
0® l 2*
2.98038
2.14381
2*95436
2.94565
2.94232
'
‘
‘
1*39'
i°28
2.11635
1° 19
2.18820
1° 12'
2.19800
1*5
2.93118
2 .81346
0® 56*
2 9
3
332
2.8250b
0°48
2.9 30 30
2.83401
0°43'
2.92192
2.04130
0° 39'
2.92595
2.84121
0° 35
2.92428
2.85212
0*32'
2,92290
2.8S629
0*29'
2.92111
2.85985
0° 21
T79 1 91
2.86545
0*24
2.91 821
2.81011
0*21'
2.91108
2.87311
0® 19'
2.91609
2.81613
0* 11'
2-91529
2.01919
0°
2.91459
2.08127
0* 14'
2.91399
2.88306
O® 1
2.91349
2.88464
0*I3
2.91301
2.88595
0*12'
2'7,
2 99 I 83
2.113 12
l°38
2.98561
2.193 16
‘
2.9808 1
2.80160
2.91
2 81945
2.91 351
2.82925
’
2.96843
Z.
8441 l
2.96451
2.85631
‘
2.96155
2.86532
2.959 11
2 81255
2.95120
2.81846
2.9555 3
2.88331
2.9S415
2.88154
2.95296
2.891 10
‘
6
2 9510 1
2.89690
2.94952
2.90142
2.94833
2.90502
2.94134
2.90198
2.94654
2.91 044
16'
2.94584
2.91 252
2.94524
2.91431
3'
2.9 4414
2 9 I 589
‘
2.94426
2 .9112
fc
1° 21'
1° 18*
690
1MI*
1° 4*
0° 55
0*4
0 °42
0°38'
0*3 5'
0°92
o° 29'
0 0 21*
0 0 24'
o*2 r
O* 19*
0® 11
0® 16'
0*14*
Q* 13'
0° 12*
0° 12*
3.02288
2.80631
‘
3.6 1686
2.8244 1
3.01206
2.83885
3.00815
2.85010
3.00482
2.86050
2.39968
2.81 596
1
2.99582
2.88156
8
2-99 280
2.89651
‘
2.99042
2.96380
2.98845
2.9091 1
2 .98618
2 9 1462
‘
2.98540
2.91819
2.98421
2.922S5
2.98226
2.92815
2 .98011
2.93261
2.91958
2.93621
2.91859
2 33923
1
2.91119
2.94169
2 .91109
2.94311
2 .91649
2.94556
2.91593
2.44714
2 91551
0
I ° 3 8 1
1*2 6'
1° n*
1* 10'
l°4*
0*54'
0®41
0®42*
0*38'
0°3 4
0*31'
0® 29
0° 21*
0*24'
0°2l*
0*19'
0*11'
0*16'
0° 14*
0° 13*
0*12*
2.94845
0 ° 1 2*
3
3,054-13
2.03162
3.04-81 1
2.85568
3.04331
2.810 10
3.03940
2.88195
3.03601
2.89115
5.03093
2.90121
3. 02101
2 9 I88»
3.0Z405
2.92182
3.02161
2.93505
3.01910
2.94096
3.01 8 03
2.94581
3.01 665
2.95004
3.01546
2.95360
3-01351
245940
3.01 202
2.36392
3.01083
2.96152
3,00984
2.91048
3.00904
2.91294
3.00834
2.9 1502
3.00114
2.91601
3.00124
2.91839
3.00 616
2.91910
1
*31 *
1*25
\® 1 6 *
1 • 9'
\°3
‘
0° 54*
0*41
0°42*
0*31'
0*34*
o°3 r
0® 29'
0*21'
0° 23
0 0 21 '
0* 18'
0*11'
0*15'
0® 14'
0® 13'
0° 12'
0*1 l
3'/
3.11663
2.906 I a
3. II
2.91816
3.1 0581
2.93260
3 .10 190
2.94445
3.09851
2.95425
3.09343
2.96911
3.08951
2.98 131
3.08655
2,99032
3.08411
2.99155
3.08
3.00346
3,08053
3.00831
3.01915
3.0 1 254
3.01196
3.016 l 0
3.0160
3.02190
3.01452
3.02642
3.01333
3 .03602
3.01234
3.03298
3.01 154
3.03544
3.01084
3-03152
3.01024
3.63931
1
b 3 '/a
I « 34*
06 I
1° 8
3'
1* IS *
1° 8 *
1® 2
0° 53
0°46
0°4 \'
0*36'
2 20
Q
a 33*
0*30'
0° 28*
0®26'
0® 2 3
0° 20'
0*18'
0® lb'
0*15'
Q* »4'
0®13'
3.66914
3.04009
0* \2*
3. 06926
3.04220
0® U'
3 .1191 3
2.96262
3.11311
2.9 8066
3.16831
2.99510
3.16440
3
.00695
3.16 101
3.01615
3.15593
3 .03221
i
3.15 201
3.04381
‘
3.14905
3.05282
3,14661
3 060 0 5
3,14410
3.06596
3.14303
3.01081
3.14165
3.01504
3.14046
3.018 60
3-13815
1
3.0 8 440
‘
3.1 3102
3.08892
3.13503
3.09 252
3.13484
3.69548
3.1 3464
3-09194
3.13334
3.10002
3-13214
3.1 6 18 I
3.13224
3.10339
3.13H6
3 .1 0410
1°32
1° 22
1° 13'
1° 6'
I 6
0° 52'
0°4S*
0*36*
0® 32
0° 30*
0°2Y
0*25'
0*22*
0*20*
0® 18*
0* 16'
0* 15'
0° 14
0° 12
0*I2
o°ir
‘
’
‘
‘
Page 60

PITCH
4
4k
5
5 '±
6
7
8
Q
71
O
|
77 320553
? 13-13337
ir
^ '3.20415
3 '3-13754
14
16
18
i
20 ! 3 .15 5 02
3.24 163
3.62512
3.2356 I
3.04316
3.23081
3.05160
3.22650
3.06945
3.22351
3.01925
321843
3.09491
3.
3. 10631
I 3.21155
3.M 532
3.20911
3.12255
3.20120
3.12846
l 0° 27'
3.20296
3.14-110
3.20 I 0 I
3.14690
3.19952
3.15142
\\ iqjiia
33A
l°32
I* 20'
I* I 2*
1*5*
0*59'
0°5l
2 1
4-51
0 °44
0*33'
0*35
0° 32
0° 29
0°24
0° 22
0*19'
’
3.29 331
3.1 2010
3.28940
3.13 195
3.28601
3.14115
3.20083
3. 15121
1
3.21101
3.16881
‘
3.21405
3.11182
3.21161
9.18505
’
3.26910
3.19096
‘
3.26803
3.1 9381
3.26665
3 20004
3.26546
3.20360
‘
3.26351
3.20940
‘
3.26202
3.21332
3.26083
3-2 1152
o° n'
-
3.19734
3.15198
3.13654
3.19584
P?
1 ^
!
_
PA. 3.16
L
^
Pfi 3.16252
L
-^
3.195 24,3.25 774
0
0° I6
044
0°
# 13'
14'
‘
3-25984
3.22048
3.25904
3.22294
3.25834
3.22502
PR 3,1643 I 3.2268 1
0° 1
2'
„ _ 3.19474
30 j 3.16589
3.19426
IJZ
3.167 20
6° 12'
0° I r
3.25724
3.22839
3.25676
3.22970
314
3 .3 0413
3.08162
1° 29'
3.29811
3. 10566
1° 18'
I • 10'
1° 3'
0*58'
0°60'
0*43
0*38'
0®34
0*31'
6* 28'
0*26'
0*24
o
6 2 r
0° 19*
0* 17'
0°| 5'
0
5 14'
0*13'
0° 12
o* ir
o*ir
3%
3 .36663
3.15012
3.36061
3.168 16
3.35581
3.18266
3.35 190
3.19445
3.34851
3.20425
3.34343
3-2 191
3.33951
3.23131
’
3.33655
3.24032
3.33411
3.24755
‘
3.33220
3.25346
3.33053
3.25831
3.32915
3.26254
3.32796
3.26610
32601
3.
3.27 190
3 .32452
3.21642
3. 32333
3.28002
3.32234
3.28 298
0° 15'
3.32154
3.28544
3.32084
3.28752
0° 13'
3.32024
3.28931
0° 12'
3.31 974
3.29089
3.3 1926
3.29220
0°IO'
1° 27
1* 11'
1° 9 '
1° 2 *
0*57
0°49'
0°4Z
0°38'
0°34
0° 31'
0° 28'
0° 2b'
0*24
o° 2 r
0° 19
0* IT
0° 14'
Oa 11'
3 Vs
3.429 13
3-21262
‘
3,4231 I
3.230S6
3.41831
3.24510
3 .4 1440
3.25695
3.41 101
3.26615
3.40593
3.2822 1
1
3 .40201
3.29381
3-39905
8.30282
3.39661
3.31005
3.39416
3.31596
3.39303
3.32087
3.39165
3.32504
3.39046
3.32860
3.38851
3-33440
3.38102
3.33832
‘
3.38583
3.34252
3.38484
3.34548
0° 15'
3.38404
3.34194
3-38334
3.35002
3.38274
3.351 81
3.38 2 24
3.35339
0° 1 r
3.38 116
3.35470
1*25'
IMS'
1*8'
IT
0° 56*
0*48*
0*41
0#3V
0° 3 3'
0° 30'
0°28
O025
0*24
0° 20*
0° 18
0° I 6'
O* 14'
0*13'
0*12'
0*16'
3%,
3.49163
3-21512
3.4856!
