Refer to the QuickLIT website for the most up-to-date version of this document.
Application
The IOM47 field controller is part of the Metasys®system
Field Equipment Controller family. Input/Output Module
(IOM) controller expand the number of points connected
to a Network Automation Engine (NAE), Network Control
Engine (NCE), Field Equipment Controller (FEC), or
Advanced Application Field Equipment Controller (FAC)
to monitor and control a wide variety of HVAC equipment.
IOM controllers operate on an RS-485 BACnet®
Master-Slave/Token-Passing (MS/TP) Bus as BACnet
Application Specific Controllers (B-ASCs) and integrate
into Johnson Controls®and third-party BACnet systems.
Note: At CCT Release 10.1 and later, a new capability
was introduced allowing VMAs, FECs, and FACs
to communicate by using either the BACnet or the
N2 field bus networking protocol. The I/O can be
connected through the SA bus to a host controller
that is using either the BACnet or the N2 protocol.
Only the BACnet protocol is supported when the
I/O is connected directly to the trunk using the FC
bus.
Important: In Metasys system smoke control
applications, use only the MS-IOM4711-0U
and MS-IOU4710-0U at Metasys Release
8.1 that are UL 864 UUKL/UUKLC 10th
Edition Smoke Control Listed. For Metasys
system smoke control applications, you
must refer to the Metasys System UL 864
UUKL Tenth Edition Smoke Control System
Technical Bulletin (LIT-12012487) for
detailed requirements and procedures for
installing, commissioning, and operating UL
864 UUKL/UUKLC Listed Metasys system
devices. The UL 864 UUKL/UUKLC listing
for Smoke Control Equipment is voided if
(1) you do not use the required software
tools at the required versions; or (2) you do
not meet the requirements or do not follow
the procedures as documented in the
Metasys System UL 864 UUKL Tenth
Edition Smoke Control System Technical
Bulletin (LIT-12012487).
North American Emissions
Compliance
Canada
This Class (A) digital apparatus meets all the
requirements of the Canadian Interference-Causing
Equipment Regulations.
Cet appareil numérique de la Classe (A) respecte toutes
les exigences du Règlement sur le matériel brouilleur
du Canada.
United States
This equipment has been tested and found to comply
with the limits for a Class A digital device pursuant to
Part 15 of the FCC Rules. These limits are designed to
provide reasonable protection against harmful
interference when this equipment is operated in a
commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction
manual, may cause harmful interference to radio
communications. Operation of this equipment in a
residential area may cause harmful interference, in which
case the users will be required to correct the interference
at their own expense.
Installation
Observe these guidelines when installing a controller:
•Transport the controller in the original container to
minimize vibration and shock damage.
•Verify that all parts shipped with the controller.
•Do not drop the controller or subject it to physical
shock.
Parts Included
•one controller with removable terminal blocks (Power
and SA/FC bus are removable)
•three fasteners appropriate for the mounting surface
(M4 screws or #8 screws)
•one 20 cm (8 in.) or longer piece of 35 mm DIN rail
and appropriate hardware for DIN rail mount (only)
•small straight-blade screwdriver for securing wires in
the terminal blocks
Mounting
Observe these guidelines when mounting a controller:
•Ensure the mounting surface can support the
controller, DIN rail, and any user-supplied enclosure.
•Mount the controller horizontally on 35 mm DIN rail
whenever possible.
•Mount the controller in the proper mounting position
(Figure 1).
•Mount the controller on a hard, even surface
whenever possible in wall-mount applications.
•Use shims or washers to mount the controller securely
and evenly on the mounting surface.
•Mount the controller in an area free of corrosive
vapors and observe the Ambient Conditions
requirements in Table 10.
•Provide for sufficient space around the controller for
cable and wire connections for easy cover removal
and good ventilation through the controller (50 mm
[2 in.] minimum on the top, bottom, and front of the
controller).
•Do not mount the controller on surfaces prone to
vibration, such as duct work.
•Do not mount the controller in areas where
electromagnetic emissions from other devices or
wiring can interfere with controller communication.
Figure 1: Controller Mounting Positions
DIN Rail Mount Applications
Mounting the controller horizontal on 35 mm DIN rail is
the preferred mounting method.
