N-Channel MOSFET
FTP06N40
Applications:
• Ballast and Lighting
• DC-AC Inverter
V
DSS
R
DS(ON)
(Max.) I
400V 1.0 Ω 6A
Features:
• Lead Free
• Low ON Resistance
• Low Gate Charge
• Peak Current vs Pulse Width Curve
• Inductive Switching Curves
Ordering Information
PART NUMBER PACKAGE BRAND
FTP06N40 TO-220 FTP06N40
Absolute Maximum Ratings T
Symbol Parameter Maximum Units
V
DSS
I
D
@ 100 oC Continuous Drain Current Figure 3
D
I
DM
P
D
V
GS
E
AS
I
AS
dv/dt Peak Diode Recovery dv/dt (NOTE *3) 3.0 V/ns
T
L
T
PKG
T
and T
J
Drain-to-Source Voltage (NOTE *1) 400 V
Continuous Drain Current 6
Pulsed Drain Current, VGS@ 10V (NOTE *2) Figure 6
Power Dissipation 89 W
Derating Factor above 25
Gate-to-Source Voltage ± 30 V
Single Pulse Avalanche Engergy
L=500 µH, ID=17.3 Amps
Pulsed Avalanche Rating Figure 8
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10 seconds
Package Body for 10 seconds
Operating Junction and Storage
STG
Temperature Range
o
C unless otherwise specified
25
=
C
o
C0 . 7 1 W /
G
D
S
TO-220
Not to Scale
G
75 mJ
300
260
-55 to 150
D
D
S
A I
o
C
o
C
Caution: Stresses greater than those listed in the “Absolute Maximum Ratings” Table may cause permanent damage to the device.
Thermal Resistance
Symbol Parameter Min. Typ. Max. Units Test Conditions
Water cooled heatsink, PD adjusted for a peak junction temperature of +150
o
C
FTP06N40 REV. A April. 2006
R
θ JC
R
θ JA
Junction-to-Case
Junction-to-Ambient -- -- 62 1 cubic foot chamber, free air.
©2006 InPower Semiconductor Co., Ltd.
-- -- 1.4
o
/W
C
.
OFF Characteristics TJ=25oC unless otherwise specified
Symbol Parameter Min. Typ. Max. Units Test Conditions
BV
∆ BV
DSS
DSS
Drain-to-Source Breakdown Voltage 400 -- --
BreakdownVoltage Temperature
/∆ T
J
Coefficient, Figure 11.
-- 0.47 -V/
V
o
C
VGS=0V, ID=250µA
Reference to 25
=250µA
I
D
o
C,
I
DSS
I
GSS
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage -- -- 100
Gate-to-Source Reverse Leakage -- -- -100 V
ON Characteristics TJ=25
--
-- --
o
unless otherwise specified
C
-- 25
250
µA
nA
=400V, VGS=0V
V
DS
=320V, VGS=0V
V
DS
TJ=125oC
VGS=+30V
= -30V
GS
Symbol Parameter Min. Typ. Max. Units Test Conditions
=10V, ID=3.6A
R
DS(ON)
V
GS(TH)
Static Drain-to-Source On-Resistance
Figure 9 and 10.
Gate Threshold Voltage, Figure 12. 2.0 -- 4.0
gfs Forward Transconductance
-- 0.76 1.0 Ω
--
5.5
-- S
V
V
GS
(NOTE *4)
,
V
V
=
DS
GS
VDS=15V, ID=6A
(NOTE *4)
Dynamic Characteristics Essentially independent of operating temperature
Symbol Parameter Min. Typ. Max. Units Test Conditions
C
iss
C
oss
C
rss
Q
g
Q
gs
Q
gd
Input Capacitance -- 600 --
Output Capacitance -- 105 --
Reverse Transfer Capacitance -- 60 --
Total Gate Charge -- 26.8 --
Gate-to-Source Charge -- 4.6 --
Gate-to-Drain (“Miller”) Charge -- 14.8 --
pF
nC
VGS=0V
V
=25V
DS
f=1.0MHz
Figure 14
VDD=200V
I
D=6A
=10
V
GS
Figure 15
I
D
250µA
=
V
Resistive Switching Characteristics Essentially independent of operating temperature
Symbol Parameter Min. Typ. Max. Units Test Conditions
t
d(ON)
t
rise
t
d(OFF)
t
fall
©2006 InPower Semiconductor Co., Ltd.