3.29316
3.48081
3.30160
3.41690
3.31945
3.41351
3.32325
3.46843
3.34411
2) .46451
3 .35 631
3.46155
3.36532
3.45917
3.37255
3.45720
3.31846
3.45553
3.38337
‘
3.45415
3.38154
0*25'
#
3.45296
339110
3.45101
3 .39690
3.44952
3.40 142
0° 18'
‘
3.44833
3 .40502
0M6'
3.44134
3.40198
0*14'
3.44654
3.4i 044
0° 14'
3.44584
3.41252
0° 12'
3
44524
3.41431
0*11'
3.44474
3-41589
0°ll*
3.44426
3.41720
0* 10'
1*23'
)• 12
1° 6
o
0°55
0°4T
0*4 1'
6°36'
0°32
0°29'
0*27'
0° 23'
0° 20'
3 !£
3 .554 13
3.33162
3 .548 1
3.3 5566
’
3 .54331
3.310 10
‘
3.53940
3.38195
3.53601
3.39115
‘
3.53093
3.40121
3.52101
3 .4188 I
3.52405
3 .42182
3.5 2161
3.43505
‘
3.5 1910
3-44096
3.5 1803
3.44581
3.51665
3 .45004
l°22'
1° 12'
1° S'
0° 59'
0° 54'
0°46
0*40'
0*3 5'
0 0 32
0°29'
0*27*
3%
3.61663
3 .40012
3.61061
1
3.4»8 16
3.60581
3.43260
3.60190
3.44445
3 .59851
3 .45425
3 .5 9343
3 46911
‘
3.58951
3.48131
3 58655
3.49032
3-58417
3 49155
3 .58220
3.50346
3.58053
3.50831
3.519 15
3.51254
0° 24
3.5 1546
3.45360
3.5!351
345940
3.5 1202
3-46392
3.5 1083
3 46152
3.50984
3.4*1048
3.50904
3.47294
3.50834
3.47 5 02
3.507 14
3 .4168 I
0° 23*
0° 2 0'
0° I 8
0*16'
0° 14'
0* 13'
0* 12'
3.51196
3.51610
3.51601
3-52190
3.51452
3-52 642
’
3.51333
3.53002
3.57234
3 53298
3.57154
3.53544
3.51084
3.53152
3.57024
3.5393 I
0* ir
3.50724
3.4783 9
3.50676 3.56926
3.41370 3.54220
0* 10'
0* 10'
3.56914
3.54089
1*20'
1° W
1°4 *
0°5 V
0*5 3'
0°45
0°39'
0 °35
o°3r
0° 28
0°26'
0°24'
0 ° 22*
0° 191
o°ir
0° 15
0° 14'
0*
13'
oo 12'
0
6 II'
0* 10'
0° 10'
3%
3.6191 3
3 .46262
3 .6131 I
3.48066
3.66831
3 495 10
3.66440
3.50695
3.6 6 I 01
3.51615
3.65593
3.S322I
/
3-65201
3.5438 1
3.64905
3.55 282
‘
3.64667
3.56005
3.64410
3.56596
‘
3.64 303
3.57081
3.64165
3.57504
3. 64046
3.51860
3.63851
3 .58440
3.63102
3.58892
3.63583
3.59252
’
3.63484
3.59548
3.63404
3.59794
3.63334
3. 60002
3.63214
3.6018 I
3.63224
3.60339
3.63116
3.60410
|0 19
\° 10*
l
a 3'
0*51*
0*52
0°44
0° 39*
O °34'
0o3l'
0° 28
0° 26'
0° 24'
0°22
0° 19'
0° I 7'
0° 15'
0° 14
0° 12'
0° 12'
0* II'
0° 10'
0° 9'
0 9 ‘
334
3.804 l 3
3.58162
3,1381 I
3.60566
3.193 3 1
3.620 10
3 'Vi*
3.14163
3.52512
'
3.13561
3 .543 16
3.1 308 1
3 .55160
1° 18'
l
i° r
d34*
0*2 r
0° l r
0° 9'
3,16940
3.63 195
3.186 0 1
3.64115
3.18093
3-65121
3.11101
3 6 6 88 \
3.11405
3.61182
3.11 1 67
3.68505
3.76910
3.69036
3.16803
3.69587
’
3.16665
3.10004
3.16546
3.10360
3.1635 I
370940
3.
3.1 1392
3.16083
3.1 1152
3.75904
3.12294
3.15834
3.12502
3.15114
3.12681
315724
3.12839
3.75 616
3.12910
3.12690
3.56 945
0*56'
3.12351
3.51925
0°5 I '
3.11843
3.59411
0° 43
3.11451
36063 1
0°3 8*
3.1 I I 55
3.61532
0
3.10317
3.62255
0° 30'
3.10120
3.62846
0°2T
‘
3.10553
3.63331
0*25
3-1041 5
3.63154
0° 23'
3.10296
3.641 l 0
‘
3 7 0 1 0 I
3.64690
0*19'
3-69952
3.65142
3.69833
3.65502
0M5'
3.69134 3.15984
3. 65798 3.ieC48
‘
0° 14'
3.69654
3.66044
0° 12'
3.69584
3.66252
0° II
3.69524
3.66431
0° I I'
3. 69474
366589
0° 10'
3 .69426
3. 66720
1° \6'
i° i
i °
0*55'
0°50
0° + $'
0°31
0 “
33'
0° 30'
0° Zl
0*25'
0 ° 2 3'
0° 2f
0 ° 18'
76202
0 °
I
0* 15'
0*13'
0° 12'
0* II'
0° 10
0* I0
0*3'
a
‘
<
‘
6'
’
‘
{
r
-jr.M
-------
Page 61

14
PITCH
3.86663
A)i
5
3.650 12
3. 8 6 06 1
3.6 6816
3 85581
3.68260
3.85 190
4
5K
3 84057
6
7
Q
10
___
,
I 3.83220
■
1 i
1
”
f *3
I 2.
_________Q6 24'
!b
14
16
18
20
22
24
ZG
2.8
30
3Z
3‘7i6
1° 15'
I ° 6
0°59
3 69445
0654
3.70425
0°49'
3.84343
3.7 1971
0°42
3.83957
3.731 31
0*37
3.83655
3.74032
0° 3 2
3.83417
3.74755
0029*
3.75346
0* 27'
___
3.8303 3
3.75*337
3.829J5
176 254^ 3.82504
6°22'
3.82196
3 7 6610
3%
3.92913
3 7 l 262
1° 14*
3. 9231 II
3.13666
1° 5'
3 9 183 1 3 .98081
3 74510 3- 80760
0*58'
’
3 91440
3.75695
0*53'
‘
3 .91 107
3.76675
0°48'
3 90593
3.7 8221
‘
3 90201
3 7 9381
3.89905
380282
__ 0°Z2/_
‘
3.89667
3.8 1005
3.89470
3.81596
3.89303
3.82087
3.89165
3.89046
3 82860
o° 2 r
0*11
e^to*
0° 9'
3-8885 1
3.83440
3.88702
3 83892
‘
3.88583
3.84252
3.88484
3.84548
3.88404
3.84794
3.88334
3.85002
1
3.88214
3.8518 1
3.88224
3.85339
3.88176
3.8 547 0
3.82601
3.77 190
0* 18'
3.82452
3.77642
0°\fe
3. 82333
3.18 002
0* 14'
3.8 2234
3.78298
0° 13'
3.82154
3.7 8544
0° 12'
3.82084
3.78752
3.82024
3.7893 1
0° 1C
3.81974
3 79089
3.819 26
3.79220
0*41'
0°36
0* 29'
0° 26
0° 24*
0°22
0° 2 O
0° 18'
0*16'
0° 14'
0* 13'
0* 12*
O* 11*
0*10*
0°9
0° 9*
3 IB
399163
3.11512
3.98561
3.19316
3 97690
3.81945
3.91357
382925
3.9 6843
3.84471
3.96457
3.85631
‘
3 96155
3 86532
3.95911
3 87256
3.95120
3.87846
3 .95553
3.88337
3.95415
3.88754
‘
3.95296
3-89110
’
3.95(0 1
3.89690
3.94952
3.94833
3.94734
‘
/)e
1° 12'
1
0 4'
0°57
0°52*
0°48'
o°4 r
0*35'
o° 3 r
0°28
0°26*
0*23'
0°22'
0*20
0° 18'
3.90142
0° 16*
3.90502
0° 14'
3.90798
0° 13'
3.94654
3 9 I 044
0° 12
3.94584
3.91252
OMl'
3.94524
3.9 1431
O
6 10'
3.94474
3.915 89
0° 9'
3.94426
3.9 1720
0* 9‘
4
4.05413
3.83162
4.04811
3.85566
4.04331
3 81010
4.03940
3.88195
4.03607
3.89175
4 .0 3 093
3.90721
4.02707
3 .91881
4 02405
3.92782
4.02167
3.93505
4.01970
3 94096
4.01803
3.94587
4.01665
3.95004
4.0(546
3.95360
”
4.01351
3.95940
4.01202
3 96392
4.01083
3.96752
1
4.00984
3.97048
4.00904
3.97294
4.00834
3 97502
4.00774
3.9168 1
4.0 0724
3-97839
4.00676
3-97970
1° IT
1 * 3'
0°57
o°5r
0°47
0°40'
0*35
0° 3 1
0° 28
0°25'
0°23'
o°ar
0°20*
0° 18'
0*15'
0° 14
0° 13
o°i r
0*10*
k
0 56
0°46
0°39'
0&3<
0°30'
0° 27'
0*23'
0*23
0° 2 I*
0° 19'
0° 17'
0°
15'
Q*14
0° I 2*
0° 11*
0° 10'
0*10*
0°
6
d 8 ‘
4 'A
4.11913
3.96262
1° 9 *
4.113 1 1
3.98066
4.16831
3.995 10
‘
4.16440
4.06635
0°49
’
4.16 10 7
4.01675
O °4 6'
415 5 53
4 03221
4.15207
4.04381
4.14905
4.05282
4.14667
4.06005
4.(4303
4.07087
”
4. 14(65
4.07504
4-(4 046
4.07860
4.138(5
4.08440
4. 13702
4.08892
4.13583
4 09252
‘
4.13484
4.09548
4.13404
4.09794
4.13334
4 1000 2
4.13274
4.10 18 I
4.13224
4-10339
9
‘
4.13 1 76
4.10470
i° r
0° 55
0°39*
0° 34'
0*27'
4 V
4.11663
3.90012
o°ir
0° 9'
1° 10'
4.11061
3 .9 1 8 1 6
1° 2'
4.1 058 I
3.93260
6
‘
4.10190
3 .94445
0°5 0
4.09851
3 .95425
‘
4.09343
3.96971
4.08957
3-98131
4.08655
3.99032
1
4.08411
3.99155
’
4. 0822 0 4.14470
4 00346 4 .06596 4. I 2 846 4. I 9 096
4.08053
4.00837
4.079 15
4.01254
4.07796
4. 0 1 6 I 0
4.07601
4.02190
4.07452
4 02642
4 07333
4.03002
’
4.07 234
4.03298
4.07154
4,03544
407084
4-03752
4.07024
4.03931
4.06974
4.04089
406926
4.04220
A3Ae A'A
4.24163
4.02518
4.23561
4.043 16
4.23681
4.05160
4.22690
4.06945
/
4.22357
4.07925
4.21843
4.0947 1
4.21457
4. I 0 631
4.21 155
4. 11532
0° 30
’
4.20911
4. 1 2255 4.
4.2 0
0° 24
4.20553
4. I 3 3371 4.19587
0*22'
4 20415 4.2 6665
4. I 3754| 4.20004
o°2 r
4.20296 426546
4. 14110 4.20360
o°19'
4.20101 4.26351
4 .14690
0*1 V
4 19952 | 4-26202
415 142 4-2
0*15
’
4-19833 4.26083
4 15502 4.21752
0° 14
4.19734
4.15798
0°
12'
419654
A 160441 4 22294
0° ir
0°10
OMO'
0*9*
0° 8*
4.19584 4.25834
4.1625 2 I 4.225 0 2
‘
4.19524
4.16431 I A 2268 1
4 19474 4.25724
A 16589 4.22839
4.19A26 4-25616
4-167 20| A.
1° 8'
1° 0*
0° 54'
0*4 3'
0°45
0° 38'
0 ° 33'
O
6 30
Oa2T
7
0° 24
0°22'
0°20'
0°19
Q 0
0* 15
0*13'
0° 12*
o°ir
0° 10'
0*9*
0*9'
0° 8*
2014.26970
45/e
4.30413
4.68162
4.2981 1
4. 10566
4.29331
4.12010
4.28940
4.
