VUO 60
Three Phase
Rectifier Bridge
V
RSM
VV
1300 1200 VUO 60-12NO3
1500 1400 VUO 60-14NO3
1700 1600 VUO 60-16NO3
1900 1800 VUO 60-18NO3*
* delivery time on request
Symbol Test Conditions Maximum Ratings
I
dAV
I
dAVM
I
FSM
I2t TVJ = 45°C t = 10 ms (50 Hz), sine 1800 A2s
T
VJ
T
VJM
T
stg
V
ISOL
M
d
Weight typ. 50 g
V
RRM
Type
~
~
~
① TC = 85°C, module 72 A
① module 75 A
TVJ = 45°C; t = 10 ms (50 Hz), sine 600 A
VR = 0 t = 8.3 ms (60 Hz), sine 650 A
T
= T
VJ
VJM
VR = 0 t = 8.3 ms (60 Hz), sine 600 A
t = 10 ms (50 Hz), sine 540 A
VR = 0 t = 8.3 ms (60 Hz), sine 1770 A2s
TVJ = T
VJM
VR = 0 t = 8.3 ms (60 Hz), sine 1510 A2s
t = 10 ms (50 Hz), sine 1460 A2s
-40...+125 °C
125 °C
-40...+125 °C
50/60 Hz, RMS t = 1 min 3000 V~
I
£ 1 mA t = 1 s 3600 V~
ISOL
Mounting torque (M5) 2-2.5 Nm
(10-32 UNF) 18-22 lb.in.
I
dA V
V
+
–
= 72 A
= 1200-1800 V
RRM
+
+
–
Features
●
Package with DCB ceramic base plate
●
Isolation voltage 3600 V~
●
Planar passivated chips
●
Blocking voltage up to 1800 V
●
Low forward voltage drop
●
¼" fast-on terminals
●
UL registered E 72873
Applications
●
Supplies for DC power equipment
●
Input rectifiers for PWM inverter
●
Battery DC power supplies
●
Rectifier for DC motors field current
Advantages
●
Easy to mount with two screws
●
Space and weight savings
●
Improved temperature and power
cycling
Dimensions in mm (1 mm = 0.0394")
~
~
~
–
Symbol Test Conditions Characteristic Values
I
R
V
F
V
T0
r
T
R
thJC
R
thJH
d
S
d
A
a Max. allowable acceleration 50 m/s
Data according to IEC 60747 and refer to a single diode unless otherwise stated.
① for resistive load at bridge output
IXYS reserves the right to change limits, test conditions and dimensions.
VR= V
VR= V
IF= 150 A; TVJ = 25°C 1.9 V
For power-loss calculations only 0.8 V
per diode, DC current 1.2 K/W
per module 0.2 K/W
per diode, DC current 1.6 K/W
per module 0.27 K/W
Creep distance on surface 10 mm
Strike distance in air 9.4 mm
;T
RRM
;T
RRM
= 25°C 0.3 mA
VJ
= T
VJ
VJM
5mA
6.5 mW
© 2000 IXYS All rights reserved
2
Use output terminals in parallel
connection!
1 - 2
VUO 60
80
A
70
60
I
F
50
40
30
TVJ=125°C
TVJ= 25°C
20
10
0
0.0 0.5 1.0 1.5
V
V
F
Fig. 4 Forward current versus voltage
drop per diode
250
W
200
P
tot
150
100
600
A
50Hz, 80% V
RRM
10
A
4
2
s
VR = 0 V
500
I
FSM
T
VJ
= 45°C
I2t
400
T
= 45°C
VJ
300
10
3
T
= 125°C
VJ
200
T
100
0
0.001 0 .01 0.1 1
= 125°C
VJ
2
s
10
23456789110
t
Fig. 5 Surge overload current Fig. 6 I2t versus time per diode
80
A
I
d(AV)M
70
60
50
40
30
R
thHA
0.2 K/W
0.5 K/W
1.0 K/W
1.5 K/W
2.0 K/W
3.0 K/W
5.0 K/W
:
ms
t
50
20
10
0
0 10203040506070
I
d(AV)M
0 20 40 60 80 100 120
A
T
amb
°C °C
0
0 20406080100120
T
C
Fig. 7 Power dissipation versus direct output current and ambient temperature Fig. 8 Max. forward current versus
case temperature
1.8
K/W
1.6
1.4
Z
thJH
1.2
1.0
0.8
0.6
0.4
0.2
Constants for Z
iR
1 0.883 0.102
2 0.098 0.103
3 0.202 0.492
calculation:
thJH
(K/W) ti (s)
thi
4 0.417 0.62
0.0
0.001 0.01 0.1 1 10 100
Fig. 9 Transient thermal impedance junction to heatsink
s
t
© 2000 IXYS All rights reserved
706
2 - 2