Turn-on Delay Time -- 19 --
Rise Time -- 27 -- ID=6A
Turn-Off Delay Time -- 58 -- VGS=10V
ns
Fall Time -- 26 --
VDD=200 V
RG=12Ω
FTP06N40 REV. A April. 2006
Page 2 of 9
Source-Drain Diode Characteristics Tc=25oC unless otherwise specified
Symbol Parameter Min. Typ. Max. Units Test Conditions
I
S
I
SM
V
SD
Reverse Recovery Time -- 310 465 ns VGS=0V
t
rr
Q
rr
Continuous Source Current (Body Diode)
Maximum Pulsed Current (Body Diode)
Diode Forward Voltage
Reverse Recovery Charge -- 640 960
--
--
-- --
-- 6 A Integral pn-diode
--
24 A
1.5
V
nC
in MOSFET
I
=6A, VGS=0V
S
IF=6A, di/dt=100 A/µs
Notes:
*1. TJ = +25oC to +150oC.
*2. Repetitive rating; pulse width limited by maximum junction temperature.
*3. I
= 6A di/dt < 100 A/µs, VDD < BV
SD
*4. Pulse width <
380µs; duty cycle < 2%.
©2006 InPower Semiconductor Co., Ltd.
, TJ=+150oC.
DSS
FTP06N40 REV. A April. 2006
Page 3 of 9
Figure 1. Maximum Effective Thermal Impedance, Junction-to-Case
1.000
Duty Factor
50%
20%
10%
0.100
5
%
P
DM
2%
(Normalized)
, Thermal Impedance
θ JC
Z
0.010
1%
single pulse
NOTES:
DUTY FACTOR: D= t1/t2
PEAK TJ=PDM x Z
0.001
1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01
tp, Rectangular Pulse Duration (s)
θ JC
t
1
t
2
x R
θ JC+TC
)
W
, Power Dissipation (
P
, Drain Current (A)
D
I
Figure 2.
100
75
50
25
D
0
25
Figure 4. Typical Output Characteristics
15
PULSE DURATION = 250 µS
DUTY FACTOR = 0.5% MAX
TC = 25oC
10
5
0
05
Maximum Power Dissipation
vs Case Temperature
50
V
DS
75
100
TC, Case Temperature (
10
, Drain-to-Source Voltage (V)
125
o
)
C
5
1
=
S
V
G
1
=
S
G
V
5
.
7
=
S
V
G
V
=
7
.
0
V
G
S
VGS = 6.5V
VGS = 6.0V
VGS = 5.5V
VGS = 5.0V
15 20
F i g u r e 3 .
Maximum Continuous Drain Current
vs Case Temperature
6
5
4
3
2
, Drain Current (A)
D
I
1
0
150
25
F i g u r e 5 .
50
75 100 125 150
, Case Temperature (
T
C
o
)
C
Typical Drain-to-Source ON Resistance
vs Gate Voltage and Drain Current
V
V
0
V
2.0
1.5
1.0
ON Resistance (Ω)
RDS(ON), Drain-to-Source
0.5
4
68 1 6
10 12 14 18 20
VGS, Gate-to-Source Voltage (V)
PULSE DURATION = 250 µS
DUTY FACTOR = 0.5% MAX
TC = 25oC
ID = 12A
I
= 6A
D
ID = 3A
©2006 InPower Semiconductor Co., Ltd.