13 195
4.28607
4.14175
4.28093
4.15721
4 2 77 07 4.3395 7 4.46 207
4 1 6881 4 23 131 4.29381
4.27405
4.17782
‘
4.27161
4.26803
”
I 4.20940
16'
_________
‘
4.25984
4.22048
4
4/25114
4.36663 4.429(3
^ 150 l 2 4.21262
i°r
4.3 6 661 4.4 23 lT
4.1681614.23066
0*59*
4.35581
4 18260|
0° 53*
4.35190
4.1 9445
0°48
‘
4 34857 14.4 1 101
4.204251 4.26675
0°44*
4.34343
4.2
0*38
‘
0°33'
4.33655 I
0°29'
I8S05
0*26'
0*2.3'
25904
4. 24032 4-30282
4.33417
4.24155
4.3322014.3^470
4.25346 4.31596
4 33053 4.393031
4.25837
0-2 2*
4.329 16 4.39165
4.26254
0° 20
‘
4.32796
4.26610 4.32860
0d19 ’
4 32601 I 4.3885 1
4 27 190 I 4.33440
0° 16*
1392
0° 14'
0°I3'
0* »2
4.324521 4.38102
4.27 642 4.93832
4.32333
428002
4 32234 4.38484
4.282981 4.34548
‘
4.32154 14.38404
O* 11'
0° 10*
4 3208414.38334]
4 28752 4-350 02 1
43202414.38274
0° 9*
0° 9 *
22970
0 0 8*
1*6*
0° 58'
0° 52'
Q°47
0°32
4.28 544| 4.34794
4.2893 1 4.3518 1
4.31974 4.38224
4.29089
4 319 26 4.38176
4.29220
4 Va
4.41831
4.24510
4.41440
1 4.25695
1
0*43'
4.40593
1 97 11 4.28221
0
4 37'
‘
4.39905
0*29*1
4.39661
4.31005
0°26*
0 * 2 31 0°2T]
0°2lM
4.320811
0° 26'
&° 1 a*
0° 1 6*
0*14
‘
0*13'
0° I2
‘
0°l0*
0° 10*
0° 9
‘ I 0° 9
0°8
‘
0* 8
1°S*
0*51*
0*52'
0*47
0*43*
6°36
0°32
O
e 28
0*26'
0* 211
4.32504
0° 19*
4.39046
0°l 8*
0°lb'
0°14*
4.38563
4.34252
0° 1 9 1
0° W
0*IO'J
0° 10*
4.35339
0° 8
4.35410
‘
‘
‘
0°8*
Page 62

15
T
PITCH 4%>
4.49163
4. 2 1 5 I 2
4.48561
4.29316
4.48081
4.30160
4.41 690
4.31945
4.41351
4.32925
4.46843
4. 34411
4 .4 6451
4.35631
4.46155
4.36532
4.45911
4.31255
4.45120
4. 31846
4.45S53
4.38337
4.454 15
4.38754
4.45296
4-391 10
4.45 10 1
4.39690
4.44952
4.40 142
4.44833
4.40502
4.44734
4.40198
4.44654
44|044
4.44584
4.4(252
4.44524
4.4 (43 I
4 44474
4.4 1589
4.4 4 426
4.4 1120
O
0°23'
0° 21'
00I9'
0° I 8'
0° I 6'
0 ° 14
0° 12'
o*
0° I0
0°10'
0° 9 '
0°8'
0° 8 I
14
16
18
20
22
24
26
28
30
32
4
4^
5
5/2
6
7
8
8
10
I I
12
13
1° 4
0°5T
o°5r
6646'
6°42'
0°36
c 3T
0°2 8'
0° 25'
ir
4
4.55413
4.33162
4.548! I
4.35566
4.543 3 1
4.31010
4.53940
4.38195
4.53601
4.39115
4.53093
4 40121
;
4 52101
4.41881
4 52405
4.42782
4.52161
4 43505
4 51910
4.44096
4.51803
4.44581
4.51665
4.45004
4 31546
4.45360
4-51351
4.45940
4.5(202
4.46392
‘
4
.5 1
446152
4.50984
4 41048
4.50304
4.41294
‘
4.50834
4.41502
4.50774
4.47681
0°3'
4.50724
4 41839
0° 8'
4.50616
4.41910
/a
I* 3‘
0°5b*
0° 50'
0°45'
0°42'
0*35*
o° 3 r
0#27'
0° 24
0° 22'
0* 20'
0° 1
0° 18'
0°l 5'
0° 14'
0 8 3
0° 12'
0° II'
0°
10'
0° 9'
o°r
4.61663
4.400 I 2
4.6 lObl
4.4 1816
4.60581
4.43260
4.60 190
4 44445
4.59851
4.45425
4 59 343
4.4691
4
4.48 I 3 I
4 58655
4.49032
4.584 17
4.49155
’
4 58 220
4.50346
4.5 6 05 3
4.50831
4.57915
4.5 I
9
’
4 57136
4.5 I 6 1
4.5160 I
4.52(90
4.51452
4.5 2642
4.51333
4.53002
4.51234
4.53298
4.57 154
4.53544
4.51684
4.53152
4.57024
4.53931
4.56914
4.54089
4.5 662 6
4.54220
49A
1
0 2'
0°55
0°49*
0°45*
0°4I*
0*35'
58951
0° 30
0° 27'
0°24'
0°2 2
O
- 20'
254
0° 19'
o°ir
0° 15'
0° 13
0° 1
0° 11'
O
6 10*
0° 9'
0° 3'
0°8 '
0*1
46/e
4.61913
4 46262
1° !'
4.61 3 I l
4.48066
0°54'
’
4.66831
4.49510
4.C6440
4.50695
4.66101
4.51 615
4.65593
4.5322 I
1
4.65201
4.5438!
’
4 64905
4.55282
4.64667
4.56005
4.64410
4 56596
‘
4.64 303
4.5 7 081
4 64165
4.51504
4.64046 4.10296
4.5 1 860 4.64110
0
4.6385 I
4.58440
4.63102
4.5 8892
‘
4 63583
459252
2'
4 63484
4.53548
4. 63404
4.59194
463334
4-60002
4.63214
4. 60181
4.63224
4.60339
4.63116
4.60410
0° 49'
0°44'
0
°40'
0°34
0*30
0°2T
0°24
0°22'
0°20*
0° 1 8
o°n
0° 15'
0°I3
0° 12'
o°»r
0°10
0*3 '
0° 8
0° 8'
o°r
’
’
‘
’
'
‘
‘
4
'Me
4.14163
4.52512
1° O'
4.1 3 5 b I
4.543 16
0° 53*
4.13081
4.55160
0°48'
4.1 2690
4.56945
0043
4.12351
4.51925
0°40'
4.11843
4.5941 I
0° 34'
4-. 11451
4.60631
0*30'
411 155
4.61532
O
a2 6'
4.109 l 1
4.62255
0°24'
4.10720
4.62846
0°21
4.10553
-4.63331
0°20
4.10415
463754
O618'
0° IT
4.10 10 l
4.64690
06)5'
4.69952
4.65142
0°! 3
4.69833
4.65502
0* 12'
4.69734
4.65798
o°ir
4.69654
4.66044
0* 10'
4 69584
4.66252
0° 9'
4.69 524
466431
0°8'
469414
4.66589
0° 8 *
4.69426
4 6 6120
0° V
4V
4. 8
4.58
4.138 l l
4.6056b
4 1933 I
4.6201 0
4.18940
4.63195
l
4.18601
4 64115
4.18093
4.65121
471101
46688!
4.11405
4 67 782
4 11 I 67
4.68505
4.16970
4.69096
‘
4.16803
4.69581
‘
4-16665
4.70 004
4.1 654b
4.70960
4.76351
4.10940
4.16202
41 I 392
’
4.16063
4.1 I 152
4.15994
4 12048
4.15304
4.12294
4.15834
4.12502
4.75174
4.72681
4.15124
4.12839
4.15676
4.72910
a
04\ 3
162
l°0
0° 53
0°4
0°43
0 # 39
0*34'
0°29'
0° 2b'
0°2 3'
0° 21'
0° 1 9*
0° I 8
OMV
0° 15*
0° I 3
0° \Z'
o°ir
0°10'
0° 9
0° 8 '
0° Q '
0°T
4%
4.8 6663 492913
4.65012 4.11262
4. 8606!
4.66816
‘
4.8558 I
4.68260
1*
4.85 190
4.69445
‘
484851
4.10425
‘
4.84343
4.1 1911
4.83957
4.13131
4.83655
4.74032
4 83417
4 74755
4 8 3220
4.15346
4 83053
4 75837
4 82915
4.16254
’
4.82196
4.7 6610
4.8260 )
4.11 190
4.82452
4.11642
‘
4.8
4.18002
0°59
6°52
0°4T
0°4 3'
0°39
0*33'
0°2.9'
0° 26'
0°23
0°2I'
0° I 9'
0° 18'
0°I6'
0° 14'
001
23
33
‘
4.923! 1
4.1306b
‘
4.9183!
4, 14510
4.9 144 0
4.15695
441101
'
4.90593
418221
4-90207
4.19381
4 89905
‘
4.89410
4.89303
4 82087
4.891 65
4. 82504
4.8904b
4.82860
4 88851
4.8 3440
4 8810 2
4.83892
3'
4 88583
4.84252
o°ir
4 82234
4.18 298
4.82154
4.18544
4 82084
4.78152
4 82024
4.78931
4.8(914
4.19089
4.81926
4.19220
0° 10*
0° |0'
0°9 '
0° 8'
0°8'
0° V
4 88484
4.84548
4.88404
4.84194
4.88334
4.85002
4.68214
4.851 8 l
4.88224
4.85339
4.88116
4-85470
4-Ya
0°58
0° 5 !'
0°46
0ft42
4.16615
0°38'
0°3 3'
0° 29
4.80282
0° 25*
4.89667
4.81 0 05
0° 23'
4.81536
0
6 2l'
0° 1
0°lT
0°lb'
0° 14'
0°1 3'
0° 11'
0° 10 •
0° 10'
0° 9 '
0° 8'
0° 1'
0° 1
4l5/ie
4.9 9163
4. m 5
4 9856!
4.19316
4 9808!
4 80160
‘
4.91690
4 81945
‘
491351
4.82925
4.9 684
4 8441 I
4.96451
4 85631
’
4.96155
4 86532
4.95917
4 95553
4.88331
9'
4.95415
4.88754
4 95296
489110
4.95101
4 94952
4.90 142
4.94833
4.94134
4 90196
4.94654
4.94584
491252
4.94524
4 9 1431
4.94414
4.9 l 589
4.94426
4.91 120
1 2
0°5T
o°5r
0°46'
o°4 r
0*38'
3
0° 32'
0°28'
0° 25'
4 87255
0*22'
4 95120
4.81846
0°20'
0 0
19'
0° 11'
0° lb'
4. 89690
0° 14'
0° 12‘
4 90502
oair
0
° 1 O'
4.91044
0*9'
0° 9 '
0° 8'
0° 1
o°r
5
5.05413
4.831 62
5.048! I
4 85566
5.0433
4 810!0
5.03940
4.88195
5-03601
4.89115
5,03093
4 90121
5 02101
4.9188!
5.02405
4.92182
5.02167
4 93505
5 01910
4.94096
5-01803
4.94581
5.01 665
4.95004
5 .01546
4 95360
5.0135 1
4 95940
5-0(202
4 96392
5 01083
4.96152
5 00984
4.91048
5.00904
4.91 294
5.00834
491502
5 00774
4.97681
5-00724
4 91839
5 00616
4.97910
0°5V
0°50'
0°4 5'
0°4!'