To mount an IOM47 controller on 35 mm DIN rail:
1. Securely mount a 20 cm (8 in.) or longer section of
35 mm DIN rail horizontal and centered in the desired
space so that the controller mounts in the horizontal
position shown in Figure 1.
2. Pull the two bottom mounting clips outward from the
controller to the extended position (Figure 2).
3. Hang the controller on the DIN rail by the hooks at
the top of the (DIN rail) channel on the back of the
controller (Figure 2), and position the controller snugly
against the DIN rail.
4. Push the bottom mounting clips inward (up) to secure
the controller on the DIN rail.
To remove the controller from the DIN rail, pull the
bottom mounting clips out to the extended position
and carefully lift the controller off the DIN rail.
Observe these additional guidelines when mounting an
IOM47 controller in a panel or enclosure:
•Mount the controller so that the enclosure walls do
not obstruct cover removal or ventilation through the
controller.
•Mount the controller so that the power transformer
and other devices do not radiate excessive heat to
the controller.
•Do not install the controller in an airtight enclosure.
Wall Mount Applications
To mount a controller directly on a wall or other flat
vertical surface:
1. Pull the two bottom mounting clips outward and
ensure they are locked in the extended position as
shown in Figure 2.
2. Mark the mounting hole locations on the wall using
the dimensions in Figure 2 and one of the mount
positions shown in Figure 1. Or, hold the controller
up to the wall or surface in a proper mount position
and mark the hole locations through the mounting
clips.
3. Drill holes in the wall or surface at the marked
locations, and insert appropriate wall anchors in the
holes (if necessary).
4. Hold the controller in place, and insert the screws
through the mounting clips and into the holes (or
anchors). Carefully tighten all of the screws.
Important: Do not overtighten the mounting screws.
Overtightening the screws may damage
the mounting clips.
Figure 3: IOM47 Physical Features
Figure 2: Back of Controller Showing Extended
Mounting Clips, DIN Rail Channel, and Mounting
Dimensions, mm (in.)
Table 1: IOM47 Physical Features Callouts and Descriptions
Physical Feature DescriptionCallout
1
2
4
Binary Output (BO) Source Power Selection Jumper Pin Blocks, 3 – BO Jumper Pin Blocks. (See Table 3.)
Device Address DIP Switch Block. (See Setting the Device Addresses.)
End-of-Line (EOL) Switch. (See Setting the End-of-Line (EOL) Switch)
Note: The EOL Switch is located under the controller cover. You must remove the cover to change the EOL switch
position.
LED Status Indicators. (See Table 8.)
Sensor Actuator (SA) Bus / Field Controller (FC) Bus Port (RJ-12 6-pin Modular Jack). (See SA/FC Bus Port.)
BO Terminal Block, 3 – Binary Outputs. (See Table 3.)
Wiring
Observe the following guidelines when wiring a controller:
Risk of Electric Shock: Disconnect the power supply
before making electrical connections to avoid electric
shock.
Mise En Garde: Risque de décharge électrique:
Débrancher l'alimentation avant de réaliser tout
raccordement électrique afin d'éviter tout risque de
décharge électrique.
Risk of Property Damage: Do not apply power to the
system before checking all wiring connections. Short
circuited or improperly connected wires may result in
permanent damage to the equipment.
Mise En Garde: Risque de dégâts matériels: Ne pas
mettre le système sous tension avant d'avoir vérifié tous
les raccords de câblage. Des fils formant un court-circuit
ou connectés de façon incorrecte risquent
d'endommager irrémédiablement l'équipement.
Important: Do not exceed the controller electrical
ratings. Exceeding controller electrical
ratings can result in permanent damage to
the controller and void any warranty.
Important: Use copper conductors only. Make all wiring
in accordance with local, national, and
regional regulations.
Important: Electrostatic discharge can damage
controller components. Use proper
electrostatic discharge precautions during
installation, setup, and servicing to avoid
damaging the controller.
For detailed information on configuring and wiring an
MS/TP Bus, FC bus, and SA bus, refer to the MS/TPCommunications Bus Technical Bulletin (LIT-12011034).