FTP06N40 REV. A April. 2006
Page 4 of 9
Figure 6. Maximum Peak Current Capability
100
10
, Peak Current (A)
DM
I
VGS = 10V
1
10E-6 100E-6 1E-3 10E-3 100E-3 1E+0 10E+0
TRANSCONDUCTANCE
MAY LIMIT CURRENT IN
THIS REGION
tp, Pulse Width (s)
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
II
150 T C–
---------------------- =
25
125
, Drain-to-Source Current (A)
D
I
, Drain-to-Source
ON Resistance (Ω)
DS(ON)
R
Figure 7. Typical Transfer Characteristics
20
PULSE DURATION = 250 µs
DUTY CYCLE = 0.5% MAX
18
VDS = 10 V
16
14
12
10
8
6
4
2
0
34 67
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
+150oC
+25oC
-55oC
5
VGS, Gate-to-Source Voltage (V)
Figure 9.
PULSE DURATION = 2 µs
DUTY CYCLE = 0.5% MAX
TC=25°C
Typical Drain-to-Source ON
Resistance vs Drain Current
ID, Drain Current (A)
VGS = 10V
F i g u r e 8 .
Unclamped Inductive
Switching Capability
100
10
STARTING T
, Avalanche Current (A)
AS
I
Figure 10.
2.6
2.4
2.2
2.0
1.8
1.6
1.4
, Drain-to-Source
1.2
1.0
0.8
DS(ON)
Resistance (Normalized)
R
0.6
0.4
1
1E-6
Typical Drain-to-Source
vs Junction Temperature
-75 -50 -25 0 25 50 75 100 125 150 051 0
8
15
20
If R= 0: tAV= (L×IAS)/(1.3BV
If R≠ 0: tAV= (L/R) ln[IAS×R)/(1.3BV
R equals total Series resistance of Drain circuit
STARTING TJ = 25oC
= 150oC
J
tAV, Time in Avalanche (s)
PULSE DURATION = 250 µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 6A
T
, Junction Temperature (
J
DSS-VDD
1E-3
ON
o
)
DSS-VDD
Resistanc
)
C
)+1
10E-3 10E-6 100E-6
e
©2006 InPower Semiconductor Co., Ltd.
FTP06N40 REV. A April. 2006
Page 5 of 9
1.15
Figure 11.
Typical Breakdown Voltage vs
Junction Temperature
1.2
Figure 12.
Typical Threshold Voltage vs
Junction Temperature
, Drain-to-Source
DSS
BV
Breakdown Voltage (Normalized)
, Drain Current (A)
D
I
1.10
1.05
1.00
0.95
0.90
100.0
10.0
1.0
0.1
-75
-25 0.0 25 50 75 100 125
-50
TJ, Junction Temperature (oC)
Figure 13.
TJ = MAX RATED,
TC = 25oC
OPERATION IN THIS AREA MAY
BE LIMITED BY R
1
Maximum Forward Bias Safe
Operating Area
10
V
, Drain-to-Source Voltage (V)
DS
DS(ON)
1.1
1.0
0.9
, Threshold Voltage
(Normalized)
0.8
GS(TH)
VGS = 0V
ID = 250 µA
150
0.7
0.6
V
V
=
D
S
G
S
A
2
0
µ
=
5
I
D
V
-75 -50 -25 50 100 75 125 150 25 0.0
T
, Junction Temperature (oC)
J
Figure 14.
Typical Capacitance vs
Drain-to-Source Voltage
10000
1
0
µ
s
1
0
0
µ
s
1
.
0
m
s
1
0
m
s
D
C
100 0.01 1 10 100
1000
1000
100
VGS = 0V, f = 1MHz
C
= Cgs + C
C, Capacitance (pF)
iss
C
oss
C
rss
≅ Cds + C
= C
gd
10
0.1
gd
gd
VDS, Drain Voltage (V)
C
C
C
iss
oss
rss
1000
Figure 15.