0°3T
0° 32'
0° 28'
0° 25
0° 22'
0° 20'
0° !&'
0° 11'
0* 16'
0°14'
0° 12'
0° U'
0° 10'
0° 9'
0° 8'
0° 8*
O
6 7
0*1'
I
!
,4
Page 63

16
m
m
=1
4
PITCH
4
4^
5
5^
6
7
8
Q
^
. 5.03411
SO
^ I 0°c\?J
f 5. 08226
I 5.08053
I?
\A
14
16
16
20
22
24
26
30
32
5Xa
5.1 1663
4.90012
0°56'
5.11061
4 .918 I 6
0°49
5.10581
4.93260
0°44'
5.10 190
4.94445
0°40*
5.09851
4.95425
6° 31'
5.09343
4.9 6911
o° 3 r
5.08951
4 .9 8 1 3 1
0°2l
5.08555
4.99032
0° 24'
4.99755
'00346
0° 20*
5.00831
i 6° 18'
5.01915
5.0 1254
0°11
5.01196
5.01610
0°l b'
5.01 601
5.02190
0
0
5.07452
5.02642
0° 1
5.01333
5-03002
0° II'
5.01234
5.03298
0°I0'
5.07154
5.03544
0°9
5.07 084
5.03762
0° 8'
5.01024
5.03931
0°8*
5.06974
5 04089
0° 7'
5.069 26
5.04220
0° 7
5.n9i3
4.96262
5.1131
4.98066
‘
5.1683 1
4.99510
5.16440
5.00695
5. 16 101
5.0
5.15593
5.15 201
‘
5.14305
5.14661
5.14 I 65
/
14'
2'
‘
i
5
'/a
0°55'
0°49'
0°44'
0°40
1615
0° 36'
5 03221
0*3 r
5.04381
0°2T
5 05282
0 a 24'
5 06005
0° 22*
5.14410
5.0659b
0° 20
5.14303
5.01081
0° 18*
5.01504
o°ir
5.
1404b
5.07 860
0° 15'
5.13815
5.08440
0° 13'
5.1 3102
5.08892
0° I 2
5.13583
5.09252
0° II'
5.13484
5.09548
0°l0*
5.1 3404
5. 0 9194
0° 9
5. 133 34
5-10002
0° 8
5.13214
5.10 18 1
0° 8'
5.13224
5-10339
0° 7'
5.13 116
5.10410
0° 7*
5-24163
5-02512
5.23561
1
5.0431b
5.23081
5.05160
____
5.22690
5.06945
‘
5.22351
5.01925
5.21843
5.09471
521451
5.10631
5.21 155
5.1 1532
5.209 I 1
5.12255
520120
5.1 2846
‘
5.20553
5. I 3331
5.20415
5. 13154
5.20296
5.141 10
5.2010 1
$.14690
5.19952
5. 15 142
‘
5.19833
5.19134
5.19654
5. 19584
5.16252
‘
5.19524
5.1 6431
5.19474
5.16589
5 Vie
0° 54'
0°48'
0*4?
0° 39'
0° 36'
o° 3 r
0°2 T
0°24
o° 2 r
0° 19'
0° 18'
0°
I6'
0° 15'
0° I 3'
0° 12'
5.16502
0° II'
5.15198
0°I0
5.16044
0° 9'
0° 8'
0° 8'
06T
5.19426
516720
0*
t
5 'A
5 30413
5.08162
5.29811
5.1 0566
5.29331
5.12010
5.28940
5.13 195
5.28661
5.14 115
5.28093
5. 15121
5.21701
5.16881
5.21405
511182
‘
5. 21 161
5.1 8505
5 26910
519096
5.26803
5. I 9581
5.26665
5.20004
5.26546
5 .20 360
5.26351
5.20940
5.26202
5.21392
5.26083
5.21152
5,25984
5 .2204-8
‘
5.25904
5.22294
5.25834
5.22502
5.25114
5.22681
5.25124
5.22839
5.25616
5.22910
0°54'
0o48
0°43'
0° 3 9'
0® 35'
0° 36'
0°2b'
0° 23'
0°21
0° 1
0° 18'
0° 16‘
0° 15
0 013'
0° 1 2
0°|0
(TIO*
0° 9 1
0° 8
0°7
0° 1
0* 7'
55/ifo
5 -3 6 6 63
5.150
5 .3606 l
5-16816
‘
5.35581
5.18260
5.35 190
5.19445
5 34851
5.20425
5.3 4 343
5. 2191
5.33951
5-23131
5.33655
5. 24032
5. 3 3411
5.24155
‘
5.33220
5.25346
9'
5.33053
5.25831
5.32915
5.26254
5.32196
5.26610
‘
5.32601
5.27 190
5 .32452
5.27 642
‘
5.32333
5.28002
‘
5.32234
5.28298
5.32154
5.28S44
5.32084
5.
‘
5.32024
5.28931
‘
5.31914
5.29089
4
5.31926
5.29220
0*53'
0°4 T
0°42'
0°38'
0° 35'
0° 30'
0* 26'
0° 23'
0°2 I*
0M9'
0° IT
0* 16'
0° 1 5'
0° I3
0° 1
0° 10'
0° 9
0° 9
281S2
o°a
0°T
0°7'
0° 6*
5%
5.429 13
5.2l2b2
5.423 1 l
5 23066
5 .41831
5.24510
5 41440
5 25695
5.41 I 07
5.26615
5.40593
5.28221
5 .40 2 01
5.29381
5. 39905
5.30282
5.39661
5-31005
5-39410
531596
5.39303
5- 3 2 081
5.39165
5.32504
5.39046
5.32860
5.38851
5.33440
‘
5-38102
5-33892
2!
5.38583
5-34252
5.38484
5.34548
5.38404
5.34194
5.38334
5.35002
‘
5.38274
5.35181
5.38224
5. 3 5339
5.38176
5.35470
0°52.'
0°46'
0° 42
0° 38
0° 35*
0° 3 0'
0°2 6*
0623
0*21'
0° 1 9'
o°n'
0° 16'
0° 1 5'
0°I3'
0° 11
0°IO'
0° 9
0° 9 ‘
0° 8
0° 7
0* r
0° 6'
57/«,
5.A9tfc3
5.ai5ia
5.48561
5.29316
548081
5.36160
5.41 690
5.31 945
‘
41331
5
5.32925
5.46843
5.34411
5.4 6451
5-35631
5.46155
5 36532
‘
5.45911
5.31255
5.45120
5- 31846
5.45553
6.38331
o0si
0°46'
0°4
0° 37'
0°34
0° 29'
0*26'
0° 23
0° 20'
0° 18'
5 'A
5.55413
5.33T(,2
1
5.5481 1
5.35566
5 5 43 31
5.31010
1'
5.53940
5.38 195
5 53601
5-39115
‘
5.53093
5.40121
5.52701
5.41 881
5.5 2405
5.42182
1
5 .52 1
5.43505
5-51910
5.44096
551803
5.44581
o°ir
5.45415 5.51665
5.38154) 5.45004
0° 16'
545296
5.391 10
5,45 10 1
5-39690
5 44952
5.40142
7
5.44833
5 .405 02
5. 441 34
540198
5.44654
5.41 044
5 44584
5.4 1252
5.44524
5.4 1431
5 .44 414
5.41 589
5.44426
5.41 120
0° 14'
0° 13'
0°U
0°l0
0° 9'
0® 8
0° 8
0° 7'
0° 7 1
0°6'
5.51546
5.45360
5 .5 135 I
5.45940
5.51202
5.46392
‘
5.51083
5.46152
‘
5.50984
5.41048
5.50904
5.47 294
‘
5-50834
541502
1
5.50114
5.41681
5.50124
5 41839
5 50676
541910
0°Si
0°45'
o°4 r
0° 31'
0° 34
0° 29
0° 25
0° 22
0*26'
0° 18'
0°lV
0° I5
0° 14'
0° 1 3'
0° 1
0° I0
0° 9 ‘
0* 8 *
0° 8
0°1
0° 7
0*6
5. fclbfc.3
5-A00 IZ
’
5.61061
5.41816
5.60581
5.43260
5 .60 190
5.44445
5.59851
5.59343
‘
’
61
1 *
‘
5%,
o°5 r
0°45
0°46'
0*37'
5.45425
0° 33'
5.4691 I
0*29'
5 58951
5.48 13 I
0® 25'
5.58655
5.49032
0°22'
5.58411
5.49155
0° 20'
5.58 220
5.50346
0* I 8'
5.58053
5.50831
OMY
575 1 9 ! 5
5.5 l 254
0°
15'
5.57 196
5.51 610
0* 14
5 5
7
6
01
5.52190
0°I2*
5.57452
5.52642
0*11'
5.57333
5.5300 2
0°10'
5.51234
5.53298
0° 9'
5.51 154
5.53544
0° 8'
5.57084
5.5 3752
0° 8'
5.51024
5-53931
0°
5.56974
5.54089
0°7*
5.S6926
5.5 4220
0*6*
5.bT9l3
5.4-bZbZ
5.61311
5.48 066
‘
5.66831
5.49510
5.66440
5.50695
5.66101
5-51615
5.65593
5.53221
5.65201
5.54381
5.64905
5.55282
5.64661
5.56005
5.64410
5.56596
5.64303
5.51081
5.64165
5.51504
7
*
5%
0*56'
0°44
0°40'
0° 36'
0d3V
0® 2 8*
0°25
0°22*
0° 20*
0°l 8'
0° 16
0° 15
5.64 046
5.51860
0°l4'
5.63851
5.58440
0° 12*
5.63702
5.58892
0° IT
5.63583
5.59252
0°
10'
5.63484
5-59548
0°9*
5.63404
5.59194
0® 8*
5.63334
5.60002.
0° 7 ‘
5.63214
5-60181
0°1'
5.63 224
5.60339
0°6
5.63176
5-60410
0° 6'
‘
1
’
‘
Page 64

17
PITCH 5%
4
4^
5
5^
G
y
8
9
10
12
13
14
5.10(0 1
5-64690
5.69952
5.65 142
5. 69833
5-65502
5.69134
5. 65198
5.69 694
5. 6 6 044
5.69584
5-66252
5.6 3 524
5.66431
5.69414
5.66589
5.69426
5.66120
26
28
30
__
vJC
^
16
18
20
22
24
5.14163
5.52512
0°50
5.13561
5.54316
0°44'
5.1 3681
5.55160
0°39'
5.12690
5.56945
0°35'i
5.12357
5.51 325
0°33'
5.1 1843
5. 5941!
