The outdoor units are designed to be connected to a matching indoor
coil with sweat connect lines. Sweat connect units are factory charged
with refrigerant for the smallest rated indoor coil plus 15 feet of field
supplied lines.
Matching indoor coils are available with a thermal expansion valve or
an orifice liquid feed sized for the most common usage. The orifice size
and/or refrigerant charge may need to be changed for some system
combinations, elevation differences, or total line lengths. See Tabular
Data Sheet provided in unit literature packet for charge requirements.
Refer to Application Data covering “General Piping Recommendations
and Refrigerant Line Length” (Part Number 036-61920-001).
SECTION II: SAFETY
This is a safety alert symbol. When you see this symbol on
labels or in manuals, be alert to the potential for personal
injury.
Understand and pay particular attention to the signal words DANGER,
WARNING, or CAUTION.
DANGER indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury
WARNING indicates a potentially hazardous situation, which, if not
CAUTION indicates a potentially hazardous situation, which, if not
avoided may result in minor or moderate injury
alert against unsafe practices and hazards involving only property damage.
Improper installation may create a condition where the operation of
the product could cause personal injury or property damage.
Improper installation, adjustment, alteration, service, or maintenance can cause injury or property damage. Refer to this manual
for assistance or for additional information, consult a qualified contractor, installer, or service agency.
This product must be installed in strict compliance with the
enclosed installation instructions and any applicable local, state,
and national codes including, but not limited to building, electrical,
and mechanical codes.
R-410A systems operate at higher pressures than R-22 systems.
Do not use R-22 service equipment or components on R-410A
equipment. Service equipment
Must Be Rated for R-410A.
. It is also used to
501562-UIM-A-0909
501562-UIM-A-0909
INSPECTION
As soon as a unit is received, it should be inspected for possible damage during transit. If damage is evident, the extent of the damage
should be noted on the carrier’s delivery receipt. A separate request for
inspection by the carrier’s agent should be made in writing. See Local
Distributor for more information.
Requirements For Installing/Servicing R-410A Equipment
• Gauge sets, hoses, refrigerant containers, and recovery systems
must be designed to handle POE oils and the higher pressures of
R-410A.
• Manifold sets should be 800 PSIG high side and 250 PSIG low
side with 550 PSIG low side retard.
• All hoses must have a 700 PSIG service pressure rating.
• Leak detectors should be designed to detect HFC refrigerant.
• Recovery equipment (including refrigerant recovery containers)
must be specifically designed to handle R-410A.
• Do not use an R-22 TXV.
• A liquid-line filter drier is required on every unit.
LIMITATIONS
The unit should be installed in accordance with all National, State, and
Local Safety Codes and the limitations listed below:
1. Limitations for the indoor unit, coil, and appropriate accessories
must also be observed.
2. Only variable speed air handlers or variable speed furnaces should
be used with these models.
3. The outdoor unit must not be installed with any duct work in the air
stream. The outdoor fan is the propeller type and is not designed to
operate against any additional external static pressure.
4. The maximum and minimum conditions for operation must be
observed to ensure a system that will give maximum performance
with minimum service.
5. The unit should not be operated at outdoor temperatures below 60°
F without an approved low ambient operation accessory kit
installed.
6. The maximum allowable line length for this product is 75 feet.
7. Indoor evaporator coil orifice mution of a factory supplied balanced port TXV kit.
st be removed prior to the installa-
SECTION III: UNIT INSTALLATION
LOCATION
Before starting the installation, select and check the suitability of the
location for both the indoor and outdoor unit. Observe all limitations and
clearance requirements.
The outdoor unit must have sufficient clearance for air entrance to the
condenser coil, for air discharge, and for service access. See Figure 1.
NOTE: For multiple unit installations, units must be spaced a minimum
of 18 inches apart (coil face to coil face.).
If the unit is to be installed on a hot sun exposed roof or a black-topped
ground area, the unit should be raised sufficiently above the roof or
ground to avoid taking the accumulated layer of hot air into the outdoor
unit.
Provide an adequate structural support.
ADD-ON REPLACEMENT/RETROFIT
When this unit is being used as a replacement for an R-22 unit, it is
required that the outdoor unit, indoor coil, and metering device all be
replaced. Line-set change out is also recommended. The following
steps should be performed in order to insure proper system operation
and performance.
