IXYS VUO190-18NO7, VUO190-16NO7, VUO190-14NO7, VUO190-12NO7, VUO190-08NO7 Datasheet

M6x10
7
3
30
27
6.5
6.5
C~
D~ E~
A+
B-
54
15
12
25 66
26
26
72
80
94
VUO 190
Three Phase Rectifier Bridge
V
RSM
VV
800 800 VUO 190-08NO7 1200 1200 VUO 190-12NO7 1400 1400 VUO 190-14NO7 1600 1600 VUO 190-16NO7 1800 1800 VUO 190-18NO7*
* delivery time on request
dAV
I
dAV
I
FSM
2
t TVJ = 45°C t = 10 ms (50 Hz), sine 39 200 A2s
I
T
VJ
T
VJM
T
stg
V
ISOL
M
d
Weight typ. 270 g
V
RRM
Type
~ ~ ~
TC = 100°C, module 248 A TA = 35°C (R
= 0.2 K/W), module 165 A
thCA
TVJ = 45°C; t = 10 ms (50 Hz), sine 2800 A VR = 0 t = 8.3 ms (60 Hz), sine 3300 A
TVJ = T
VJM
VR = 0 t = 8.3 ms (60 Hz), sine 2750 A
t = 10 ms (50 Hz), sine 2500 A
VR = 0 t = 8.3 ms (60 Hz), sine 45 000 A2s TVJ = T
VJM
VR = 0 t = 8.3 ms (60 Hz), sine 31 300 A2s
t = 10 ms (50 Hz), sine 31 200 A2s
-40...+150 °C 150 °C
-40...+125 °C
50/60 Hz, RMS t = 1 min 2500 V~
1 mA t = 1 s 3000 V~
I
ISOL
Mounting torque (M6) 5 ± 15 % Nm Terminal connection torque (M6) 5 ± 15 % Nm
I
dA V
V
+
= 248 A = 800-1800 V
RRM
~
~
~
+
Features
Package with screw terminals
Isolation voltage 3000 V~
Planar passivated chips
Blocking voltage up to 1800 V
Low forward voltage drop
UL registered E72873
Applications
Supplies for DC power equipment
Input rectifiers for PWM inverter
Battery DC power supplies
Field supply for DC motors
Advantages
Easy to mount with two screws
Space and weight savings
Improved temperature and power cycling
Dimensions in mm (1 mm = 0.0394")
-
Symbol Test Conditions Characteristic Values I
R
V
F
V
T0
r
T
R
thJC
R
thJH
d
S
d
A
a Max. allowable acceleration 50 m/s
Data according to IEC 60747 and refer to a single diode unless otherwise stated IXYS reserves the right to change limits, test conditions and dimensions.
© 2000 IXYS All rights reserved
VR = V VR = V
IF= 300 A; TVJ = 25°C 1.43 V For power-loss calculations only 0.8 V
per diode, 120° 0.45 K/W per module 0.075 K/W
per diode, 120°0.6K/W per module 0.1 K/W
Creeping distance on surface 10 mm Creepage distance in air 9.4 mm
;T
RRM
;T
RRM
= 25°C 0.3 mA
VJ
= T
VJ
VJM
5mA
2.2 m
2
049
1 - 2
VUO 190
300
A
250
I
F
200
150
100
TVJ=150°C TVJ= 25°C
50
0
0.0 0.5 1.0 1.5
V
V
F
Fig. 4 Forward current versus voltage
drop per diode
600
W
P
tot
400
200
3000
A
50Hz, 80% V
RRM
10 A
5
2
s
VR = 0 V
2500
I
FSM
2000
1500
1000
T
VJ
T
VJ
= 45°C
= 150°C
I2t
T
= 45°C
VJ
500
0
0.001 0.01 0.1 1
s
10
4
23456789110
t
Fig. 5 Surge overload current Fig. 6 I2t versus time per diode
280
A
240
R
thHA
0.1 K/W
0.2 K/W
0.5 K/W
1.0 K/W
1.5 K/W
2.0 K/W
3.0 K/W
:
I
d(AV)M
200
160
120
80
T
VJ
= 150°C
ms
t
40
0
0 40 80 120 160 200 240
I
d(AV)M
0 20406080100120140
A
T
amb
°C °C
0
0 20406080100120140
T
C
Fig. 7 Power dissipation versus direct output current and ambient temperature Fig. 8 Max. forward current versus
case temperature
0.5
K/W
0.4
Z
thJC
0.3
0.2
Constants for Z
iR
calculation:
thJC
(K/W) ti (s)
thi
1 0.013 0.0012
0.1
2 0.072 0.047 3 0.175 0.326 4 0.19 2.03
0.0
0.001 0.01 0.1 1 10
Fig. 9 Transient thermal impedance junction to case
VUO 190
s
t
© 2000 IXYS All rights reserved
2 - 2
Loading...