0 ° 28
5 .11451
5 60631
0 *‘24
5.1 I 155
5.61532
0°22
5.70911
5.62255
0° )9
5.10120
5.6 2 846
0° 1
5. 1 0553
5. 63337
0° 16'
5.10415
5 63154
0° 15'
5.10 296
5.64 I ! 0
0° 14
0° 12'
0° 1 r
0° 10*
0° 9'
0° 8
0°7'
0° 1
0° 6'
0°6
‘
5 80413
5.58162
’
5.73811
5.60566
5.19331
5.62010
5.18940
5.63195
5.18601
5.64115
5.18093
5. 65121
5. 11101
5. 66881
’
5.11405
5-61182
‘
5.1 1161
5 68505
‘
5.16910
5.69096
8'
5.76803
5.69587
5.1 6665
5.10004
5.16546
5.10360
‘
5.76351
5.10940
5.16202
5.H392
5.16083
5.11152
5.15984
5.12048
5.75904
5.12294
‘
5 .15834
5.7 2502
5.75174
5.12681
5.15124
5
72839
5.15616
5.72910
0°6
5 %
0°43'
0°43
0°39
0°35'
0° 32
0°28
0°24'
o°2 r
0° 19'
0°lT
0°I6'
0° 15'
0° 14'
0° 1
0°u
0°lO'
0°9'
O
6 8'
0° 7'
0° 7'
0° 6'
‘
’
5.83655
5.83411
5.74155
583220
5.15346
5. 8 3053
5. 15837
5.82915
5.16 254
5.82196
5.16610
5.82601
5.11 190
2'
5.82452
5.11642
5.82333
5.18002
5.82234
5.78298
5.8 2154
5.18544
S.
5.18752
5.82024
5-78931
5.8 1974
5.19689
5.81926
5.19220
‘
5%
5.86663
5.65612
0°48'
5.86061
5.66816
0°43'
5.85581
5.68260
0°39*
5.85190
5.69445
0° 35
5.84851
5.10425
0°3 2'
5.84343
5.1 ! 911
o°2 r
5.83951
5.131 31
0° 24'
5.14032
o° 2 r
0° l 9'
0°IT
0°
16
0*15'
0° 1
4'
0° 12'
o° n
O
6 9'
0° 9'
0° 8'
82084
0°7'
0°1
0°6'
0* 6'
5%
5.32313
5.1(262
5.32311
5.13066
5.9183 I
5.14510
5.91440
5.75695
‘
5-91 101
5.16615
5.90593
5.18221
5.90201
5.1 9381
5. 89905
5. 80262
5.89 661
5.8 1005
5.89410
5.8 1 596
5.89303
5.82081
’
5.89 165
5-82504
5. 89046
5.82860
5.88851
5.8
5.88102
5.83892
'
5.88583
5.84252
5-88484
5.84548
5.8 8404
5.84194
0°8'
5.88334
5.85002
5.88214
5. 8 5 1 81
0
5.88 224
5.85339
0°6'
5.88116
5.85410
0° 6'
0*48'
0°42'
0°38'
0°35'
0°32'
0 ° 2 1'
0624
0°2 I
0°19'
0°11'
0°16'
0° 14'
0° 13
3440
0° 12'
0°IO'
0° 9'
0° 8'
0° 7 ’
6 7
5.33163
5.31512
5.38561
5 13316
5.98081
5-80160
5.91690
5.81 945
5.91351
5.82925
S 3 6643
5.8441 I
5.96451
5.85631
‘
5.96 155
5.86532
'
5.9591 1
5 .81255
5.95120
5.81846
5.95553
5.88337
5.9541 5
5.88154
595296
5.89 1 I 0
‘
5 .9 5 ( 0 I
5. 89690
5.94-9 5 2
5.90 1-42
5-94833
5.90 502
5.94134
5.90198
5.94654
5 .9 1 044
5.94584
5.91252
5.94524
5.91 431
7
594414
5.91 583
5 .94426
5 .9 1 120
5 ,5
0°47'
0°42
0°38'
0°34
o°3 r
0° 21 '
0°2 3'
0° 2 1'
0*19'
o°ir
0° 15'
0° 14'
0° I 3
0°I2'
0° 1
0° 9'
0*8
0°
8'
0° 7'
0® 7'
0°e>'
0
°fe'
6.05413
5.83162
6.048 1 (
5.85566
’
6.04331
5. 81010
6.03940
5.88195
/
6.03601
5.89 115
6
6°4V
0°41
0°3T
0° 34'
/
ig
o° 3 r
6 03093
5.90121
0° 2 6'
6.02101
591881
‘
0'
o°23'
6. 02405
5.92182
0° 2 O'
6.02 161
5- 33505
6.01910
S. 94096
6.01809
5.94581
6 01665
5 95004
6 0 1546
5. 95360
6.01351
5 .95940
6.012 02
5.96392
6.0 10 83
5-96152
6 .00984
5.97048
6.0 09 04
5.91
6.00834
5 .97502
6.0 0114
5-91681
6. 00124
5.91833
6-00616 6.06326
5 .919101 6.04220
0° 18'
0° 1
0° 15'
0° 1
0° 13'
0° II'
0°I0'
6° 9 ’
0°8'
294
0° 8
0° 7 ‘
0° 7'
0*6'
0°6
7 ’
4'
‘
G Z\b
6.11 663
5.30012
0°46'
61106 l
5.31816
0°4
'
6.10581
5.33260
0°31'
6.10190
5 34445
0 0 34"
6.09851
5.95425
0°31'
6.09343
5.96911
0° 2 6
6.08951
5.98 131
0°23'
6.08655
5 .99032
0*20
6 0 8411
5.93155
0°l 8'
6.08
6.00346
0*17'
6.06053
6.00831
0° 15'
6.01915
6.0 1254
0° 14
6.01196
6 .0 l 6 I O
0° 13'
6.01601
6. 0 2 190
0° 11'
6.01452
6.02642
0°10'
6.01333
6.03002
0°9
6.07234
6.03298
0° 8 ‘
6.01154
6.03544
0° 8
6.01084
6.03752
0° 7'
6.01024
6 - 03931
0°6
6.06914
6-04089
0°6
0°6 ‘
220
'
’
‘
'
6/8
6.17 9 I 3
5.*36 262
6113 11
5.38066
r
6.1 6831
5-335 10
6.16440
6.00695
6 (6 I 01
6.01615
15593
6
603221
’
6-15201
6.0438 I
6.14905
6.05282
’
6.14661
6 06005
6.14410
6 06596
6.14303
6.01081
6.14 165
6. 01504
6 14046
6.01860
613815
6.08446
6. 13102
6 .08892
0
6.1358 3
6.09252
0° 9'
6.13484
6.09548
0° 8'
6.13404
6 09194
0° 7'
6.13334
6-10002
0 ° 7'
6. 13214
6.10181
0°b'
6. 13224
6. 10339
0° 6 '
6.I3H6
61 6410
0° 6*
0° 46'
o°4 r
0° 3 V
0° 33'
0° 30'
0° 2 6
0°23'
0° 20
0° 1 8
0 6 1 6 '
0° 15'
0° 14'
0° 1 3'
o° ir
M 10'
6.24 163
6.02512
6.2356 I
6> 043 \6
6. 23081
6. 05160
6.22690
6 06945
6 22351
6.0 1925
6.21843
6.09411
‘
6.21451
6.10631
6.21155
6.11532
‘
6.209 1 1
6. I 2255
6. 20120
6.12846
6.20553
6.1 3331
6. 204 15
6- 13154
6.20296
6. 14 I | 0
6.2610 I
6.14-690
6.19 9
6 .15142
6 19833
6.1 5502
6 19134
6.1 5198
6.19654
6.1 6044
6.19584
6.1 6252
6.19524
6.1 6431
6.19414
6. 16589
6.19426
6.16120
6 3
0°45
0*4 0’
0° 36
0°33
0° 3
0®
0°22'
0° 2 0'
0° l 8
0° 16'
0° 15'
0° 14'
0° 13'
0° II
5
0° 10
0°9
0° 8
0°
0° V
0° 6'
0° 6
0° 6*
/e
26'
2
7'
‘
0'
‘
‘
'
’
'
G 'A
6.304
6.08162
'
6238 1 1
610566
0 °40
6 29331
6.120 10
0° 36
6.26940
6.1 3 I 95
0°32'
6. 28601
6.14 115
0 0 30'
6 28093
6.1512!
0° 25'
6 21101
6.16881
0°2 2'
6.21405
6 I 1182
0° 20
6 21 161
6. 1 8505
0° 18'
6.26910
G
. 19096
0° 1
6.26803
6. 19581
0° 1
6.26665
6.20004
0° 14'
6. 26546
6 .20360
0° 13'
6.26351
6 20940
o° tr
6. 26202
6. 2 I 392
0° 10'
6.26083
6.21152
0° 9'
8.25984
6. 22048
0°a'
6.25904
6.22294
0° 7
6.25834
6.22502
0° 7 1
6.25174
6.22681
0°6'
6.25124
6.22839
0°6
6.25616
6-22910
0° 5< |
0°45'
6'
5'
13
’
i
’
-
I
i
:
I
Page 65

II
PITCH
G ITfc
6 Vs
6 Vi 6
6 Vz
6 V.6
6%
6%
63A
6 ' Vi6
Id
6 78
*
I
I
I
a
ft
ft
I
>
i
4
4!4
5
5^
6
7
8
Q
o
10
\ I
12
13
14
16
16
£0
22
24
Z<o
28
30
32
6/ibt>fc3
6.15012
0 °44
6.3606 I
6. I
68
0°39'
6.35581
6 18260
0° 35'
6.35190
6.19445
0° 32'
6.34851
6.20425
0° 29
6.34343
6.21911
0 025‘
6.33951
6.23 1 3 l
0° 2 V
*6733655
6.24032
0° 19
; 34 11
I 6.24155
0°H'
33220
0° 16'
6. 3
3053
6.