1. Change-out of the indoor coil to an approved R-410A coil with the
appropriate metering device.
2. Change-out of the line-set when replacing an R-22 unit with an
R-410A unit is highly recommended to reduce cross-contamination
of oils and refrigerants.
3. If change-out of the line set is not practical, then the following precautions should be taken.
• Inspect the line set for kinks, sharp bends, or other restrictions,
and for corrosion.
• Determine if there are any low spots which might be serving as oil
traps.
• Flush the line set with a commercially available flush kit to
remove as much of the existing oil and contaminants as possible.
• Install a suction line filter-drier to trap any remaining contaminants, and remove after 50 hours of operation.
4. If the outdoor unit is being replaced due to a compressor burnout,
then installation of a 100% activated alumina suction-line filter drier
is required, in addition to the factory installed liquid-line drier. Operate the system for 10 hours. Monitor the suction drier pressure
drop. If the pressure drop exceeds 3 psig, replace both the suctionline and liquid-line driers. After a total of 10 hours run time where
the suction-line pressure drop has not exceeded 3 psig, replace the
liquid line drier, and remove the suction-line drier. Never leave a
suction-line drier in the system longer than 50 hours of run time.
2Johnson Controls Unitary Products
FIGURE 1: Typical Installation
THERMOSTAT
NEC CLASS 1
WIRING
TO INDOOR
BLOWER
NEC CLASS 2
WIRING
TO COIL
WEATHERPROOF
DISCONNECT SWITCH
48” OVERHEAD
CLEARANCE
24” SERVICE
ACCESS
CLEARANCE
18” FRONT
& SIDES
NOTE: ALL OUTDOOR WIRING MUST BE WEATHERPROOF
SEAL OPENINGS WITH
PERMAGUM OR EQUIVALENT
501562-UIM-A-0909
GROUND INSTALLA TION
The unit may be installed at ground level on a solid base that will not
shift or settle, causing strain on the refrigerant lines and possible leaks.
Maintain the clearances shown in Figure 1 and install the unit in a level
position.
Normal operating sound levels may be objectionable if the unit is placed
directly under windows of certain rooms (bedrooms, study, etc.).
Isolate the unit from rain gutters to avoid any possible wash out of the
foundation.
ROOF INSTALLATION
When installing units on a roof, the structure must be capable of supporting the total weight of the unit, including a pad, lintels, rails, etc.,
which should be used to minimize the transmission of sound or vibration into the conditioned space.
UNIT PLACEMENT
1. Provide a base in the pre-determined location.
2. Remove the shipping carton and inspect for possible damage.
3. Compressor tie-down bolts should remain tightened.
4. Position the unit on the base provided.
LIQUID LINE FILTER-DRIER
The air conditioning unit’s copper spun filter/dryer is located on the liquid line.
NOTE: Replacements for the liquid line drier must be exactly the same
as marked on the original factory drier. See Source 1 for O.E.M.
replacement driers.
Failure to do so or using a substitute drier or a granular type may
result in damage to the equipment.
Filter-Drier
Source 1 Part No.
029-22195-000All
Apply with Models
CZH
PIPING CONNECTIONS
This system uses R-410A refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system.
Gauge sets, hoses, refrigerant containers, and recovery systems
must be designed to handle R-410A. If you are unsure, consult the
equipment manufacturer.
Never install a suction-line filter drier in the liquid line of an R-410A
system. Failure to follow this warning can cause a fire, injury or
death.
The outdoor condensing unit must be connected to the indoor evaporator coil using field supplied refrigerant grade copper tubing that is internally clean and dry. Units should be installed only with the tubing sizes
for approved system combinations as specified in tabular data sheet.
The charge given is applicable for total tubing lengths up to 15 feet. See
Application Data Part Number 036-61920-000 for installing tubing of
longer lengths and elevation differences.
NOTE: Using a larger than specified line size could result in oil return
problems. Using too small a line will result in loss of capacity and other
problems caused by insufficient refrigerant flow. Slope horizontal vapor
lines at least 1" every 20 feet toward the outdoor unit to facilitate proper
oil return.
