Johnson Controls 13 SEER User Manual

INSTALLATION MANUAL
R-22 OUTDOOR SPLIT-SYSTEM AIR CONDITIONING
MODELS: 13 SEER AY018-030 SERIES
1.5 TO 2.5 TONS
LIST OF SECTIONS
GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SAFETY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
UNIT INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
ORIFICE INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LIST OF FIGURES
Typical Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Oil Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Installation of Vapor Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Underground Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Heat Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Orifice Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LIST OF TABLES
Application Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 R-22 Saturated Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
INSTALLATIONS REQUIRING AN ADD-ON TXV KIT . . . . . . . . . . . .5
EVACUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
SYSTEM CHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
ELECTRICAL CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Outdoor Unit Control Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Typical Field Wiring (Air Handler / Electrical Heat) . . . . . . . . . . . . . . . .6
Thermostat Chart - Single Stage AC with PSC Air Handler . . . . . . . . .7
Thermostat Chart - Single Stage AC with PSC Air Handler . . . . . . . . .8
Thermostat Chart - Single Stage AC with PSC Furnace . . . . . . . . . . .9
Thermostat Chart - Single Stage AC with PSC Furnace . . . . . . . . . .10
ISO 9001
Certified Quality
Management System
SECTION I: GENERAL
The outdoor units are designed to be connected to a matching indoor coil with sweat connect lines. Sweat connect units are factory charged with refrigerant for a matching indoor coil plus 15 feet of field supplied lines.
The refrigerant charge may need to be changed for some indoor-out­door unit combinations, elevation differences or total line lengths. Refer to Application Data covering “General Piping Recommendations and Refrigerant Line Length” (Part Number 036-61920-001).
SECTION II: SAFETY
This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.
Understand and pay particular attention to the signal words DANGER,
WARNING , or CAUTION. DANGER indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury WARNING indicates a potentially hazardous situation, which, if not
avoided, could result in death or serious injury CAUTION indicates a potentially hazardous situation, which, if not
avoided may resul t in minor or moderate injury alert against unsafe practices and hazards involving only property dam­age.
Improper installation may create a condition where the operation of the product could cause personal injury or property damage. Improper installation, adjustment, alteration, service or mainte­nance can cause injury or property damage. Refer to this manual for assistance or for additional information, consult a qualified con­tractor, installer or service agency.
.
.
. It is also used to
This product must be installed in strict compliance with the enclosed installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.
INSPECTION
As soon as a unit is received, it should be inspected for possib le dam­age during transit. If damage is evident, the extent of the damage should be noted on the carrier’s delivery receipt. A separate request for inspection by the carrier’s agent should be made in writing. See Local Distributor for more information.
LIMITATIONS
The unit should be installed in accordance with all National, State and Local Safety Codes and the limitations listed below:
1. Limitations for the indoor unit, coil, and appropriate accessories must also be observed.
2. The outdoor unit must not be installed with any duct work in the air stream. The outdoor fan is the propeller type and is not designed to operate against any additional external static pressure.
3. The maximum and minimum conditions for operation must be observed to ensure a system that will give maximum performance with minimum service.
TABLE 1:
4. The unit should not be operated at outdoor temperatures below
Application Limitations
Ambient Air Temperature
on Outdoor Coil
Min. DB Max. DB Min. WB Max. WB
50 °F 115 °F 57 °F 72 °F
50° F without an approved low ambient operation accessory kit installed.
Air Temperature on
Indoor Coil
347337-UIM-A-0408
347337-UIM-A-0408
SECTION III: UNIT INSTALLATION
LOCATION
Before starting the installation, select and check the suitability of the location for both the indoor and outdoor unit. Observe all limitations and clearance requirements.
The outdoor unit must have sufficient clearance for air entrance to the condenser coil, air discharge, and service access. See Figure 1.
NOTE: For multiple unit installations, units must be spaced a minimum
of 18 inches apart (coil face to coil face).
If the unit is to be installed on a hot sun exposed roof or a black-topped ground area, the unit should be raised sufficiently above the roof or ground to avoid taking the accumulated layer of hot air into the outdoor unit.