2 5831
6 .329
6.26254
0° 13‘
6.32196
6. 266 10
0°12'
6.32601
6.21 190
o°\r
6.32452
6.21642
____
0° 16'
6.32333
6. 28002
0°
6.32234
6. 28298
0° 8*
6.32154
6.28544
0° V
6. 32084
6.28152
0°1*
6.32024
6.28931
0°6 *
6.31914
6-29089
0° 6
6.31926
6.29220
0°5*
16
3 •: 6
15
9'
6.42313
6.21262
’
6.4231 I
6.23066
641831
6.24510
6.41440
6.25695
6 4 l l 01
6.26615
‘
6.40593
6. 28221
6.40201
6.29381
6.39905
6.30282
‘
6.39661
6.31005
6.39410
iS. 31596
6.39 303
6.32081
6.39165
6.32504
6.39046
6-32860
6.38851
6.3 3440
6.38102
6.33892
____
6.38583
6.34252
6.38484
6.34548
6.38404
6.34194
6.38334
6.35002
6.38214
6.35181
6.38224
6.35339
‘
6.38116
6.35410
0°44
0°39'
0*35'
0° 32'
0*29'
0
6 25
0° 22'
0° 19'
PIT
0° 1
0® 14'
0° 13'
Q
c 12'
0°U'
P°I0
0° 9 *
0°8
0°1
0® 1'
0® 6
6° 6'
0° 5'
6.43163
6. 23512
‘
6-48561
6.29316
6.48081
6.30160
6.41690
631945
6.41351
6.32926
____
6.46843
6.34411
‘
6.46457
6.35631
6.46 I 55
6.36532
*6.45 911
6. 31255
6.45120
6.31846
6'
6.45553
6.38
6.45415
6.38154
6.45296
6. 39110
6.45101
6.39690
6.449*a
6.40 142
’
644833
6-40502
6.44134
640198
‘
6.44654
6 41044
‘
6.44584
6.41252
6.44524
6.41431
6 .44414
6.41589
6.44426
6.41120
0°44
0°39'
0°35
o° 3 r
o®29
0*25'
0622'
0° 19'
o°n'
0°\C
331
0° 14'
0° 13'
0M2*
0° U'
0° 9'
0° 9'
0° 8
0°1'
6°1
0*6*
0°6*
0° 5
6554-13 6.6 1663
6.33162 6.40012
o®43'
6.S48M
6 .35566
6 54331
6.31010
’
6.53940
6.38195
6.53601
6.39115
‘
6.53093
6.40121
6.52101
641881
6.52405
6.42182
____
6.5 2161
6.43505
6.51910
6.44096
_ 0®15^
6-51803
6.44501
6.51665
6.45004
6 .5 1 546
6.4 5360
6.5135 I
645940
0°38'
o°3 r
0°29'
062T
0° 19'
0°IT
0° 13*
0°12'
0®34
0° 24
0® 14'
6.61
6.418 16
6.60581
6. 43260
6.60 190
6.44445
6.5985 1
6-45425
____
6.59343
6.46911
6.58951
6.48131
6.58655
6.49032
6.58411
6.49155
6T5 8220
6.50346
6.58053
6.50831
6.51915
6. 5 1 254
6.51196
6.5 1 6 I 0
6.5160
6 .52 190
o° ir
6.51202
6.46392
6.51083
6.46152
6.50984
641048
‘
6.50904
641294
6.50834
6.41502
'
6-50114
6.41681
6.50124
6.41839
6.50616
6.41910
‘
6° 9'
0° 8*
0° 8'
0°T
0°6'
0°6
0*5'
0° 6
6.51452
6.52642
6.51333
6.53002
6.51234
6.53298
6.511 54
6.53544
6.51084
6. 53152
6.51024
6.53931
‘
6.56914
6.54089
‘
6.56926
6.54220
0°43
061
0° 38'
0*34'
o°3r
0®28'
0* 24'
o° 2 r
0° 19'
0° n'
0° 15'
0° 14
0° 13*
0° 12'
0°10'
0° 9'
0° 8*
0° 8'
0°
1
0° 6*
0° 6'
0°6
0°5
6.619 13
6-46262
6.6*131 I
6.48066
6. 66831
6.49510
6.66440
6-50695
6.66101
6-51615
6.65593
6.53221
6.65201
6.54381
6.64905
6.55282
6.64661
6.56005
6.64410
6.56596
6.64303
6.51081
’
6.64165
6.51504
6.64046
6.51860
1
6.63851
6.58440
6. 63102
6.58892
6. 63583
6.59252
6. 63484
6.59548
6.63404
6.59194
*
6.6 3334
6. 6 0002
6.63214
6-60181
_____
6.63224
6. 60339
'
6.63116
6. 6 0410
‘
0°42'
0°38'
0° 34'
0® 31'
0° 28'
O
6 24'
0*2 1'
0° 19'
0®11'
0° 15'
0° 14'
0® 13'
0° 12'
0° 1C
0° 9'
0°8
0° 8'
0°1
0° 6
G®%^_
0° 6'
0*5'
6.14163
6 .52512
613561
6.54316
6.1308 1
6.55160
6.12 690
6.56945
6.12351
6.51925
6.11843
6. 59411
6.11451
6.60631
6.11155
6.61532
6.10 911
6.62255
6.101 20
6.62846
6.10553
6.63331
6.10415
6.63154
6.10296
6.64
6.10101
6.64690
6.69952
6.65142
6.69833
6 65502
‘
669134
6-65198
6.69654
6.66044
'
6.69584
6.66252
‘
6-69524
6.66431
6.69414
6.66589
6-69426
6.66120
0®42'
0°3T
0°3T
0°3C
0*28'
0°24'
0° 2l'
0°I8'
OMV
0 6
0° 14'
0® 1
1 10
0° 1
C®
|0'
0° 9'
0° 8*
0°V
o°r
0°6'
°°6
0° 5'
0*S'
15'
3'
2'
'
6.15616
6.80413
6.58162
0°42'
6.1981 1
6.6 0566
0°3T
6.19331
6.62010
0°33'
6.18940
6.63195
0°30'
618601
6.64115
0° 21'
6.18093
6.65121
6*23*
6.11101
6.66881
0°20'
6.11405
6. 61182
__
(VM8^
6.11 \61
668505
0° 16'
6.T6910
6.69096
__
o° 15;
6.16803
6.69581
014'
6.16665
6.10004
Cf 13'
6.16546
6.10360
0° 12'
6.16351
6 .10940
0ol0
6-16202
6 .11392
0° 9'
6.16083
6.11152
0*5'
6.15984
6.12048
0° T
6.15904
6.12294
0°V
6.15834
6.12502
0° 6'
6.15114
6.12681
0*6'
6.15124
6.12839
0* 5'
6. 12910
0°5'
6.86663
6.65012
6.86061
666816
6.85581
6. 68260
6.85190
6.69445
6 • 84851
6.10425
6.84343
6.1191 |
6.83951
6.13131
6. 83655
6.14032
6.83411
6.14155
6-83220
6.15346
6.83053
6.15831
6.82915
6.16254
6.82196
6.16610
6.82601
6.11190
‘
6.8 2452
6.11642
6.82333
6,18 002
6.82234
6.18 298
6.82154
6.18544
6.8 2084
6.18152
6.82024
6.18931
____
6.81914
6.19089
6.81926
6.19220
0°4t'
0*36'
0°33'
Q®30'
6°21'
0*23'
0620'
0®18'
0° 16'
0o!5*
0° 13'
0° 12'
0®I2
0° 10'
0° 9
0° 8'
o®v
0°1
0°6 '
0°6
0° 5
0‘S'
6.92313
6.1 I 262
6.92311
6.19066
6.91831
6.14510
6.9 1440
6.15695
6.91 101
6.16615
6.90593
6.18221
6.90201
6.19381
6.89965
6.8 0 282
6.89661
6.81005
6.89410
6.8 1596
6.89303
6.82081
6.89165
6.82504
6.89046
6.82860
’
6 8885
6.83440
6.88102
6.83892
'
6.88583
6.84252
6.88484
6.84548
688404
6.84194
‘
6.88334
6.85002
6-88214
*asm
'
6.8 8224
6-85339
‘
6.88116
6.85410
0°4 1'
0°36'
0°32
0° 29'
Q»2T
0°23'
0*20*
0<M8'
0* 16 *
0°15
0°
13'
0® 12'
0° 11'
0° IQ
0° 9'
0*8'
0°T
0°!'
0°6^
0°6*
0° 5'
0°5
#
‘
l
1
1
/
Page 66

IS
jr
PITCH
4
A\
5
5'"2
6
7
8
9
10
II
12
13
14
16
16
10
22
24
26
28
30
32
6 IS
/,6
6 23'
‘
‘
‘
7.05413
6.85762
7.0481
6.8*566
7.04331
6.87010
7.03340
6.88135
/
7-03607
6.89175
7.03093
6.90721
7.02707
6.91881
7.02405
6.92782
7.02167
6 93505
7.01970
6.94096
7.01803
6.94587
0*13‘
7.0 1665
6.95004
0° 12*
7.01546
6.95360
0° 11'
7.01351
6.95940
0*10*
7.01202
6.96392
0*9*
7.01083
6.96152
0° 8'
7.00984
6.97 048
0*7'
7.00904
6.97294
0*1'
7.00834
6.97 502
0°6
7.00774
6.97681
0*6'
7.00724
6.91839
0*5'
7.00676
0°5'
6.991 63
6.77512
0°40'
6.3856 1
6.7 33 16
0°36'
6.38081
6.80760
0*32*
6.37630
6.81945
0°23
6.97357
6 8
2925
0*27*
6.96843
6 84471
0
6.96457
6. 85631
0°20*
6.96155
6.86532
0* 18'
6.95917
6.87255
0#I6
6.95720
6. 87846
0° 14'
6.95553
6. 88337
0*13*
6.95415
6.88754
0°I2
6.95296
6.891(0
0°U
6.95101
6.89690
0* 10*
6.94952
6.90142
0*9'
6.94833
6.90502
0*8'
6.94134
6-90798
0° 7*
6.94654
6.91044
0*7*
6.94584
6.91 252
0°6'
6 .94524
6.91431
0*6'
6 .94414
6.9 1589
0*5'
6.94426
6.9 J 120 6.97970
0° 5'
7
0°40
0° 35'
0*32'
0*29'
0°26'
0*23*
0°20*
0° 18'
0° 16'
0° 14'
’
1
7.08417
6.9 9755
7.08220
7.00346
7.08053
7.00837
7.079 15
1.01254
707796
7.0 1610
7.07601
7.0 2190
1.07452
7.02642
7.07333
7.03002
7.07 234
7,03298
7 .07 154
7 .03544
7.07084
7.03752
/
7.07024
7.03931
7.06974
7.04089
7.06926
7 .04220
7/6
7.1 1663
6.50612
0°40*
T. I I 06 I
6.5181b
0° 35*
7.10581
6.33260
0° 32*
7.10 130
6 .34445
0*29
7.09857
6.95425
0*26'
7.09343
6.96971
0°22*
7.08957
698131
0° 20*
7.08655
6.99032
0°IT
0° 16'
0° 14'
0M3
0*12'
0*11'
0° 10
0°9*
0*8'
0*7'
0*6'
0*6'
0°6'
0*5'
0*5'
7.179 13
6.96262
7.173 I I
6.38066
7.16831
6.33510
7.16440
7.00635
‘
7.16107
7,01675
7.15593
7.03221
7.15207
7.04381
7.14905
7.05282
7.14667
7.06005
7 .14470
7.06596
7.14303
7.07087
‘
7.14165
7-07504
1.14046
7.07860
1.13815
7.08440
‘
7.13702
7.08892
7.13583
7.09252
7.13484
1.09548
7.13404
7.09794
7.13334
1.1 0002
1.13274
7.10 181
7.13224
7.10339
7.13176
7.10470
7/6
0° 33'
0°35'
o°3 r
0*28'
0° 26*
0° 22'
0*19‘
o6ir
0° 15'
0° 14*
06I3'
0° 12
o°ir
0°I0
0*9
0° 6'
0*7'
0°6'
0*6'
0° 5'
0 0 5'
0° 5'
IV*
7 .24163
7.02512
0*39'
7.2356!