PRECAUTIONS DURING LINE INSTALLATION
1. Install the lines with as few bends as possible. Care must be taken
not to damage the couplings or kink the tubing. Use clean hard
drawn copper tubing where no appreciable amount of bending
around obstruction is necessary. If soft copper must be used, care
must be taken to avoid sharp bends which may cause a restriction.
2. The lines should be installed so that they will not obstruct service
access to the coil, air handling system, or filter.
3. Care must also be taken to isolate the refrigerant lines to minimize
noise transmission from the equipment to the structure.
Johnson Controls Unitary Products3
501562-UIM-A-0909
LIQUID
LINE
INCORRECT
CORRECT
TAPE
SHEET METAL
HANGER
INSULATED
VAPOR LINE
TO INDOOR
COIL
TO OUTDOOR
COIL
CAP
INSULATED
VAPOR LINE
LIQUID
LINE
PVC
CONDUIT
4. The vapor line must be insulated with a minimum of 1/2" foam rubber insulation (Armaflex or equivalent). Liquid lines that will be
exposed to direct sunlight and/or high temperatures must also be
insulated.
5. Tape and suspend the refrigerant lines as shown. DO NOT allow
tube metal-to-metal contact. See Figure 2.
6. Use PVC piping as a conduit for all underground installations as
shown in Figure 3. Buried lines should be kept as short as possible
to minimize the build up of liquid refrigerant in the vapor line during
long periods of shutdown
7. Pack fiberglass insulation and a sealing material such as permagum around refrigerant lines where they penetrate a wall to reduce
vibration and to retain some flexibility.
8. See application part number 036-61920-000 for additional piping
information.
PRECAUTIONS DURING BRAZING SERVICE VALVE
Wrap a wet rag around the service valve as shown in Figure 4 to prevent heat damage. Also, protect all painted surfaces, insulation, and
plastic base during brazing. After brazing, cool joint with wet rag.
This is not a backseating valve. The service access port has a
valve core. Opening or closing valve does not close service access
port.
If the valve stem is backed out past the chamfered retaining wall,
the O-ring can be damaged causing leakage or system pressure
could force the valve stem out of the valve body possibly causing
personal injury.
The valve can be opened by removing the plunger cap and fully inserting a hex wrench into the stem and backing out counter-clockwise until
valve stem just touches the chamfered retaining wall.
Connect the refrigerant lines using the following procedure:
1. Remove the cap and Schrader core from both the liquid and vapor
service valve service ports at the outdoor unit. Connect low pressure nitrogen to the liquid line service port.
2. Braze the liquid line to the liquid valve at the outdoor unit. Be sure
to wrap the valve body with a wet rag. Allow the nitrogen to continue flowing. Refer to the Tabular Data Sheet for proper liquid line
sizing.
3. Carefully remove the rubber plugs from the evaporator liquid and
vapor connections at the indoor coil.
FIGURE 2: Tubing Hanger
FIGURE 3: Underground Installation
PRECAUTIONS DURING BRAZING OF LINES
All outdoor unit and evaporator coil connections are copper-to-copper
and should be brazed with a phosphorous-copper alloy material such
as Silfos-5 or equivalent. DO NOT use soft solder. The outdoor units
have reusable service valves on both the liquid and vapor connections.
The refrigerant charge is retained within the outdoor unit during shipping and installation. The reusable service valves are provided to evacuate and charge per this instruction.
Serious service problems can be avoided by taking adequate precautions to ensure an internally clean and dry system.
4Johnson Controls Unitary Products
Dry nitrogen should always be supplied through the tubing while it
is being brazed, because the temperature is high enough to cause
oxidation of the copper unless an inert atmosphere is provided. The
flow of dry nitrogen should continue until the joint has cooled.
Always use a pressure regulator and safety valve to insure that only
low pressure dry nitrogen is introduced into the tubing. Only a small
flow is necessary to displace air and prevent oxidation.
FIGURE 4: Heat Protection
The evaporator is pressurized.
4. Braze the liquid line to the evaporator liquid connection. Nitrogen
should be flowing through the evaporator coil.