Provide an adequate structural support.
MINIMUM 24” SERVICE ACCESS CLEARANCE ON ONE SIDE
48” OVERHEAD
12” CLEARANCE AROUND PERIMETER
CLEARANCE
WEATHERPROOF DISCONNECT SWITCH
ADD-ON REPLACEMENT/RETROFIT
The following steps should be performed in order to insure proper sys­tem operation and performance.
1. Change-out the indoor coil, if required, to an approved R-22 coil/ condensing unit combination with the appropriate metering device.
2. If the outdoor unit is being replaced due to a compressor burnout, then installation of a 100% activated alumina suction-line filter drier in the suction-line is required, in addition to the factory installed liquid-line drier. Operate the system for 10 hours. Monitor the suction drier pressure drop. If the pressure drop exceeds 3 psig, replace both the suction-line and liquid-line driers. After a total of 10 hours run time where the suction-line pressure drop has not exceeded 3 psig, replace the liquid line drier, and remove the suction-line drier. Never leave a suction-line drier in the system longer than 50 hours of run time.
THERMOSTAT
NEC CLASS 1 WIRING
TO FURNACE OR AIR HANDLER TERMINAL BLOCK
NOTE:ALL OUTDOOR WIRING MUST BE WEATHERPROOF.
CONTROL ACCESS PANEL
FIGURE 1: Typical Installation
GROUND INSTALLA TION
The unit should be installed on a solid base that is 2” above grade and will not shift or settle, causing strain on the refrigerant lines and possible leaks. Maintain the clearances shown in Figure 1 and install the unit in a level position. The base pad should not come in contact with the foun­dation or side of the structure because sound may be transmitted to the residence.
The length of the refrigerant tubing between the outdoor unit and indoor coil should be as short as possible to avoid capacity and efficiency losses. Excessive spacing of the outdoor unit from the home can result in the refrigerant lines being restricted by trampling or being punctured by lawn mowers. Locate the outdoor unit away from bedroom windows or other rooms where sound might be objectionable.
Adverse effects of snow or sleet accumulating on the outdoor coil can be eliminated by placing the outdoor unit where the prevailing wind does not blow across the unit. Trees, shrubs, corners of buildings, and fences standing off from the coil can reduce capacity loss due to wind chill effect.
Provide ample clearance from shrubs to allow adequate air to pass across the outdoor coil without leaves or branches being pulled into the coil.
NEC CLASS 2 WIRING
TO INDOOR COIL
SEAL OPENING(S) WITH PERMAGUM OR EQUIVALENT
ROOF INSTALLATION
When installing units on a roof, the structure must be capable of sup­porting the total weight of the unit, including a pad, lintels, rails, etc., which should be used to minimize the transmission of sound or vibra­tion into the conditioned space.
LIQUID LINE FILTER-DRIER
The air conditioning unit’s copper spun filter/dryer is located on the liq­uid line.
NOTE: Replacements for the liquid line drier must be exactly the same
as marked on the original factory drier. See Source 1 for O.E.M.
replacement driers.
Failure to do so or using a substitute drier or a granular type may result in damage to the equipment.
R-22
Filter-Drier
Source 1 Part No.
029-22156-000 All Models
Apply with Models
AY
2 Johnson Controls Unitary Products
347337-UIM-A-0408
PIPING CONNECTIONS
The outdoor condensing unit must be connected to the indoor evapora­tor coil using field supplied refrigerant grade (ACR) copper tubing that is internally clean and dry. Units should be installed only with the tubing sizes for approved system combinations as specified in tabular data sheet. The charge given is applicable for total tubing lengths up to 15 feet. See Application Data Part Number 036-61920-000 for installing tubing of longer lengths and elevation differences.
NOTE: Using a larger than specified line size could result in oil return
problems. Using too small a line will result in loss of capacity and other problems caused by insufficient refrigerant flow. Slope horizontal vapor lines at least 1" every 20 feet toward the out­door unit to facilitate proper oil return.