7 .043 16
0° 35'
7.*2 3081
1.05760
0°31'
7.22630
7.0 6345
0*28'
7.2 2 357
7.07925
0*26'
7.21843
7.09471
7.21457; 7.27707
7.106311 7.16881
7 .21 155
7.1 1532
7.20917
7.12255
7.20720
7.1 2846
7.20553 I
7.13387
7.20415
7.13754
‘
1.20296
7.141 10
7.20101
7. 14690
‘
7.19952
7.15 142
7. 19833
7.15502
7.19734
7.15798
7.19654
7.16044
7.19584
7.16252
1.19524
7.16431
7.19474
7.16589
0*5'
7. 19426
7.16720
0°22*
0° 19*
o °ir
0° 15*
0° 14'
0° 13'
O* 12
0*11'
0°»0*
0° 9'
6*8'
0° 7 '
0° 6'
0*6'
0*5'
0°5
‘
‘
1'A
7.30415
7.08 762
0° 3 9'
1.23811
7.10566
0°34
7.23331
7.12010
o°3 r
7.2.8340
7.13135
0°28'
7.28607
7. 14(75
0*26'
7.28033
7-15721,
0°22
0° 19
7.27405
7. I 7782
0° 17'
7.27 167
7.18505
0° \
7.26970
7.19096
0* 14'
7.26803
7.19587
0° 13'
7.26665
7 .20004
0° 12
7.26546
7.20360
0*11'
7.26351
7
.20940
0° 9'
7.26202
7.21392
0*8'
7.26083
7.21752
0° 8'
1.25984
7.22048
0° 7'
7.25904
7.22294
0° 6'
7.25834
7.22502
O
6 6'
7.25774
7. 22681
0*5'
7.25724
7.22839
0* 5'
7.25676
7.22910
0°5'
7.36663
7. 150 I 2
7.36061
7 1681b
‘
7.35581
7,18260
7.35130
7.13445
7.34851
7. 204-25
7.34343
7.21371
‘
7.33357
7.23131
‘
7 -3 3655
7.24032
7.33417
7.24755
5*
1 7.33220
7.25346
7.33053
7.25837
7.32915
7.26254
‘
7.32796
7.26610
7.92601
7.27190
7.32452
7.27 642
7.32333
7.28002
7.32234
7.282*8
7.32154
7.28544
7.32084
7 28752
7.32024
7.2893 I
7.31974
7.29089
7.31926
7.29220
7%
0°38'
0*3 4
0°30'
0*28'
0«2S*
o°2r
0° 19*
o*»v
0°15'
0M4
0°13
0°12
0° 1 I'
0° 9'
o° 8'
0*7 '
0° 7'
0*6'
0° 6'
0° 5'
0*5*
0° S'
7 ’
/e 7 ’
1.4Z<il3 1.49163! T S'iAlS
1.ZI 2fc,Z 1.2151 2| 1.33162
0° 38'
1.423 I | 1.48561
1.13066 1.133\6l
0°34
1.41831
1 24510 1.30160! 1.31010
1.41440 1.41690
1.25635
1 41101 1.413 51 1.53601
1.26615 1.32925
1.40593 1.46843
1.282211 1.34411,
7.40207
7.29381
7.39905
7.30282 7.36532 7.42782
7.39667
7.310051 7.37255 7.43505
7.39470! 7.4 5 7 20 7.5197 6
7.31596
‘
7.39303 i 7.45553 7.518 03
7.32087 7.38337
’
7.39165
7.32504
‘
7.39046! 7.45296
1 32860 7 .39 I 10 7.45360
7.38851 1 7.45 101 7.5! 35T
7.33440
7.38702
7.33892
1.38583
7.34252
7.38484
7.34548
7.38404
7.34794
7.38334
7.35002
7.38274
1.35181
7 .38224
7.35339
7.38176
7.35470
‘ 0*34'
0o
30'! 0°30'!
0°2T
0°25
l 002.$
o°zi*|
0° 1
9*
0*17*!
_________
0° 1
5'
0° 14'
0°12
'
o
c ir i o°(i'i
0*U'
0° 9
1
0° 8
1
0° 7'
0*7'
0*6'
0°6'
0° 5'
0*5'
0*5'
/it 7 '/£
0«3&'j
1.3481 l"
1.35 566
o»2 T
o°2i
0° 19*
0° I7'|
0° 15*
0° 13'
0°12'
0° 11'|
0°9*
0° 8'
0°7 '
0°7*
0° 6'
0° 6'
0*5'
0° 5'
0*5'
1.53340
1.38195,
’ 1.39115
1.53093
1.4012 I
‘
7.52707
7.52405
7.44096
7.44587
7.51546
7.45940
7.51083
1.46752
1.50984
7 .47 048
7.50904
7.47 294
7.50834
7.47502
7.50774
7.47681
7.50724
7.47839
7.50676
7.47970
1.48081 j 1.5433F
1.31345
7.46457
7.35631 7.41881
7.46155
7.45917 i 7.52 167
7.37846
7.45415 7.51665
7.38754 7-45004
7.39690
7.44952*7-51202
7.40 142 7.46392
7.44833
7.40502
7.44734
7.40798
7.44654
7.41044
7.44 5 84
7.41252
7.44524
7.41431
7.44474
7.41589
7.44426
7.41 720
0°3T
0*34'
0430
0°21
0° 2 5
0*2. r
0° »8
0° 16'
0° 15'
0° 13'
0°l2*
o° i\'
0*10
0° 9'
0*8'
0° 7'
0°7
0*6'
0° 6*
0*5'
0*5'
0*5'
I
‘
‘
‘
’
!
#
Page 67

)
>
t
0
9
m
PITCH
4
AW
5
5^
6
7
8
O
10
12
13
14
16
18
10
22
24
26
28
30
32
7 7
k
1.61663
1.40012
0* 3T
1.61061
1.41816
6° 33
1.60581
1.43260
0°23'
1.60190
1.44445
0°21'
1.53851
1.45425
0°24'
1.53343
1.4691
0°2l'
1.58951
1.48 131
0°18
1.58655
1.49032
____
0° 16
17.58411
1.49755
0° IS
7.?,-
220
'.. 30 346
0»'tV
1.520531
7.50837
0°
1.519 15
7.3 1 254
0° ll
7.51196
1.51610
0° 1 O'
1.51601
1.52190
0° 9
7.57452
7.52642
0° 8'
7.57333
7.53002
0
1.51
7.53298
0°1 *
1.57154
7.53544
0°6
1.51084
1.53152
0°6
1.57024
1.53931
0* 5’
1.56974
1.54089
0® 5'
1.56926
1.54220
77
7 7a
1.67313
1.46262
0°31'
1.6131
1.48066
0®32*
’
1.66831
1.43510
0°23
1.66440
1 50635
0°2T
1.66101
1.51615
0°24
1.65593
1.53221
1
o°2 r
1.65207 | 1.1 1457 1 1 .1110117.833511 1.30207
1 5 4381 1.6063 11.6 6881 7 .13 131 7
0° 18
‘
1.64905
1.55282
0° IG
’
1.646611
1.56005
’
\
2
‘
1.64165
1.57504
1
7.64046
1.51
1 63 851 1.70
1 58440 1 64690 1.10940 1.11190 1.83440
7.63102
7.588921 1.65142
1 .63583 1.69833
7 592521 7.65 502
4 7 *
1.6 3484 1.69134 1.1 S3 84
234
1 59548 1.65198 7.12048
1.6 3404 1.69 654 1.15 9 04
1 597941 7.66044| 7.72294
‘
1.63334! 1.695841 1 IS 8 34
1.6 0002| 1.
'
1 63274 7.69524 1.75174
7.60181 I
1.6 3224
1.60339
1.6311b
l.b0410
0°5*
7 7
1.34163
1.52512
0®36'
P
1.1356 I
1.54316
o®32'
1.13081
1.55760
0°29*
’
1.12690
1.56345
0®26'
1.12351
1.51325
0®24
1 1 1843 I 1.1803311.843 43
1 53411 1 .65121 1.11971.
o°ar
1
O
‘
1.1 1 1 55 I 1.17405 I 1.836551 1.89905
1 61532 1.61182 1.14032 1.80282
0°\6rl
#
1.109 17 1 711 67 1-834 11
1.62255 1-68505 1.14755 1.81005
0° 14'
0® 12'
0° 11 ’
860| 7.641 10 I
0® 16'
0°9'
0°8'
0® v
0° 7'
0o6
066
0° 5 *
0° 5*
0° 4
0° 14'|
1.104151 1.166651 1.82915 I 183 165
1 63754 1.70004 1.76254 1.82504
1 1029 6 I 1.16546 1.82196 1.8 9 046
1 699521 1.16202 I 1-82452 I 1.88102
‘
66252| 1.12502
/
1.6643
7.69474 1.75724
1.66589| 1.12839
1.6942b
1.66120
‘
7 V+
k
1 8 0413
3.58152
0°36*
1 138H 1.86061
1.60566 1.66816
1 13331 1.8558 1
1 62010 1.68260
1.18940 1.85190
1.631951 1.69445
1.78601 1.84851
1.641151 1.10425
’
1
6 18'
0° 12*
0°i\,|
1103601 1.766i0| 1.82860
0° 10’1
1011.16351 I 1.82 601 1.8885 l
0°9'
1 7
0° 8'
0° 7 ’
I.I6O83I 1.82333 1.88583
1 1.71752
0° 6'
0* 6
#
0°5'
1
1 1.12681
0° 5'
0° 5
’
1.15616
0° 4*
1.36683
n.GSoie
0°32
‘
0*23'
0°26'
o°a4
Q°Z0
‘
o° 18'
O
e 16*
0°I4,I
0*12’
0° 11'
0°10
0°9'
1392
0° 8' I
0® 7 *
6®6
0° 6*
0° 5'
0® 5
0°5*
1.12910
0®4
k
1.329 13
0*36'
0° 32'
0° 28
’
0*26'
0° 24'
O
4 20
0° 18’ I
0°18
’
0° 14'
0M2*
0°llH
0® 10'
’
0°9
1.116 42 1.8 3 892
0°8' I
7.780021 1.84252
0*7'
1.82234 1.88484
1.18298 1.84548
’
0°6
7.82154 7.88404
7.185441 1.84194
0*6
1.82084 7.88334
1.18752 1.85002
0°
5*
7-82024
7.78931
7.81974
1.79089
O® 5'
0° 5'
1.81926
1.19220
/
0°4'
7 7*
1.11262
0°35'
1.92311
1.13066
0°31
1.3183 1
1 .14510
0* 28
1.31440
1.15635
0*26'
101
1.31
1.16615
0° 23
7 30533
1.18221
0° 20'
.13
38
0° 18
Oe»V_
1 1.89661
I
0° 1
0° 12
O0!!
o° I0
‘
‘
’
1.88214
1.8S1 8 1
1.88224
1.85339
188 118
1.85470
0°9
0°8'
o°v
0° 6'
7 7*
1.55183
1.11512
1.58561 8.0481 1
1.13316 1.85556
'
1.880811 8-04331
1 80160 1.81010
’
1.31630
1.8
1.31351 8.03601
1 823 25| 189 115
’
1.96843 8.03032
1 .84471
n <5fc5A1 8.0ZT01
n 85t>311 T.^iaai
1
T .^6 IS5 I 8 O£A05
T.S&SIZ|1.9ZT82
1.95917
1.81255| 1.93505
4'
7.957201 8.01910
1.87846 1.94096
1.95553 8 01 803
1.883 37| 1 -94587
1 .9541518.01665
1.887541 7 95004
7
‘
1 95 1011 8.0 1351
0° 6 *
0° 5'
0°5'
0® 5
’
0*4'
0°35'
o°3r
0°28‘|
1 8.03340
1845
0*25'l
0°23'
0° 20'
o°iv
0°IV
0° 14'
0° 1 3
0°12*
o°ir
1.95296 8.01
1 89110 I 1.95360
0° 10
1.89690 1.95940
0° 9*
7.94952 8.01202
1.90142 1.96392
0*8
T .<50502 1.56152
Q»T
1.94134 8.00964
1.901981 1.91048
1.94654 8 00304
1.91044 1.91294
0®6
1.94584
7.91252
0*5*
1.94524
1.91431
0*5'
1.94474
1.9 1589
0° 5'
1.94426
1.9H20
0°4-*
8
8.05413
1-83162
0° 35'
o°3r
0*2 8*
1.88155
0°25
0*2 3
1 1.9072 1
0°16'
0® IV
0° 1
5'
8.021611
0° 14'
0° 13*
‘
0° W
0*U'
546
0° 10'
’
o®9'
0®8'
8.0 1083
0°l
0°6
J
0®6'
8.00834
1.91502
0°5'
8.00114
1.91681
0° 5
8.00724
1.91839
0° 5*
8.00616
1.91910
0° 4'
#
‘
f
/
’
Page 68

21
THREAD
-p -
J
h
fv-60*'vfl
NATIONAL FORM THREAD
i
fd
1
M
f
ACME THREAD
Id
formulas
P-i
h = 0.6660 x £
d = 0 6495 * p
a =
W * WIRE SIZE
M = P.P.