5. Slide the grommet away from the vapor connection at the indoor
coil. Braze the vapor line to the evaporator vapor connection. After
the connection has cooled, slide the grommet back into original
position. Refer to the Tabular Data Sheet for proper vapor line sizing.
501562-UIM-A-0909
6. Protect the vapor valve with a wet rag and braze the vapor line connection to the outdoor unit. The nitrogen flow should be exiting the
system from the vapor service port connection. After this connection has cooled, remove the nitrogen source from the liquid fitting
service port.
7. Replace the Schrader core in the liquid and vapor valves.
8. Go to “SECTION IV” for TXV installation.
9. Leak test all refrigerant piping connections including the service
port flare caps to be sure they are leak tight. DO NOT OVERTIGHTEN (between 40 and 60 inch - lbs. maximum).
NOTE: Line set and indoor coil can be pressurized to 250 psig with dry
nitrogen and leak tested with a bubble type leak detector. Then release
the nitrogen charge.
NOTE: Do not use the system refrigerant in the outdoor unit to purge or
leak test.
10. Evacuate the vapor line, evaporator, and the liquid line to 500
microns or less.
11. Replace cap on service ports. Do not remove the flare caps from
the service ports except when necessary for servicing the system.
Do not connect manifold gauges unless trouble is suspected.
Approximately 3/4 ounce of refrigerant will be lost each time a standard manifold gauge is connected.
12. Release the refrigerant charge into the system. Open both the liquid and vapor valves by removing the plunger cap and with an allen
wrench back out counter-clockwise until valve stem just touches the
chamfered retaining wall. See Page 4 "PRECAUTIONS DURING
BRAZING SERVICE VALVE".
13. Replace plunger cap finger tight, then tighten an additional 1/12
turn (1/2 hex flat). Cap must be replaced to prevent leaks.
Never attempt to repair any brazed connections while the system is
under pressure. Personal injury could result.
See "System Charge” section for checking and recording system
charge.
SECTION IV: TXV INSTALLATIONS
The following are the basic steps for installation. For detailed instructions, refer to the Installation Instructions accompanying the TXV kit.
Install TXV kit as follows:
1. Relieve the holding charge by pulling off the rubber cap plug on the
suction manifold line of the coil.
2. After holding charge is completely discharged, loosen and remove
the schraeder cap seal.
3. Loosen and remove distributor cap seal.
4. Install the thermal expansion valve to the orifice distributor assembly with supplied fittings. Hand tighten and turn an additional 1/4
turn to seal. Do not overtighten fittings.
5. Install the liquid line to the top of the thermal expansion valve with
fitting supplied with the liquid line. Hand modify the liquid line to
align with casing opening. Hand tighten the liquid line and an additional 1/4 turn to seal.
6. Install the TXV equalizer line into the vapor line as follows:
a. Hand tighten the 1/4” SAE nut to the schraeder fitting and an
additional 1/3 turn to seal.
7. Install the TXV bulb to the vapor line near the equalizer line, using
the bulb clamp(s) furnished with the TXV assembly. Ensure the bulb
is making maximum contact.
a. Bulb should be installed on a horizontal run of the vapor line if
possible. The bulb should be installed on top of the line.
b. If bulb installation is made on a vertical run, the bulb should be
located at least 16 inches from any bend, and on the tubing
sides opposite the plane of the bend. The bulb should be positioned with the bulb tail at the top, so that the bulb acts as a reservoir.
c. Bulb should be insulated using thermal insulation provided to
protect it from the effect of the surrounding ambient temperature. Cover completely to insulate from air-stream.
In all cases, mount the TXV bulb after vapor line is brazed and has
had sufficient time to cool.
Dry nitrogen should always be supplied through the tubing while it
is being brazed, because the temperature required is high enough
to cause oxidation of the copper unless an inert atmosphere is provided. The flow of dry nitrogen should continue until the joint has
cooled. Always use a pressure regulator and safety valve to insure
that only low pressure dry nitrogen is introduced into the tubing.
Only a small flow is necessary to displace air and prevent oxidation.
All connections to be brazed are copper-to-copper and should be
brazed with a phosphorous-copper alloy material such as Silfos-5 or
equivalent. DO NOT use soft solder.