OIL TRAPPING
When the outdoor unit is above the indoor coil, oil trapping is necessary . An oil trap should be provided for every 20 ft. of rise. See Figure 2.
OUTDOOR COIL
10 In.
20 Ft.
INDOOR
COIL
20 Ft.
6 In.
FIGURE 2: Oil Trap
PRECAUTIONS DURING LINE INSTALLATION
1. Install the lines with as few bends as possible. Care must be taken not to damage the couplings or kink the tubing. Use clean hard drawn copper tubing where no appreciable amount of bending around obstruction is necessary. If soft copper must be used, care must be taken to avoid sharp bends which may cause a restriction.
2. The lines should be installed so that they will not obstruct service access to the coil, air handling system, or filter.
3. Care must also be taken to isolate the refrigerant lines to minimize noise transmission from the equipment to the structure.
4. The vapor line must be insulated with a minimum of 1/2" foam rub­ber insulation (Armaflex or equivalent). Liquid lines that will be exposed to direct sunlight, high temperatures, or excessive humid­ity must also be insulated.
5. Tape and suspend the refrigerant lines as shown. DO NOT allow tube metal-to-metal contact. See Figure 3.
6. Use PVC piping as a conduit for all underground installations as shown in Figure 4. Buried lines should be kept as short as possible to minimize the build up of liquid refrigerant in the vapor line during long periods of shutdown
7. Pack fiberglass insulation and a sealing material such as perma­gum around refrigerant lines where they penetrate a wall to reduce vibration and to retain some flexibility.
8. For systems with total line length exceeding 50 ft., see APPLICA­TION DATA and worksheet "General Piping Recommendations and Refrigerant Line Length" for vapor and liquid line sizing, cali­bration of liquid line pressure loss or gain, determination of vapor line velocity, elevation limitations, orifice connections, system charging, traps, etc.
Sheet Metal Hanger
Liquid Line
Incorrect
Correct
Insulated Vapor Line
Tape
FIGURE 3: Installation of Vapor Line
TO OUTDOOR UNIT
Cap
Liquid Line
PVC Conduit
TO INDOOR COIL
Insulated Vapor Line
FIGURE 4: Underground Installation
PRECAUTIONS DURING BRAZING OF LINES
All outdoor unit and evaporator coil connections are copper-to-copper and should be brazed with a phosphorous-copper alloy material such as Silfos-5 or equivalent. DO NOT use soft solder. The outdoor units have reusable service valves on both the liquid and vapor connections. The total system refrigerant charge is retained within the outdoor unit during shipping and installation. The reusable service valves are pro­vided to evacuate and charge per this instruction.
Serious service problems can be avoided by taking adequate precau­tions to assure an internally clean and dry system.
Dry nitrogen should always be supplied through the tubing while it is being brazed, because the temperature required is high enough to cause oxidation of the copper unless an inert atmosphere is pro­vided. The flow of dry nitrogen should continue until the joint has cooled. Always use a pressure regulator and safety valve to insure that only low pressure dry nitrogen is introduced into the tubing. Only a small flow is necessary to displace air and prevent oxidation.
PRECAUTIONS DURING BRAZING SERVICE VALVE
Precautions should be taken to prevent heat damage to service valve by wrapping a wet rag around it as shown in Figure 5. Also, protect all painted surfaces, insulation, and plastic base during brazing. After braz­ing, cool joint with wet rag.
This is not a backseating valve. The service access port has a valve core. Opening or closing valve does not close service access port.
If the valve stem is backed out past the chamfered retaining wall, the O-ring can be damaged causing leakage or system pressure could force the valve stem out of the valve body possibly causing personal injury.
Valve can be opened by removing the plunger cap and fully inserting a hex wrench into the stem and backing out counter-clockwise until valve stem just touches the chamfered retaining wall.
Johnson Controls Unitary Products 3
347337-UIM-A-0408
Connect the refrigerant lines using the following procedure:
1. Remove the cap and Schrader core from both the liquid and vapor service valve service ports at the outdoor unit. Connect low pres­sure nitrogen to the liquid line service port.
