IXYS VUO60-18NO3, VUO60-16NO3, VUO60-14NO3, VUO60-12NO3 Datasheet

VUO 60
Three Phase Rectifier Bridge
RSM
VV
1300 1200 VUO 60-12NO3 1500 1400 VUO 60-14NO3 1700 1600 VUO 60-16NO3 1900 1800 VUO 60-18NO3*
* delivery time on request
Symbol Test Conditions Maximum Ratings I
dAV
I
dAVM
I
FSM
I2t TVJ = 45°C t = 10 ms (50 Hz), sine 1800 A2s
T
VJ
T
VJM
T
stg
ISOL
M
d
Weight typ. 50 g
RRM
Type
~ ~ ~
TC = 85°C, module 72 A ① module 75 A
TVJ = 45°C; t = 10 ms (50 Hz), sine 600 A VR = 0 t = 8.3 ms (60 Hz), sine 650 A
T
= T
VJ
VJM
VR = 0 t = 8.3 ms (60 Hz), sine 600 A
t = 10 ms (50 Hz), sine 540 A
VR = 0 t = 8.3 ms (60 Hz), sine 1770 A2s TVJ = T
VJM
VR = 0 t = 8.3 ms (60 Hz), sine 1510 A2s
t = 10 ms (50 Hz), sine 1460 A2s
-40...+125 °C 125 °C
-40...+125 °C
50/60 Hz, RMS t = 1 min 3000 V~ I
£ 1 mA t = 1 s 3600 V~
ISOL
Mounting torque (M5) 2-2.5 Nm
(10-32 UNF) 18-22 lb.in.
I
dA V
V
+
= 72 A = 1200-1800 V
RRM
+
+
Features
Package with DCB ceramic base plate
Isolation voltage 3600 V~
Planar passivated chips
Blocking voltage up to 1800 V
Low forward voltage drop
¼" fast-on terminals
UL registered E 72873
Applications
Supplies for DC power equipment
Input rectifiers for PWM inverter
Battery DC power supplies
Rectifier for DC motors field current
Advantages
Easy to mount with two screws
Space and weight savings
Improved temperature and power cycling
Dimensions in mm (1 mm = 0.0394")
~
~
~
Symbol Test Conditions Characteristic Values I
R
F
T0
r
T
R
thJC
R
thJH
d
S
d
A
a Max. allowable acceleration 50 m/s
Data according to IEC 60747 and refer to a single diode unless otherwise stated. for resistive load at bridge output IXYS reserves the right to change limits, test conditions and dimensions.
VR= V VR= V
IF= 150 A; TVJ = 25°C 1.9 V For power-loss calculations only 0.8 V
per diode, DC current 1.2 K/W per module 0.2 K/W per diode, DC current 1.6 K/W per module 0.27 K/W
Creep distance on surface 10 mm Strike distance in air 9.4 mm
;T
RRM
;T
RRM
= 25°C 0.3 mA
VJ
= T
VJ
VJM
5mA
6.5 mW
© 2000 IXYS All rights reserved
2
Use output terminals in parallel connection!
1 - 2
VUO 60
80
A
70
60
I
F
50
40
30
TVJ=125°C TVJ= 25°C
20
10
0
0.0 0.5 1.0 1.5
V
V
F
Fig. 4 Forward current versus voltage
drop per diode
250
W
200
P
tot
150
100
600
A
50Hz, 80% V
RRM
10 A
4
2
s
VR = 0 V
500
I
FSM
T
VJ
= 45°C
I2t
400
T
= 45°C
VJ
300
10
3
T
= 125°C
VJ
200
T
100
0
0.001 0 .01 0.1 1
= 125°C
VJ
2
s
10
23456789110
t
Fig. 5 Surge overload current Fig. 6 I2t versus time per diode
80
A
I
d(AV)M
70
60
50
40
30
R
thHA
0.2 K/W
0.5 K/W
1.0 K/W
1.5 K/W
2.0 K/W
3.0 K/W
5.0 K/W
:
ms
t
50
20
10
0
0 10203040506070
I
d(AV)M
0 20 40 60 80 100 120
A
T
amb
°C °C
0
0 20406080100120
T
C
Fig. 7 Power dissipation versus direct output current and ambient temperature Fig. 8 Max. forward current versus
case temperature
1.8
K/W
1.6
1.4
Z
thJH
1.2
1.0
0.8
0.6
0.4
0.2
Constants for Z
iR
1 0.883 0.102 2 0.098 0.103 3 0.202 0.492
calculation:
thJH
(K/W) ti (s)
thi
4 0.417 0.62
0.0
0.001 0.01 0.1 1 10 100
Fig. 9 Transient thermal impedance junction to heatsink
s
t
© 2000 IXYS All rights reserved
706
2 - 2
Loading...