Typical Gate Charge
vs Gate-to-Source Voltage
12
10
VDS = 100V
8
VDS = 200V
VDS = 300V
6
4
2
, Gate-to-Source Voltage (V)
GS
V
0
5
0 0.2 0.4 0.6 0.8 1.0 1.2 15 10
Q
, Total Gate Charge (nC)
G
©2006 InPower Semiconductor Co., Ltd.
ID = 6A
25 20
Figure 16.
Typical Body Diode Transfer
Characteristics
60
50
40
30
+150oC
5
2
+
5
-
5
o
C
o
C
20
, Reverse Drain Current (A)
10
SD
I
VGS = 0V
0
30
, Source-to-Drain Voltage (V)
V
SD
1.4
1.6
FTP06N40 REV. A April. 2006
Page 6 of 9
Test Circuits and Waveforms
V
DS
V
GS
I
D
D.U.T.
V
DD
V
GS(TH)
V
DS
I
D
Miller
V
GS
Region
1 mA
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveform
V
R
L
V
DS
V
GS
R
G
D.U.T.
V
DD
DS
90%
10%
V
GS
Q
gs
Q
gd
Q
g
t
d(ON)
Figure 19. Resistive Switching Test Circuit Figure 20. Resistive Switching Waveforms
©2006 InPower Semiconductor Co., Ltd.
t
rise
FTP06N40 REV. A April. 2006
Page 7 of 9
t
d(OFF)
t
fall
Test Circuits and Waveforms
di/dt adj.
Current
Pump
Double Pulse
D.U.T.
I
D
Figure 21. Diode Reverse Recovery Test Circuit
I
di/dt = 100A/µA
D
V
DD
Q
rr
L
Figure 22. Diode Reverse Recovery Waveform
t
rr
BV
DSS
Series Switch
(MOSFET)
I
AS
V
DD
V
DD
BV
DSS
D.U.T.
L
Commutating
Diode
V
GS
Figure 23. Unclamped Inductive Switching Test Circuit Figure 24. Unclamped Inductive Switching Waveforms
50Ω
I
AS
V
GS
0
t
p
E
=
AS
AS
t
AV
2
L I
2
©2006 InPower Semiconductor Co., Ltd.
FTP06N40 REV. A April. 2006
Page 8 of 9
Disclaimers:
InPower Semiconductor Co., Ltd (IPS) reserves the right to make changes without notice in order to improve reliability,
function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant
information before orders and should verify that such information is current and complete. All products are sold subject to
IPS’s terms and conditions supplied at the time of order acknowledgement.
InPower Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time o f sale,
Testing, reliability and quality control are used to the extent IPS deems necessary to support this warrantee. Except where
agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.
InPower Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described
herein. Customers are responsible for their products and applications using IPS’s components. To minimize risk, customers
must provide adequate design and operating safeguards.
InPower Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its patent right s,
nor the rights of others. Reproduction of information in IPS’s data sheets or data books is permissible only if reproduction is
without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business
practice. InPower Semiconductor Co., Ltd is not responsible or liable for such alter e d do cu men t ati o n.
Resale of IPS’s products with statements different from or beyond the parameters stated by InPower Semiconductor Co., Ltd
for that product or service voids all express or implied warrantees for the associated IPS’s product or service and is unfair and
deceptive business practice. InPower Semiconductor Co., Ltd is not responsible or liable for any such statements.
Life Support Policy:
InPower Semiconductor Co., Ltd’s products are not authorized for use as critical components in life support devices or
systems without the expressed written approval of InPower Semiconductor Co., Ltd.
As used herein:
1. Life support devices or systems are devices or systems which:
a. are intended for surgical implant into the human body,
b. support or sustain life,
c. whose failure to perform when properly used in accordance with instructions
for used provided in the labeling, can be reasonably expected to result in significant
injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasoably
expected to cause the failure of the life support device or system. or to affect its safety oreffectiveness.
©2006 InPower Semiconductor Co., Ltd.
FTP06N40 REV. A April. 2006
Page 9 of 9