Terminal Blocks and Bus Ports
See Figure 3 for terminal block and bus port locations on
the controller. Observe the following guidelines when
wiring a controller.
Input and Output Terminal Blocks
All of the input terminal blocks are mounted on the bottom
of the controller and the output terminal blocks are
mounted on the top of the controller. See Table 3 for more
information about I/O terminal functions, requirements,
and ratings.
SA/FC Bus Terminal Block
An IOM can be connected to a Sensor/Actuator (SA) bus
or a Field Controller (FC) bus, but not to both buses
simultaneously. The SA/FC bus terminal block is a
removable, 4-terminal plug that fits into a board-mounted
jack.
When connecting the IOM to an FC bus, wire the bus
terminal block plugs on the controller, and the other
controllers in a daisy-chain configuration using 3-wire
twisted, shielded cable as shown in Figure 4. See Table
When connecting the IOM to an SA bus, wire the bus
terminal block plugs on the controller and other SA bus
devices in a daisy-chain configuration using 4-wire
twisted, shielded cable as shown in Figure 5. See Table
3 for more information.
Figure 5: SA Bus Terminal Block Wiring
SA/FC Bus Port
The SA/FC bus port on the front of the controller is an
RJ-12, 6-position modular jack that provides a connection
for devices on the SA bus, a Bluetooth® Wireless
Commissioning Converter, or a ZFR/ZFR Pro Wireless
Router (depending on which bus the IOM is operating
on).
The SA/FC bus port is connected internally to the SA/FC
bus terminal block. See Table 5 for more information.
The SA/FC bus port pin assignment is shown in Figure
6.
Figure 6: Pin Number Assignments for Sensor, SA
Bus and FC Bus Ports on Controllers
Note: The SA PWR/SHLD terminal does not supply 15
VDC. The SA PWR/SHLD terminal is isolated and
can be used to connect (daisy chain) the 15 VDC
power leads on the SA bus (Figure 5) or the cable
shields on the FC bus (Figure 4).
The SA bus supervisor supplies 15 VDC to
devices on the SA bus requiring power.
Supply Power Terminal Block
The 24 VAC supply power terminal block is a gray,
removable, 3-terminal plug that fits into a board-mounted
jack on the top right of the controller.
Wire the 24 VAC supply power wires from the transformer
to the HOT and COM terminals on the terminal plug as
shown in Figure 7. The middle terminal on the supply
power terminal block is not used. See Table 5 for more
information about the supply terminal block.
Figure 7: 24 VAC Supply Power Terminal Block Wiring
Note: The supply power wire colors may be different on
transformers from other manufacturers. Refer to
the transformer manufacturer’s instructions and
the project installation drawings for wiring details.
Important: Connect 24 VAC supply power to the
controller and all other network devices so
that transformer phasing is uniform across
the network devices. Powering network
devices with uniform 24 VAC supply power
phasing reduces noise, interference, and
ground loop problems. The controller does
not require an earth ground connection.
Wireless Network Applications
The controller can also be installed in a wireless
application using a ZFR/ZFR Pro Wireless Field Bus
Router.
Important: Wireless operation is not approved for
smoke control applications. Refer to the
Metasys System UL 864 UUKL Tenth
Edition Smoke Control System Technical
Bulletin (LIT-12012487) for detailed
requirements and procedures for installing,
commissioning, and operating UL 864
UUKL/UUKLC Listed Metasys system
devices.
To configure a controller for use with the ZFR/ZFR Pro
Series Wireless Field Bus system:
Note: IOMs can communicate wirelessly on the FC bus
only.
1. Connect the ZFR/ZFR Pro Wireless Field Bus Router
to the FC bus port (RJ-12 modular jack) on the front
of the controller.
2. Ensure that the controller's device address DIP
switches are set to the correct device address. See
Setting the Device Addresses.
3. Set DIP switch 128 to ON, which enables wireless
operation on the controller.
For more information on the ZFR Pro Wireless Field
Bus system, refer to the WNC1800/ZFR182x Pro
Series Wireless Field Bus System Product Bulletin
(LIT-12012320).
For more information on the ZFR 1800 Wireless Field
Bus system, refer to the ZFR1800 Series WirelessField Bus System Product Bulletin (LIT-12011336).