Install the TXV bulb to the vapor line near the equalizer line, using the
two bulb clamps furnished with the TXV assembly. Ensure the bulb is
making maximum contact. Refer to TXV installation instruction for view
of bulb location.
SECTION V: ELECTRICAL CONNECTIONS
GENERAL INFORMATION & GROUNDING
Check the electrical supply to be sure that it meets the values specified
on the unit nameplate and wiring label.
Power wiring, control (low voltage) wiring, disconnect switches, and
over current protection must be supplied by the installer. Wire size
should be sized per NEC requirements.
All field wiring must USE COPPER CONDUCTORS ONLY and be
in accordance with Local, National, Fire, Safety, & Electrical Codes.
This unit must be grounded with a separate ground wire in accordance with the above codes.
The complete connection diagram and schematic wiring label is located
on the inside surface of the unit service access panel.
Johnson Controls Unitary Products5
501562-UIM-A-0909
CONTROL
WIRING
POWER WIRING
CORNER
COVER
SERVICE
ACCESS
PANEL
COMMUNICATIONS PORT
CONTROL BOARD
COMMUNICATIONS
HARNESS
JUNCTION
BOX
FIELD CONNECTIONS POWER WIRING
1. Install the proper size weatherproof disconnect switch outdoors and
within sight of the unit.
2. Remove the screws at the bottom of the corner cover. Slide corner
cover down and remove from unit. See Figure 5.
3. Run power wiring from the disconnect switch to the unit.
4. Remove the service access panel to gain access to the unit wiring.
Route wires from disconnect through power wiring opening provided and into the unit control box.
5. Install the proper size time-delay fuses or circuit breaker, and make
the power supply connections.
FIGURE 5: Typical Field Wiring
FIELD CONNECTIONS CONTROL WIRING
(CONVENTIONAL)
1.Route low voltage wiring into bottom of control box. Make low volt-
age wiring connections inside the junction box per Figures 10-15.
2.The complete connection diagram and schematic wiring label is
located on the inside surface of the unit service access panel.
3.Replace the corner cover and service access panel that were
removed in Steps 2 and 4 of the “Field Connections Power Wiring”
section.
NOTE: Ambient temperature sensor should extend below control box
by 1”.
4.All field wiring to be in accordance with national electrical codes
(NEC) and/or local-city codes.
5.Mount the thermostat about 5 ft. above the floor, where it will be
exposed to normal room air circulation. Do not place it on an outside wall or where it is exposed to the radiant effect from exposed
glass or appliances, drafts from outside doors, or supply air grilles.
6.Route the 24-volt control wiring (NEC Class 2) from the outdoor
unit to the indoor unit and thermostat.
NOTE: To eliminate erratic operation, seal the hole in the wall at the
thermostat with permagum or equivalent to prevent air drafts affecting
the operation of in the thermostat.
FIELD CONNECTIONS CONTROL WIRING
(SERIAL COMMUNICATION)
1.The Communications Harness is provided with the communicating
thermostat.
2.Route low voltage four conductor shielded thermostat communications harness into junction box and connect to communications
port on control board. See Figure 6.
3.Route low voltage wiring into bottom of control box. Make low voltage wiring connections inside the junction box per Figures 8-9.
4.The complete connection diagram and schematic wiring label is
located on the inside surface of the unit service access panel.
If unit is going to be setup as a communicating system, the conventional wiring must be removed from the Outdoor Control Board, if
not damage to control board or indoor control could occur.
FIGURE 6: Communications Harness Connection
5.Replace the corner cover and service access panel that were
removed in Steps 2 and 4 of the “Field Connections Power Wiring”
section.
NOTE: Ambient temperature sensor should extend below control box
by 1”.
6.Mount the thermostat about 5 ft. above the floor, where it will be
exposed to normal room air circulation. Do not place it on an outside wall or where it is exposed to the radiant effect from exposed
glass or appliances, drafts from outside doors, or supply air grilles.
7.Route the 24-volt control wiring (NEC Class 2) from the outdoor
unit to the indoor unit and thermostat.
NOTE: To eliminate erratic operation, seal the hole in the wall at the
thermostat with Pergamum or equivalent to prevent air drafts affecting
the operation of the thermostat.
6Johnson Controls Unitary Products
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.