2. Braze the liquid line to the liquid valve at the outdoor unit. Be sure to wrap the valve body with a wet rag. Allow the nitrogen to con­tinue flowing.
3. Carefully remove the plugs from the evaporator liquid and vapor connections at the indoor coil.
FIGURE 5: Heat Protection
Do not install any coil in a furnace which is to be operated during the heating season without attaching the refrigerant lines to the coil. The coil is under 30 to 35 psig inert gas pressure which must be released to prevent excessive pressure build-up and possible coil damage.
4. Braze the liquid line to the evaporator liquid connection. Nitrogen should be flowing through the evaporator coil.
5. Slide the grommet away from the vapor connection at the indoor coil. Braze the vapor line to the evaporator vapor connection. After the connection has cooled, slide the grommet back into original position.
6. Protect the vapor valve with a wet rag and braze the vapor line connection to the outdoor unit. The nitrogen flow should be exiting the system from the vapor service port connection. After this con­nection has cooled, remove the nitrogen source from the liquid fit­ting service port.
7. Replace the Schrader core in the liquid and vapor valves.
8. Go to “SECTION V” or “SECTION IV” for orifice or TXV installation depending on application.
9. Leak test all refrigerant piping connections including the service port flare caps to be sure they are leak tight. DO NOT OVER­TIGHTEN (between 40 and 60 inch - lbs. maximum).
NOTE: Line set and indoor coil can be pressurized to 250 psig with dry
nitrogen and leak tested with a bubble type leak detector. Then release the nitrogen charge.
NOTE: Do not use the system refrigerant in the outdoor unit to purge or
leak test.
10. Evacuate the vapor line, evaporator, and liquid line to 500 microns or less.
11. Replace cap on service ports. Do not remove the flare caps from the service ports except when necessary for servicing the system.
12. Release the refrigerant charge into the system. Open both the liq­uid and vapor valves by removing the plunger cap and with an allen wrench back out counter-clockwise until valve stem just touches the chamfered retaining wall. See Page 3 "PRECAU­TIONS DURING BRAZING SERVICE VALVE".
13. Replace plunger cap finger tight, then tighten an additional 1/12 turn (1/2 hex flat). Cap must be replaced to prevent leaks.
Never attempt to repair any brazed connections while the system is under pressure. Personal injury could result.
See "System Charge” section for checking and recording system charge.
Supplied with the outdoor unit is a Schrader Valve Core and Orifice for highest sales volume indoor coil. The valve core must be installed in equalizer fitting of the indoor coil.
SECTION IV: ORIFICE INSTALLATION
Failure to install Schrader Valve Core on orifice applications could result in total refrigerant loss of the system!
Install Schrader Valve Core as follows:
1. Slide indoor coil out of cabinet far enough to gain access to equal­izer fitting on the suction line.
2. After holding charge is completely discharged remove black plas­tic cap on equalizer fitting.
3. Install Schrader Valve Core supplied with the outdoor unit into equalizer fitting using a valve core tool.
4. Loosen and remove the liquid line fitting from the orifice distributor assembly. Note that the fitting has right hand threads
5. Install proper size orifice supplied with outdoor unit. Refer to sup­plied Tabular Data Sheet for specific orifice size and indoor coil match up.
6. After orifice is installed reinstall the liquid line to the top of the ori­fice distributor assembly. Hand tighten and turn an additional 1/8 turn to seal. Do not over tighten fittings.
7. Leak test system.
8. Replace black plastic cap on equalizer fitting.
9. Slide indoor coil back into cabinet.
LIQUID LINE SWIVEL COUPLING (This fitting is a right-hand thread, turn counter-clockwise to remove)
ORIFICE
DISTRIBUTOR
.
FIGURE 6: Orifice Installation
Do not connect manifold gauges unless trouble is suspected. Approximately 3/4 ounce of refrigerant will be lost each time a stan­dard manifold gauge is connected.
4 Johnson Controls Unitary Products
Loading...
+ 8 hidden pages