P. D. - O. P. ~ d.
P. D.
P-^
,
<3 = sf P +~ .OIO 10 PITCH & COARSER
h = 1.93336
PITCH
0.1250 * p
01082.
J 0. D. ~ */2 p
PITCH
i
x p
—
h •» 3W
.005 12 PITCH 5, FINER
*1
i
p
M
0.0.
M = P. D. - h + 4.9339 W
1*1
-If K
' •' / I ' '
‘
►a-V
/_i
J
h
1
f = .37069 p
- _.3 7OG9p-*0026
C ".37069p".OO^g
IZ PITCH FINei?
IO PITCH £ COAKSeP
W = WIRE SIZE
STANDARD WORM THREAD
PITCH
d — .^>066 * p
-
V
h -
M
/
/
h
V
Av
\ /
\ i
v
/
/
v
M = P. D. - h + 4.9939
f - . 335X
c -
W = WIRE SIZE
1.93336
.310 x p
kP-l
WHITWORTH THREAD
*
P =
r =
d =■ .64033 K p
PITCH
■ I3T33 X P
p
x p
W
55
A
M
M =
PQ_h
H = .96049
W * WIRE SIZE
RD.= O. D. - d.
-+- 3. I 6 5 7 W
1 x p
Page 69

THREAD
BRITISH ASSOCIATION THREAD
FORMULAS
p = PITCH
r =
cont'o
P ^ 2
.
/ll
LOWENHERZ THREAD
d -
M = p. D.- h -+- 3.4-82 9 W
h = U 3633
W = WIRE
P. D. * O
p x. 6
x
p
SIZE
. D. - d
p = PITCH
h= P1TC H
h
d =
M = P.D.- p-t (3.2 359 7 w;
d = 3
W= WIRE SIZE
p d. = O. D. - d -
/a
A h
METRIC THREAD
p- PITCH
f - 0.1250 x p
h - 0.8660 x p
d = O. 6493
a = 0.1082
W = WIRE SIZE
M= P. D. - h +■ 3 W
P. D. = 0. D. - d
20° PRESSURE
RE COMMENOED TOR TRIPUE &. QUADRUPLE THREADS
ANGLE
WORM THREAD
P-±
d = .623 X p
h - I, 37*374 X p
A. ~
-f =■ £ - 2a. x -36397
c c £ - Zfd-a) X.3C397
M ^ P.O-h+
W ^ WIRE SIZE
PITCH
. 28fe X p
“ x p
x
p
.
3.9238W
Page 70

BE5T
WIRE SIZES
ACME-
THD3.
PER
INCH
i
a
I
*4
i
J 3
i
2
2
2ir
3
3i
4
I
4 a
5
5"i
<6
7
8
9
IO
12
14
16
1
8 O. 05556
DECIMAL
PITCH
2.00000
I. ooooo
0. 80000
0. 75-188
0. ^6666
0. 50000
0. 40000
0. 33333
0. ZQS11
0. 25000
0. 22222
0. 20000
0J8 18 2
0.16667
O. 14286
0. 12500
o.iuii
o.
ioooo
0.08333
O. 07143
0. 06250
ZO O. 05000
WORM - LOWENHERZ
WIRE 5IZE
ACME
WORM
I.ooooo
0. 50000
0.40000
O. 35000
O. 25000
O. 20800
O. I 8000
0. 15 100
O. 12830
O. I 154 7
0.10497
0. 09622
O. 08248
O. 0721 7
0. 064 15
O.
05774
O. 05249
O. 0444
0. 03608
O.
032
07
I
0.50000
0.4 0000
0. 35000
0-30000
O. 20800
O. 180 00
O. 15 I OO
CM4434
O. I I 547
O. 10497
0.09622
O. 082^8
0.0
72 17
O. 064 /5
0. 05 7 74
0. 0444 I
O. 044 41
O. 03<o0Q
O. 02887
O. 02624
-
METRIC
%
PITCH
.25
. 30
. 35
.40
.45
.50
.60
. 70
. 75
.80
. 90
1.00
1.2
1.25
1.3
1-4
1.5
1.75
2.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
0
O. 0 I I 8 I
0. 01378
0. 01575
0. 0 17 72
O. 01 968
O. 02302
0.027.56
0. 02953
O . 03150
0. 0354 3
O. 03937
0. 0433/
0.04724
O. 0492/
o. o?iie
O. 055/2
O- 05905
O. 06890
0.0 78 74
O. 0985-32.5
O. / /8 / /
O. 13780
0./5 74&
0.
O. I 9685
0.2/ 654
O. 23622
DECIMAL
PITCH
, 0 0 904
177(7
THRETAD
LOWENHERZ
0.001
a 00002
O. 00902
0.01031
O. O I
O. 01443
O. 01604
O. 018 04
0.01924
O. 02062
O. 0222
0. 02624
0. 02887
O. 03207
0. 032 07
FORMS
WIRE SIZE
22
/
METRIC
o.oOizz
o. 00802
O. 0 09 0Z
0- 01 03 I
0.01/
O. OM43
0.0 1004
0.0 1804
O. O 19
O. 02062
O. 024 06
0.02087
0.03608
O. 04 / 24
O. 0444/
O . 057 74
O-
O. OQZ5-8
O. 096 22
O. 10497
O . I 1547
O. I 28 30
O. »44 34
07217
5JT
24
J
!
Page 71

ELEMENTS
FOR
WHITWORTH
THREADS
=*«
9*
THD3.
PER
INCH
2.5
2.625
2.75
2.875
3
3. 25
3.5
4'S*
<£
8
9
IO
II
1
2
14
16
18
19
20
22
24
26
threta
DECIMAL
0.40000
0.38095
o. 36.36.4
O.
O. 33333
G. 30769
O. 28571
O. 25000
!
!
, 0.
[ 0.20000
O . j £>6> <£?7
■
1 0.14286
j O. I 2 500
0. I I l l 1
0. 1 OO OO
0.09091
0
0.07143
0.06250
0.05556
0. 05263
O . 05000
O. 04545
O. 04/67
O. 0 3846
D5
PITCH
34 783
22222
.08333
per
inch
DEPTH
AMERICAN
NATIONAL
WIRE SIZE
0.2080
O. 20000
0.20800
0.
18000
0. 18000
0.18000
0.
15 1 OO
O. 144 34
O. I Z&30
O . I l 5"47
O. 09622
o. 08248
0. 07217
O. 06415
0.05774
O. 0524 9
O. 0481 I
O. 041
O. 03608
O. 03207
O. 0 3207
O. 02887
O. 0 26 24
O.
O. 02221
24
024 06
DECIMAL,
RADIUS OF ROOT <£ CREST
O
DEPTH
O. 2561
O. 2439
0.2328
O. 2227
O. 2134
O. I 97 0
O. I 830
O. 160 I
O. 1-423
O. I £8|
O. I 067
0.0915
O. 0800
0. 07 I I
O. 0640
O. 0582
O. 0534
O. 0457
0 0400
O. 0356
0.0 337
0.0320
0. 0291
0.0267
O. 0246
PITCH
RADIUS OF
ROOT <S,
CRC5T
O. 0549Z
O. 0523 O
O. 04995
O. 04776
O. 04578
O. 04246
0. 039Z
0. 034 33
0. 03051
0.027^6
Q.0228S
0.01961
0.01716
0. 01526
0.01373
O. 01248
O. 01144
0. 00980
0.00858
0. 00763
0.00723
0.00687
O. 00624
O. 00572
0.00528
WIRE. 51ZE5
THEORETICAL
WHITWORTH
WIRE SIZE
0.22948
0. 21093
0. 204 98
O. 19606
O. 18790
O. 17344
3
O. *6105
0. 14092
O. 1252G
O. I I £7-4
O. 09396
0.08053
0.07046
0. 0 6263
0.05637
0.05124
O. 0469 7
0. 04026
0. 0 3525
O. 03132
0.02967
O. 028 18
0.02563
O. 02349
O. 021 68
»*
28
32
36
40
O.
0357
O. 03125
0. 0277©
O. 02500
P
I
2
I
0.02062
0 • 018 04
O. 01604
0.01443
W
3
O. 0229
0.0200
O. 0 178
0.0 160
d
4
0.00490
0. 00429
O. 00381
O. 00343
r
5
0.02013
O.
01762
O. 01566
0. 01409
&7
Page 72

ELEMENTS OF
BRITISH ASSOCIATION THREAD
THREAD5 PETR INCH - M/M DIAMETER -
WIRE SIZES - DEPTH - RADIUS
DESIG.
NO.
0
2
3
4
5
6
7
Q
9
10
II
12
)3
(4
\5
%
DIAM.
6. 0
5. 3
4-7
4. I
3.6
3.2
2.8
2.5
2.2
19
1.7
1.5
1.3
1.2
1.0
0.9
M
/
PITCH
1.00
.90
.81
.73
.66
-59
.53
,48
.43
.39
.35
.31
.28
.25
.23
.21
m
APPROX.
th'ds
PER INCH
25.4
28.2
31.4
34. 8
38.5
43. O
47. 9
52. 9
59. I
65. I
72-6
81.9
90.9
I 02.0
I 09.9
120.5
.
DECIMAL
PITCH
(
icsche:s
0. 0394
0.0354
0.0319
0.0287
0.0260
0.0232
0.0209
0-0189
0.0(69
0.0154
0. 0138
0.0122
0. oil o
0.0098
0. 0091
0.0083
AMERICAN
NATIONAL
WIRE SIZE
)
0.0£23l
0.02002
0.01804
0.01604
0.0(443
0.0(312
0.01203
0.01155
0.01031
0.00902
0.00802
0.00722
0.00600
0. 00544
0. 00544
_____
0.00455[
m/m
PITCH - DECIMAL PITCH
of
ROOT & CREST
DEPTH
0236
021 3
.019 1
.0172
.0156
.0139
.0125
.0112
.0102
.0092
.0083
.0073
.0066
.0059
i
.0055
.0050
RADIUS OF
ROOT &
CREST
.0072
. 00 64 i 0.0190
.0050
0052
.0047
.0042
0038
.0034
.003 (
.0028
.0025
.0022
.0020
.00 18
.0016
.0015
THEORETICS
WIRE
0.0220
0.0175
0. 0160
0. 0145
0.0125
0. 0 I 1
0-0105
0.0090
0-0080'
i
0.0075"
0.0070
0-0060
0. 0054
0.0030
0.0046
0.
A.
SIZE
5
J
r
/•j
P
2
5
4
5
W
d
7
r
!
8
9